GARRISON HEIGHTS

TRAFFIC IMPACT STUDY

GARRISON HEIGHTS RESIDENTIAL DEVELOPMENT

KNOX COUNTY, TN

CCI PROJECT NO. 00773-0012

PREPARED FOR: Primos Land Company, LLC 4909 Ball Road Knoxville, TN 37931 SUBMITTED BY Cannon & Cannon, Ir 8550 Kingston Pike Knoxville, TN 37919

865.670.8555

REVISED December 14 **2018**


GARRISON HEIGHTS

TRAFFIC IMPACT STUDY

GARRISON HEIGHTS RESIDENTIAL DEVELOPMENT

KNOX COUNTY, TN

CCI PROJECT NO. 00773-0012

REVISION 1 (12/14/18)

This report replaces the previous version of the traffic impact study dated 11/26/18 in its entirety. The associated changes are a result of comments received from Knoxville / Knox County MPC staff which includes a change to the development access. Knox County comments are located in APPENDIX D.

PREPARED FOR: Primos Land Company, LLC 4909 Ball Road Knoxville, TN 37931 SUBMITTED BY Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, TN 37919 865.670.8555

REVISED December 14 2018

TABLE OF CONTENTS

SECTION I	EXECUTIVE SUMMARY	1
SECTION 2	INTRODUCTION & PURPOSE OF STUDY	2
SECTION 3	EXISTING CONDITIONS	4
SECTION 4	BACKGROUND CONDITIONS	7
SECTION 5	FUTURE CONDITIONS	9
SECTION 6	EVALUATIONS	13
SECTION 7	CONCLUSIONS & RECOMMENDATIONS	16
SECTION 8	APPENDIX	17

.....

....

TABLE OF CONTENTS

FIGURES

	2
	-
CONCEPTUAL SITE PLAN	3
EXISTING TRAFFIC VOLUMES	6
2023 BACKGROUND TRAFFIC VOLUMES	8
TRIP DISTRIBUTION PATTERNS (%)	10
TRIP ASSIGNMENT	11
2023 COMBINED TRAFFIC VOLUMES	12
	EXISTING TRAFFIC VOLUMES 2023 BACKGROUND TRAFFIC VOLUMES TRIP DISTRIBUTION PATTERNS (%) TRIP ASSIGNMENT

TABLES

9 13 14	
14	
	9 13 14

APPENDICES

APPENDIX A	TRAFFIC DATA
APPENDIX B	TRIP GENERATION
APPENDIX C	ANALYSES
APPENDIX D	KNOXVILLE / KNOX COUNTY MPC COMMENTS

.....

EXECUTIVE SUMMARY

This report provides a summary of a traffic impact study that was performed for a proposed residential development to be located off Karns Valley Drive in west Knox County, southwest of the Karns Northwest Sports Complex. The current plans for this proposed residential development provide for a total of 193 single family lots at full build-out. The proposed site will have two access points, one onto Karns Valley Drive at its existing intersection with Byington Solway Road, and the other becoming the fourth leg at the existing intersection of Byington Solway Road, Coward Mill Road and Chuck Jones Drive.

The purpose of this study was to provide a thorough evaluation of the traffic operational and safety impacts of the proposed development upon the adjacent portion of Karns Valley Drive, as well as the two study intersections, which are the two site access intersections. Study intersection no. 1 is Karns Valley Drive at Byington Solway Road and study intersection no. 2 is Byington Solway Road, Coward Mill Road and Chuck Jones Drive. This evaluation was performed assuming full build-out of all units of the proposed development, with existing and background growth conditions also evaluated for purposes of comparison.

The primary conclusion of this study is that the traffic generated by the proposed development will result in minimal traffic operational impacts in the project area. It is also concluded that additional turning lanes are not justified at either of the study intersections.

The improvement recommendations that resulted from this study are summarized below:

- 1. Install a 30 inch STOP sign for the new development approach at study intersection 1.
- 2. Establish and maintain corner sight distance at both proposed site entrance intersections. The primary concern is study intersection 1, where embankment north of the intersection and on the west side of Karns Valley Drive will need to be significantly cut back in order to establish a minimum 400 foot sight line looking to the left. Also, ensure that new site signage and landscaping is properly positioned to not impede the lines of sight.
- 3. At study intersection 2, consider changing the traffic control to 4-way stop or reversing the stop control. Knox County will need to make the final decision as to the appropriate traffic control.

INTRODUCTION & PURPOSE OF STUDY

This report provides a summary of a traffic impact study that was performed for a proposed residential development to be located off Karns Valley Drive in west Knox County, southwest of the Karns Northwest Sports Complex. FIGURE 1 is a location map that identifies the project site in relation to the roadways in the vicinity of the proposed development.

FIGURE 1 LOCATION MAP

The current plans for this proposed residential development provide for a total of 193 single family lots at full build-out. FIGURE 2 is a conceptual site plan showing the proposed site layout, which will have two access points, one onto Karns Valley Drive at its existing intersection with Byington Solway Road, and the other becoming the fourth leg at the existing intersection of Byington Solway Road, Coward Mill Road and Chuck Jones Drive.

The purpose of this study was to provide a thorough evaluation of the traffic operational and safety impacts of the proposed development upon the adjacent portion of Karns Valley Drive, as well as the two study intersections, which are the two site access intersections. Study intersection No. 1 is Karns Valley Drive at Byington Solway Road and study intersection no. 2 is Byington Solway Road, Coward Mill Road and Chuck Jones Drive . This evaluation was performed assuming full build-out of all units of the proposed development, with existing and background growth conditions also evaluated for purposes of comparison.

SECTION 2 INTRODUCTION & PURPOSE OF STUDY

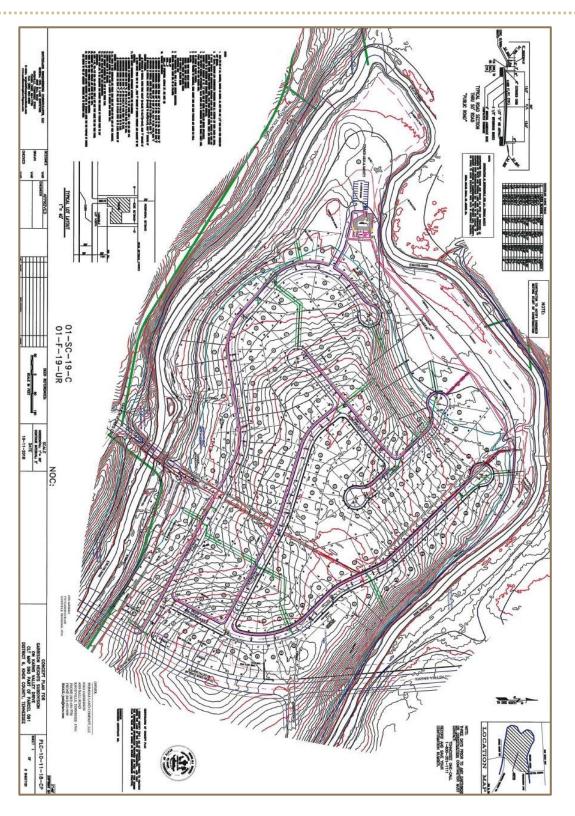


FIGURE 2 CONCEPTUAL SITE PLAN

EXISTING CONDITIONS

EXISTING ROADWAY CONDITIONS

Karns Valley Drive is classified as a Major Collector roadway and is maintained by Knox County. The study section of this facility was recently constructed and opened to traffic. It fills in a missing link of a larger connector roadway that connects the Karns Community to Hardin Valley Drive, which lies to the south. The roadway was constructed as a three lane roadway with one through traffic lane in each direction and a center two-way left-turn lane. The posted speed limit on this section of Karns Valley Drive is 40 mph. Study intersection No. 1 is located on Karns Valley Drive and is controlled by a stop sign on the Byington Solway Road side street.

Study intersection No. 2 is an existing four way intersection, with the north leg currently closed to traffic. This leg is proposed to become the second access road into the project site. The roadways entering into this intersection are all two lane roadways. This is currently a two way stop intersection, with Byington Solway Road and Chuck Jones Drive stopping. The speed limit on these roadways is 30 mph.

EXISTING TRAFFIC DATA

Two relevant traffic count stations for collecting annual average daily traffic data (AADT) are located in the study area. The most recent data from these stations were provided by the Tennessee Department of Transportation with resulting AADTs shown in TABLE 1.

COUNT YEAR	TDOT COUNT STATION 0468 KARNS VALLEY DRIVE NORTH OF OAK RIDGE HWY. (SR 62)	TDOT COUNT STATION 0364 OAK RIDGE HWY (SR 62) NEAR ANDERSON CO. LINE
2017	4,336	12,268
2016	4,258	11,917
2015	4,216	10,495
2014	4,183	11,682
2013	4,061	10,969
2012	3,943	11,997
2011	3,738	11,488
2010	3,533	11,033

TABLE 1: ANNUAL AVERAGE DAILY TRAFFIC COUNT SUMMARY

In order to collect more refined data for analyses and to establish a basis for trip distribution patterns, turning movement traffic counts were collected at the two study intersections. These counts were conducted during the AM and PM peak traffic periods of a typical weekday. Raw data count summaries of this data are contained in APPENDIX A along with additional TDOT AADT data for the TABLE 1 count stations. In addition to helping establish trip distribution patterns, these turning movement counts were used to establish the existing traffic volumes for this study, which are shown in FIGURE 3.

EXISTING CAPACITY ANALYSES / LEVELS-OF-SERVICE

Intersection capacity analyses employing the methods of the latest edition of the Highway Capacity Manual and companion software (HCS7) were used to evaluate the two study intersections for the existing roadway, existing traffic control, and existing (2018) traffic conditions, as shown on FIGURE 3. The results were very good level-of-service "B" or better conditions for the side streets at both study intersections and during both peak traffic hours. These results are summarized in detail on the "HCS7 Two-Way Stop-Control Report" printouts contained in APPENDIX C. Also see APPENDIX C for a discussion of Intersection Capacity and Level of Service Concepts.

SECTION 3 EXISTING CONDITIONS

.....

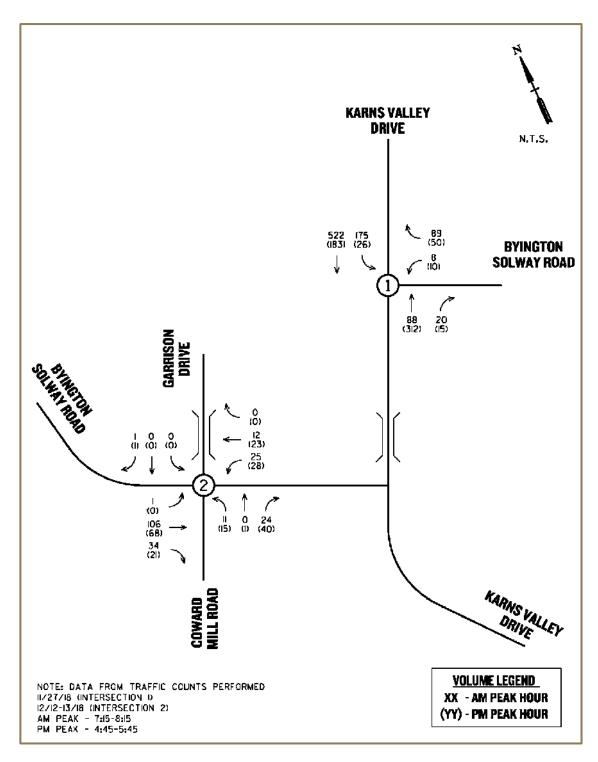


FIGURE 3 EXISTING TRAFFIC VOLUMES

BACKGROUND CONDITIONS

BACKGROUND TRAFFIC GROWTH

The anticipated time for full build-out of the proposed Garrison Heights residential project is estimated as five years. Therefore, year 2023 was established as the appropriate design/analysis year for this study. In order to determine traffic volumes resulting solely from background traffic growth to year 2023, it was necessary to establish an annual growth rate for existing traffic. The ADT values given previously in TABLE 1, along with engineering judgment, were used to arrive at a rate of 2.5 percent per year for this development. FIGURE 4 contains the background traffic volumes that would result from this 2.5 percent annual growth rate to year 2023.

BACKGROUND CAPACITY ANALYSES / LEVELS-OF-SERVICE

Intersection Capacity Analyses employing the methods of the Highway Capacity Manual and companion software (HCS7) were used to evaluate the two study intersections. for the existing roadway, existing traffic control, and background (2023) traffic conditions, as shown on FIGURE 4. The results were similar to the existing analyses, very good level-of-service "B" or better conditions for the side streets at both study intersections and during both peak traffic hours. These results are summarized in detail on the "HCS7 Two-Way Stop-Control Report" printouts contained in APPENDIX C. Also see APPENDIX C for a discussion of Intersection Capacity and Level-of-Service Concepts.

SECTION 4

BACKGROUND CONDITIONS

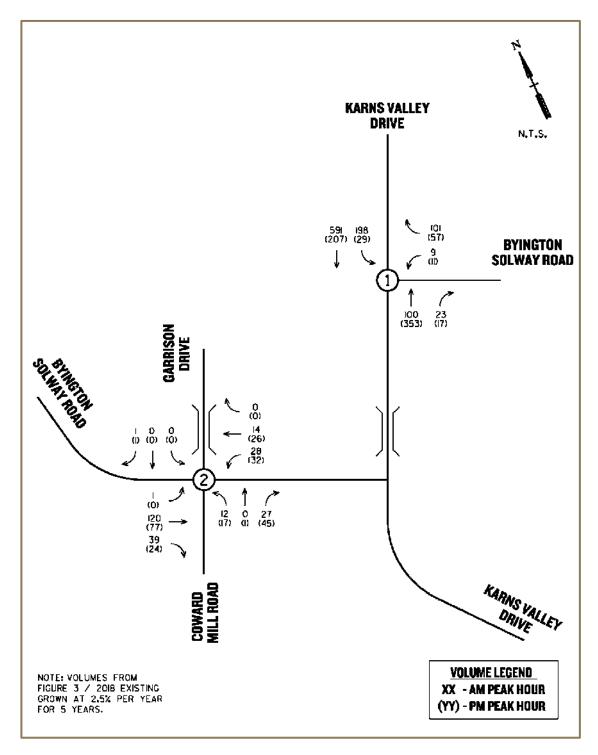


FIGURE 4 2023 BACKGROUND TRAFFIC VOLUMES

FUTURE CONDITIONS

TRIP GENERATION

In order to estimate the expected traffic volumes to be generated by full build-out of the proposed development, the data and procedures of *Trip Generation, Tenth Edition* (Institute of Transportation Engineers, 2017) were utilized. The generated traffic volumes were determined based on the total weekday morning and evening peak hour of adjacent street traffic trip generation rates for single-family detached housing (Land Use Code 210). Utilizing a maximum number of units upon full build-out of 195, the newly generated trips were estimated. TABLE 2 summarizes the number and directional split of these anticipated entering and exiting trips from the proposed development.

ı	LAND USE	ITE CODE	SIZE	WEEKDAY (TRIPS/DAY)	AM PEAK HOUR (TRIPS/HR)	PM PEAK HOUR (TRIPS/HR)		
Single-Family Detached Housing Entering Trips Exiting Trips		210	195 units	961 961	36 107	122 71		
TOTAL	Generated Trips Entering Trips Exiting Trips	-	-	1,922 961 961	143 36 107	193 122 71		

TABLE 2: TRIP GENERATION SUMMARY

TRIP DISTRIBUTION AND ASSIGNMENT

FIGURE 5 provides a summary of the trip distribution patterns developed for the study intersection, which were derived from knowledge of the existing traffic counts and local area travel trends. In addition, FIGURE 6 provides the generated traffic volumes as assigned to the local roadway network in accordance with these distribution patterns. FIGURE 7 shows the combined year 2023 volumes reflecting the existing traffic, the background traffic growth, and the newly generated traffic from the proposed residential development. These are the volumes used in the analysis of full build-out conditions.

FUTURE CAPACITY ANALYSES / LEVELS-OF-SERVICE

Intersection Capacity Analyses employing the methods of the Highway Capacity Manual and companion software (HCS7) were used to evaluate the two study intersections for the existing roadway, existing traffic control, and combined (2023) traffic conditions, as shown on FIGURE 7. The results were good level-of-service "C" or better conditions for the side streets at both study intersections and during both peak traffic hours. These results are summarized in detail on the "HCS7 Two-Way Stop-Control Report" printouts contained in APPENDIX C. Also see APPENDIX C for a discussion of Intersection Capacity and Level of Service Concepts.

.

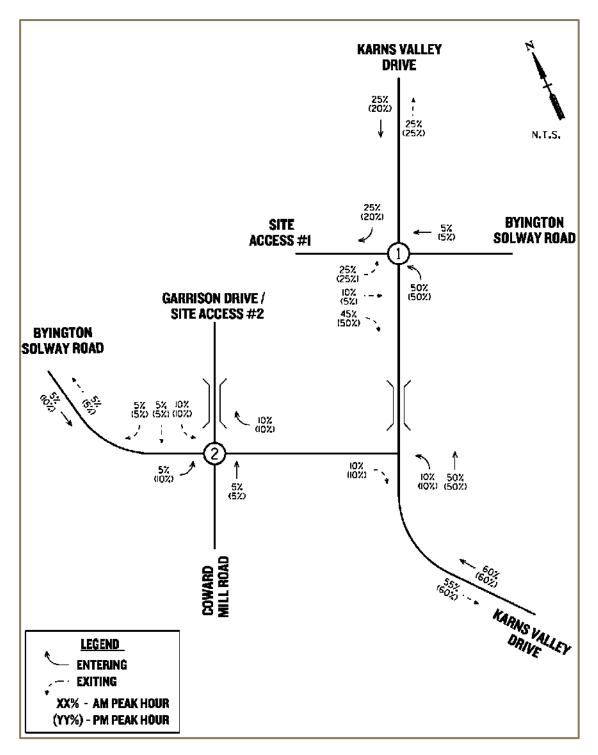


FIGURE 5 TRIP DISTRIBUTION PATTERNS (%)

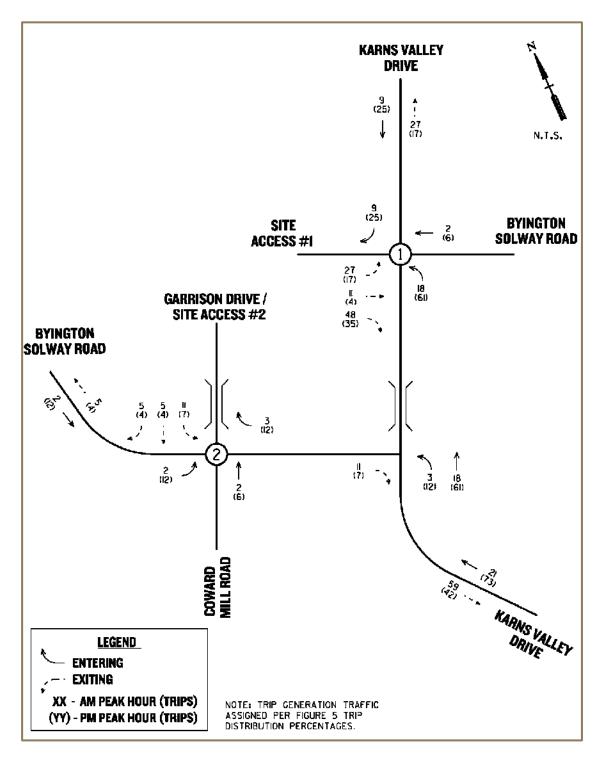


FIGURE 6 TRIP ASSIGNMENT

11

SECTION 5 FUTURE CONDITIONS

.....

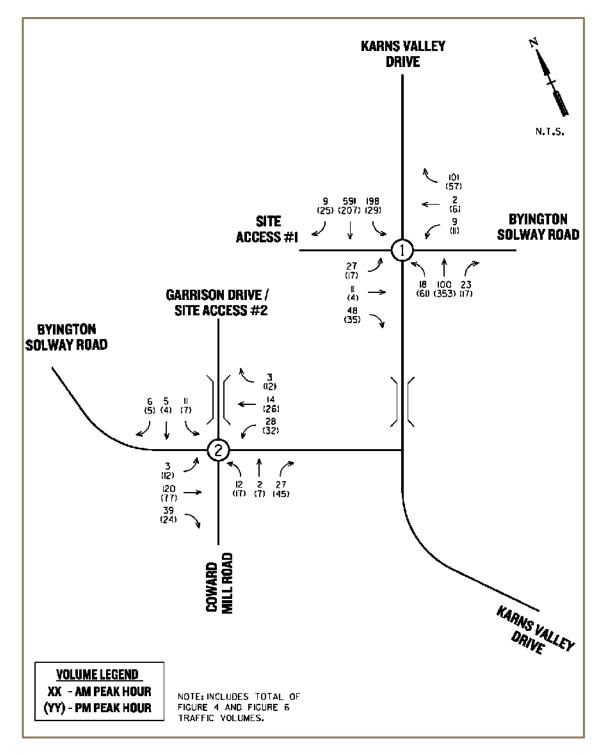


FIGURE 7 2023 COMBINED TRAFFIC VOLUMES

EVALUATIONS

INTERSECTION CAPACITY ANALYSES

As discussed in the preceding sections of this report, capacity analyses employing the methods of the Highway Capacity Manual and companion software (HCS7) were conducted for the two study intersections. These analyses were performed for existing, background, and combined traffic conditions using existing geometry and existing traffic control. Some additional analyses of possible stop control alternatives were also conducted for study intersection 2. A summary of the capacity analyses results is shown in TABLES 3 & 4.

TABLE 3:	САРА	CITY AN/	ALYSES	SUMMARY -	- INTERSECTION 1
К	ARNS	VALLEY C	DR AND	BYINGTON	SOLWAY

LEVEL-OF-SERVICE (AVG. DELAY IN SECONDS)*						
BYINGTON SOLWAY	KARNS VALLEY DRIVE					
APPROACH	SOUTHBOUND APPROACH					
(LEFT & RIGHT TURNS)	(LEFT ONLY / LEFT & THRU)					
A (9.9)	A (7.8) / A (2.0)					
B (10.9)	A (8.1) / A (1.0)					
B (10.2)	A (7.9) / A (2.0)					
B (11.3) SITE	A (8.2) / A (1.0)					
B (11.5) / C (21.4)	A (7.9) / A (2.0)					
B (12.5) / B (12.7)	A (8.2) / A (0.9)					
	BYINGTON SOLWAY APPROACH (LEFT & RIGHT TURNS) A (9.9) B (10.9) B (10.2) B (11.3) SITE B (11.5) / C (21.4)					

* Side Street Stop Control – Level-of-Service and Average Vehicular Delay (seconds) for side street movements and main street left-turn and through movements utilizing HCM methodology.

As shown is the above table, the anticipated delays and levels-of-service for the combined traffic conditions will be only slightly worse than existing and background conditions, which are clearly acceptable with no justification for improvements.

GARRISON / COWARD MILL AND BYINGTON SOLWAY / CHUCK JONES									
	LEVEL-OF-SERVICE (AVG. DELAY IN SECONDS)*								
EVALUATION CONDITION	BYINGTON SOLWAY EB APPROACH (LEFT/THRU/ RIGHT)	CHUCK JONES WB APPROACH (LEFT/THRU/ RIGHT)	COWARD MILL NB APPROACH (LEFT ONLY / LEFT & THRU)	GARRISON SB APPROACH (LEFT ONLY/ LEFT & THRU)					
Existing (2018) – AM	A (10.0)	A (10.0)	A(7.2) / A(2.3)	A(7.3) / A(0.0)					
Existing (2018) – PM	A (9.8)	A (9.8)	A(7.3) / A(2.0)	A(7.3) / A(0.0)					
Background (2023) – AM	B (10.2)	B (10.2)	A(7.3) / A(2.3)	A(7.3) / A(0.0)					
Background (2023) – PM	A (9.9)	A (10.0)	A(7.3) / A(2.0)	A(7.3) / A(0.0)					
Combined w/ Existing Control (2023) – AM	B (10.5)	B (10.5)	A(7.3) / A(2.2)	A(7.3) / A(3.7)					
Combined w/ Existing Control (2023) – PM	B (10.2)	B (10.1)	A(7.3) / A(1.9)	A(7.3) / A(3.2)					
Combined w/ Reverse Control (2023) – AM	A(8.6) / A(0.2)	A(7.6) / A(4.8)	A (9.2)	B (10.2)					
Combined w/ Reverse Control (2023) – PM	A(8.7) / A(1.0)	A(7.5) / A(3.5)	A (9.2)	B (10.2)					
Combined w/ 4-Way Stop (2023) – AM	A (8.0)	A (7.6)	A (7.3)	A (7.6)					
Combined w/ 4-Way Stop (2023) – PM	A (7.8)	A (7.7)	A (7.4)	A (7.4)					
* Side Street Step Control -	Lovel of Service and	Average Vehicular Del	lay (coconde) for sid	o stroot					

TABLE 4: CAPACITY ANALYSES SUMMARY – INTERSECTION 2GARRISON / COWARD MILL AND BYINGTON SOLWAY / CHUCK JONES

* Side Street Stop Control – Level-of-Service and Average Vehicular Delay (seconds) for side street movements and main street left-turn and through movements utilizing HCM methodology.

As shown is the above table, the anticipated delays and levels-of-service for the combined traffic conditions will be only slightly worse than existing and background conditions, which are clearly acceptable with no justification for improvements. See the STOP Sign Assessment section below for additional related discussion.

SIGHT DISTANCE ASSESSMENT

The proposed project development entrances were evaluated for corner sight distance. For study intersection 1, based on the posted 40 mph speed limit, the required minimum sight distance in accordance with Knox County regulations would be 400 feet. Field reviews indicate that the sight distance significantly exceeds 400 feet looking south, but is approximately 290 feet looking north. Significant cut slope embankment along the west side of Karns Valley Drive, in combination with horizontal and vertical curves, are the limiting factors for this sight distance.

For study intersection 2, the posted speed limit is 30 mph, requiring a minimum sight distance of 300 feet. However, the streets crossing the project site approach currently stop at this location. Measurements were made, however, since this looks like a location where the stop signs might justify reversal. The resulting sight distances were found to be 305 feet looking south up Chuck Jones Road and 440 feet looking north up Byington Solway Road. It should be noted that the 305 foot sight distance could easily be improved by cutting back some small trees and brush.

TURN LANE ASSESSMENT

Turn lane warrant analyses were conducted for the two study intersections under combined development conditions. These analyses were conducted for right-turn lanes only at study intersection 1, as left-turn lanes already exist, and for both left and right turn lanes at study intersection 2. These analyses employed tables from the <u>Knox County Access Control and Driveway Design Policy</u>, which are based on turn lane warrants developed by Harmelink. The results indicate that no additional turn lanes are expected to be warranted during the AM and PM peak traffic hours under proposed combined development conditions. A copy of the relevant Knox County tables are located in APPENDIX C for review.

STOP SIGN ASSESSMENT

Study intersection 2 currently has 2-way stop control with east-west Byington Solway Road/Chuck Jones Road being the stop streets. With more traffic being on these streets, evaluations were conducted to assess potential stop reversal and 4-way stop alternatives. As shown in TABLE 4, all alternatives have very good levels-of-service of "B" or better. Thus, any of these alternatives are acceptable from a traffic operational standpoint. We believe that 4-way stop should be considered due to the high percentages of turning volumes at this intersection and the likelihood that it would provide speed control and safety advantages.

CONCLUSIONS & RECOMMENDATIONS

The primary conclusion of this study is that the traffic generated by the proposed development will result in minimal traffic operational impacts in the project area. It is also concluded that additional turning lanes are not justified at either of the study intersections.

The improvement recommendations that resulted from this study are summarized below:

- 1. Install a 30 inch STOP sign for the new development approach at study intersection 1.
- 2. Establish and maintain corner sight distance at both proposed site entrance intersections. The primary concern is study intersection 1, where embankment north of the intersection and on the west side of Karns Valley Drive will need to be significantly cut back in order to establish a minimum 400 foot sight line looking to the left. Also, ensure that new site signage and landscaping is properly positioned to not impede the lines of sight.
- 3. At study intersection 2, consider changing the traffic control to 4-way stop or reversing the stop control. Knox County will need to make the final decision as to the appropriate traffic control.

SECTION 8 APPENDIX

.....

APPENDIX

APPENDIX A - TRAFFIC DATA

APPENDIX B - TRIP GENERATION

APPENDIX C - ANALYSES

APPENDIX D - KNOXVILLE / KNOX COUNTY MPC COMMENTS

APPENDIX A - TRAFFIC DATA

Click to restore the map extent and layers visibility where you left off,

Station 0468 Karns Valley	Drive - North	of Oak Ridge	Hwy. (SR 62)
AADT by year:			
2017 = 4,336			
2016 = 4,258			
2015 = 4,216 2014 = 4,183			
2013 = 4,061			
2012 = 3,943			
2012 = 3,738			
2010 = 3,533			
2009 =			
2008 =			
2007 =			
2006 =			
2005 =			
2004 =			
2003 =			
2002 =			
2001 =			
2000 =			
1999 =			
1998 =			
1997 = 1996 =			
1995 =			
1994 =			
1993 =			
1992 =			
1991 =			
1990 =			
1989 =			
1988 =			
1987 =			
1986 = 1985 =			
1985 =			
1983 =			

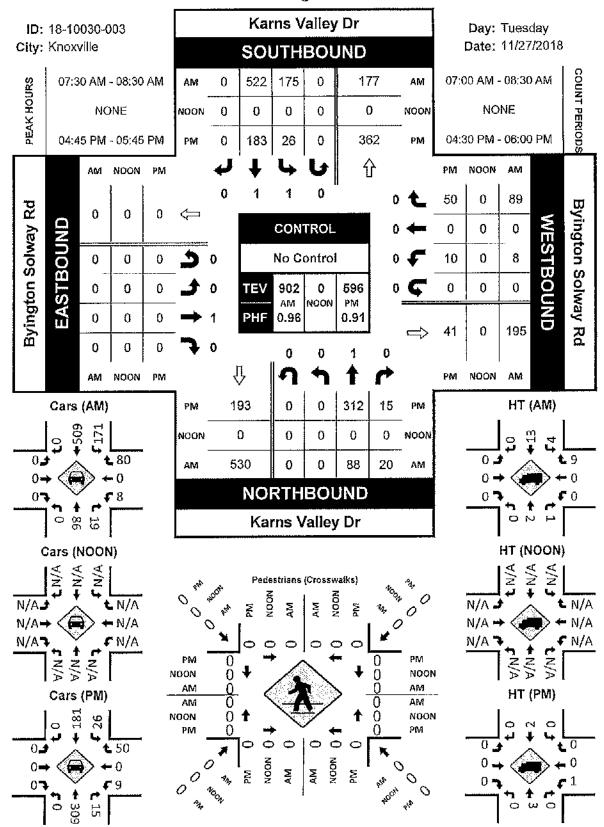
1983 =

. . . .

1 of 2

Station Number: 000364

Knox County, NEAR ANI	DERSON CO LINE
Knox County, NEAR ANI Route: SR062 (O • K	Ridge Hwy.)


AADT by year:

2017 = 12,2682016 = 11,9172015 = 10,4952014 = 11,6822013 = 10,9692012 = 11,9972011 = 11,4882010 = 11,0332009 = 11,5972008 = 10,7812007 = 10,639 2006 = 12,2012005 = 12,4972004 = 11,6682003 = 10,9202002 = 10,3382001 = 10,3122000 = 10,5441999 = 10,0951998 = 9.8361997 = 10,5601996 = 14,8491995 = 11,3631994 = 9,9051993 = 8,6671992 = 9,9091991 = 9,5131990 = 9,2131989 = 9,165 1988 = 8,0911987 = 7,2311986 = 7,5781985 =1984 =1983 =

!

Karns Valley Dr & Byington Solway Rd

Peak Hour Turning Movement Count

A-4

National Data & Surveying Services

Location: Karns Valley Dr & Bylington Solway Rd City: Krosville Control: No Control

Project ID: 18-10030-603 Date: 11/27/2010

Control:	NO CONTROL							То	tai					wate:	11/27/2010		
NS/EW Streets:	Karns Valley Dr			Karns Valley Dr Karns Valley Dr Byington Solway Rd						Byington Solway Rd				l			
AM	0	í	BOUND	ð	1	SOUTH	0	0	0	1	BOUND	0	0	0	BOUND	D	
7:00 AM	<u>NI.</u>	<u>NT</u>	<u>NR</u>	0	<u>- 51</u>	<u>51</u> 91	<u>58</u> 0	<u>5U</u>	<u>. FL</u>	<u></u> 0	FR	E11 0	<u>WI.</u>	<u>w</u> r	WR 4	1)W 0	115
7:00 AM	å		7	ň.	n	128	õ	0	, a	, v	0	n v	l X	5	7	ŏ	179
7:30 AM	å	30 30	å	ň	34	151	ŏ	ŏ	ŏ	ŏ	ă	ă	1 4	ŏ	12	ŏ	235
7:45 AM	ă	21	3	ŏ	31	145	ŏ	ň	ŏ	ň	õ	ŏ	i i	õ	21	ŏ	221
8:00 AM	ŋ	20	8	Û	51	179	ō		0	0	Ö	Ō	0	Ö	29	ō	236
8:15 AM	0	17	5	0	59	97	0	Ģ	Ģ	0	0	0	4	9	28	0	210
······	NL.	NT	NR	NU	SL	51	SR	50	EL	धा	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES I	Đ	129	27	0	191	741	0	a	0	Ð	8	0	8	0	100	0	1196
APPROACH %'s ;	0.00%	82,69%	17,31%	0.00%	20.49%	79,51%	0.00%	0.00%					7.41%	0.00%	92.59%	0.00%	
PEAK BR :			08130 AM														TOTA
PEAK HR VOL 1	Û	88	20	0	175	522	Ð	0	0	0	0	0	8	0	89	0	902
PEAK HIL FACTOR :	0.000	0.733 0.7	0.625 94	0.000	0.742	0.854 0.94	0.000 \$2	0.000	0.000	0.000	0.000	0.000	0.500	6.000 8.7	0.795 58	0.000	0.956
		NODTH	BOUND			SOUTH	DOLIND			EACT	BOUND		 F	WESTE	OUND		
PM	0	1	000000	0		1	Û	0	0	1	0	0	0	0	0	0	1
(F 1 V)	NL	พ้า	NR	NU	ŝi.	डी	SR	sŭ	é	Ê	ĒR	ຍັ	ŴL	ŵī	WR	wu	TOTAL
4:30 PM	0	60	3	0	3	49	0	ŏ	0		0	0	2	···· ()·····	9	0	126
1:45 PM	ō	84	2	0	5	35	ō	ō I	ō	ū	ō	ā	ī	Ó	14	- Ó	141
5:00 PM	Û	77	5	0	9	42	0	Ó	Û	Û	0	0	2	0	12	0	117
5:15 PM	0	27	ú	0	7	56	0	0	0	0	0	0	4	0	13	0	163
5:30 PM	Ģ	74	2	0	5	50 25	Q	Q	Q	0	0	0	3	0	11	0	145
5:45 PM	0	56	1	0	3	25	0	o	0	0	0	0	3	0	4	Û	90
	NL	Nĩ	NR.	NU	ŞL	ទា	કાર	SU	EL	Eĩ	ER	EU	WE	WT	WR	WO	TOTAL
TOTAL VOLUMES :	Q	428	19	0	32	257	U	0	U	0	0	0	13	0	63	0	812
APPROACH %'s (0.00%5	95.75 %	4,25%	0.00%	11,07%	86.93%	0.50%	0.00%					17.13%	0.00%	82.89%	0.00%	-
PEAK HR :		24145 PM -										~			~~		TOTAL
PEAK HR VOL :	0	312	15	0	26	103	0	0	0	0	0	0	10	0	50	0	596
PEAK HR PACTOR :	0.000	0.929 0.9	0.625 51	0.000	0.722	0,817 0,82	0.000 9	0.060	0.000	0.000	0.000	0,000	0,625	0.000 0,840	0,893 82	0.000	0.914

1

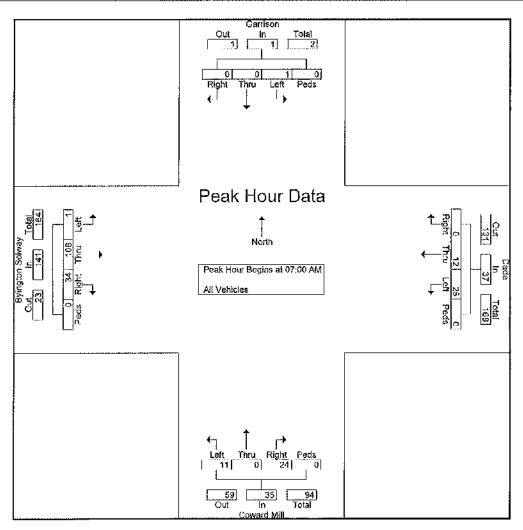
÷

Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, Tennessee 37919

(865) 670-8555

File Name : Coward Mill @ Byington Solway - Existing AM Site Code : 773-12 Start Date : 12/13/2018 Page No : 1

								Gr	oups l	rinted	- All V	ehicle	s								_
		(Garris	on				Dade	9			Cç	ward	Mitl			Bying	gton S	olway	1	1
		So	uthbo	ound			W	estbo	und			No	rthbo	und			E	astbo	und		
Start Time	Left	Thru	Right	Peds	App. letal	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Telai	Left		Right	Peds	App. Tel.4	Int. Total
06;45 AM	0	0	0	0	0	2	3	0	0	5	1	0	5	0	6	0	25	4	0	29	40
Total	Q	0	0	0	0	2	3	0	0	5	1	0	5	0	6	0	25	4	0	29	40
07:00 AM	0	0	0	0	0	1	2	0	0	3	5	0	7	0	12	0	27	3	0	30	45
07:15 AM	0	0	0	0	0	4	1	0	0	5	2	0	4	0	6	0	36	9	0	44	55
07:30 AM	0	0	0	0	0	5	5	0	0	10	2	0	8	0	10	0	24	10	0	34	54
07:45 AM	1	0	0	0	1	15	4	0	0	19	2	0	5	0	7	1	20	12	0	33	60
Total	1	0	0	0	1	25	12	0	0	37	1 1	0	24	0	35	1	106	34	0	141	214
08:00 AM	0	0	0	0	0	7	8	0	0	15	2	0	5	0	7	0	15	4	0	19	41
Grand Total	1	0	0	0	1	34	23	0	0	57	14	0	34	0	48	1	146	42	0	189	295
Apprch %	100	0	0	0		59.6	40.4	0	0		29.2	0	70.8	0		0.6	77.2	22.2	0		1
Total %	0.3	0	0	0	0.3	11.5	7.8	0	0	19.3	4.7	0	11.5	0	16.3	0.3	49.5	14.2	0	64.1	

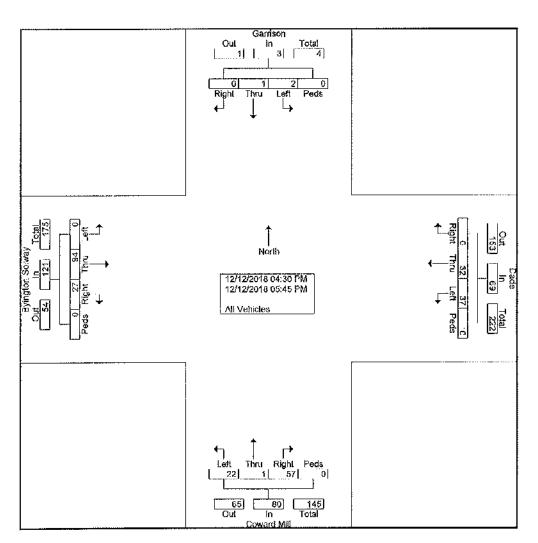

1

Cannon & Cannon, Inc. 8550 Kingston Pike

8550 Kingston Pike Knoxville, Tennessee 37919 (865) 670-8555

> File Name : Coward Mill @ Byington Solway - Existing AM Site Code : 773-12 Start Date : 12/13/2018 Page No : 2

	Garrison Southbound				Dade Westbound				Coward Mill Northbound												
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Tetal	Left	Thru	Right	Peds	Арр Теза	Left	Thru	Right	Peds	Арр. Тојај	Int. Yotal
Peak Hour A	nalysi	s Fron	n 06:4	5 AM t	o 08:00	AM - İ	Peak	of 1													
Peak Hour fe	or Entid	re Inte	rsectio	on Beg	ins at 0	7:00 A	M														
07:00 AM	0	0	0	0	0	1	2	0	0	3	5	0	7	0	12	0	27	3	0	30	45
07:15 AM	0	0	0	0	0	4	1	0	0	5	2	0	4	0	6	0	35	9	0	44	55
07:30 AM	0	0	0	0	0	5	5	0	0	10	2	0	8	0	10	0	24	10	0	34	54
07:45 AM	1	0	0	0	1	15	4	0	0	19	2	0	5	0	7	1	20	12	0	33	60
Total Volumo	1	0	0	0	1	25	12	0	0	37	11	0	24	0	35	1	106	34	0	141	214
% App. Total	100	0	0	0		67.6	32.4	0	0		31.4	0	68,6	0		0.7	75.2	24.1	0		
PHF	.250	.000	.000	.000	.250	.417	.600	.000	.000	.487	.550	.000	.750	.000	.729	,250	,757	.708	.000	.801	.892

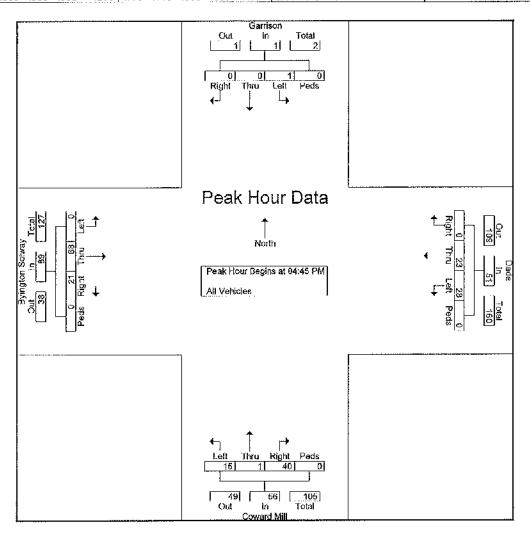


Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, Tennessee 37919

(865) 670-8555

File Name : Coward Mill @ Byington Solway - Existing PM Site Code : 773-12 Start Date : 12/12/2018 Page No : 1

								Gr	oups I	^o rinted	- Ali V	ehicle	38								_
		G	Sarris	on				Dade	3			Çç	ward	Mill			Bying	gton 8	Solway	1	1
	Southbound				Westbound				Northbound												
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peda	App. I dal	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	int, 1 olai
04:30 PM	1	1	0	0	2	3	8	0	0	11	3	0	11	0	14	0	16	1	0	17	44
04:45 PM	0	0	0	0	0	9	5	0	0	14	5	0	7	0	12	0	14	3	0	17	43
Total	1	1	0	0	2	12	13	0	0	25	8	0	18	0	26	0	30	4	0	34	87
05:00 PM	0	0	0	0	0	9	5	0	0	14	2	0	12	0	14	0	21	6	0	27	55
05:15 PM	1	0	0	0	1	9	5	0	0	14	3	1	10	0	14	0	16	6	0	22	51
05:30 PM	0	0	0	0	0	1	8	0	0	9	5	0	11	0	16	0	17	6	0	23	48
05:45 PM	0	Û	0	0	0	6	1	0	0	7	4	0	6	0	10	0	10	5	0	15	32
Total	1	0	0	0	1	25	19	0	0	44	14	1	39	0	54	0	64	23	0	87	186
Grand Total Apprch %	2 66.7	1 33.3	0	0	3	37 53.6	32 46.4	0	0	69	22 27.5	1 1.2	57 71.2	0	80	0	94 77.7	27 22.3	0 0	121	273
Total %	0.7	0,4	Ő	Ő	1.1	13.6	11.7	0	Ő	25.3	8.1	0.4	20.9	Ô	29.3	0	34.4	9.9	0	44.3	1



Cannon & Cannon, Inc.

8550 Kingston Pike Knoxville, Tennessee 37919 *(865) 670-8555*

> File Name : Coward Mill @ Byington Solway - Existing PM Site Code : 773-12 Start Date : 12/12/2018 Page No : 2

			Sarris uthbo				Dade Westbound				Coward Mill Northbound										
Start Time	Left		Right		App. Total	Left	Thru	Right	Peds	App field	Left	í hra	Right	Peds	Арр. Токы	Left	Thru	Right	Peds	App. Yesal	int. Total
Peak Hour A	nalysi	s Fron	n 04:3	0 PM I	to 05:45	PM -	Peak '	iof1													
Peak Hour fo	or Enti	re inte	rsectio	on Beg	jins at 0	4:45 P	M														
04:45 PM	0	0	0	0	0	9	5	0	0	14	5	0	7	0	12	0	14	3	0	17	43
05:00 PM	0	0	0	0	0	9	5	0	0	14	2	0	12	0	14	0	21	6	0	27	65
05:15 PM	1	0	0	0	1	9	- 5	0	0	14	3	ť	10	0	14	0	16	6	0	22	51
05:30 PM	0	0	0	0	0	1	8	0	0	9	5	0	11	0	16	0	17	6	0	23	48
Total Volume	1	0	0	0	1	28	23	0	0	51	15	1	40	0	56	0	68	21	0	89	197
% App. Totat	100	0	0	0		54,9	45.1	0	0		26.8	1.8	71,4	0		0	76.4	23.6	0		
PHF	.250	.000	.000	.000	.250	.778	.719	.000	.000	.911	.750	,250	,833	.000	.875	.000	.810	.875	.000	.824	.895

ł

. . . .

APPENDIX B - TRIP GENERATION

Land Use: 210 Single-Family Detached Housing

Description

Single-family detached housing includes all single-family detached homes on individual lots. A typical site surveyed is a suburban subdivision.

Additional Data

The number of vehicles and residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it was usually readily available, easy to project, and had a high correlation with average weekday vehicle trip ends.

This land use included data from a wide variety of units with different sizes, price ranges, locations, and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Single-family detached units had the highest trip generation rate per dwelling unit of all residential uses because they were the largest units in size and had more residents and more vehicles per unit than other residential land uses; they were generally located farther away from shopping centers, employment areas, and other trip attractors than other residential land uses; and they generally had fewer alternative modes of transportation available because they were typically not as concentrated as other residential land uses.

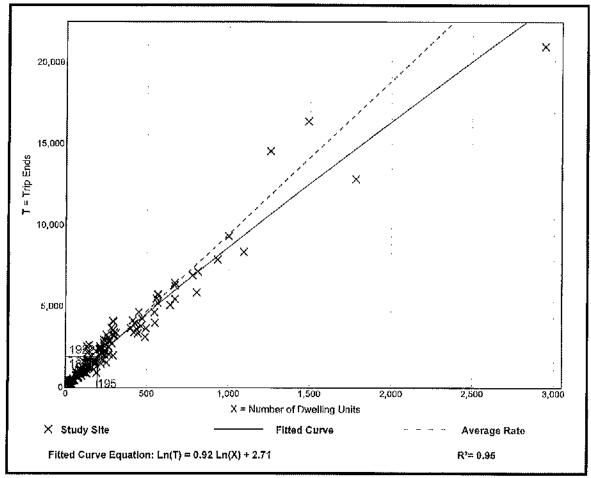
Time-of-day distribution data for this land use are presented in Appendix A. For the six general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:00 and 5:00 p.m., respectively. For the two sites with Saturday data, the overall highest vehicle volume was counted between 3:00 and 4:00 p.m. For the one site with Sunday data, the overall highest vehicle volume was counted between 10:15 and 11:15 a.m.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Connecticut, Delaware, Illinois, Indiana, Maryland, Minnesota, Montana, New Jersey, North Carolina, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, and Virginia.

Source Numbers

100, 105, 114, 126, 157, 167, 177, 197, 207, 211, 217, 267, 275, 293, 300, 319, 320, 356, 357, 367, 384, 387, 407, 435, 522, 550, 552, 579, 598, 601, 603, 614, 637, 711, 716, 720, 728, 735, 868, 903, 925, 936

Single-Family Detached Housing (210)


Vehicle Trip Ends vs:	Dwelling Units
On a:	Weekday

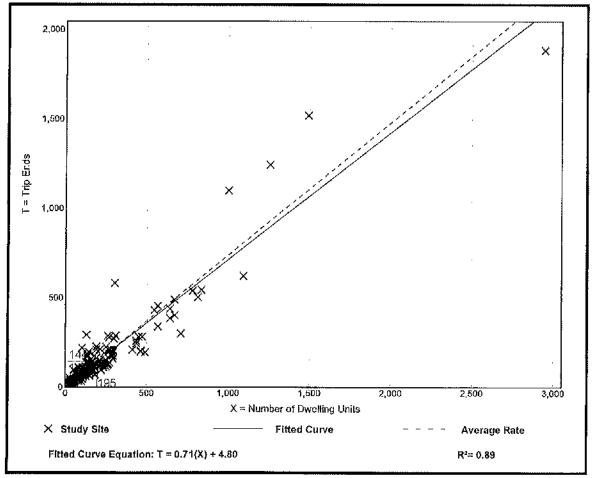
Setting/Location:	General Urban/Suburban
Number of Studies:	159
Avg. Num. of Dwelling Units:	264
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	4.81 - 19.39	2.10

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers


(210)										
Vehicle Trip Ends vs:	Dwelling Units									
On a:	Weekday,									
	Peak Hour of Adjacent Street Traffic,									
	One Hour Between 7 and 9 a.m.									
Setting/Location:	General Urban/Suburban									
Number of Studies:	173									
Avg. Num. of Dwelling Units:	219									
Directional Distribution:	25% entering, 75% exiting									

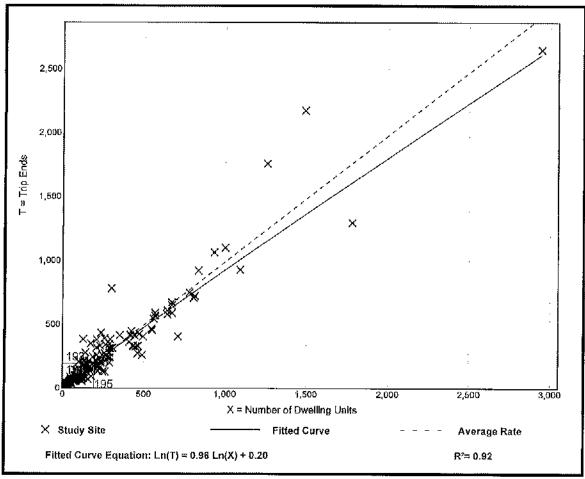
Single-Family Detached Housing

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

Data Plot and Equation

Trip Generation Manual, 10th Edition · Institute of Transportation Engineers


Vobiala Trin Enda vov	Devolting Units
Vehicle Trip Ends vs:	0
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies;	190
Avg. Num. of Dwelling Units:	242
	63% entering, 37% exiting

Cinala Eamily Datachad Ha

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	0.44 - 2.98	0.31

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

APPENDIX C ANALYSES

.....

APPENDIX C - ANALYSES

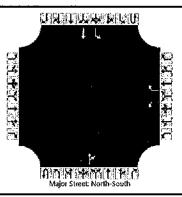
CAPACITY AND LEVEL-OF-SERVICE CONCEPTS

In a general sense, a roadway is similar to a pipeline or other material carrying conduit in that it has a certain capacity for the amount of material (vehicles) that it can efficiently carry. As the number of vehicles in a given time period gradually increases, the quality of traffic flow gradually decreases. On roadway sections this results in increasing turbulence in the traffic stream, and at intersections it results in increasing stops and delay. As the volumes begin to approach the capacity of the facility, these problems rapidly magnify, with resulting serious levels of congestion, stops, delay, excess fuel consumption, pollutant emissions, etc.

The Transportation Research Board has published the <u>Year 2010</u>, <u>Highway Capacity Manual</u> (<u>HCM2010</u>), which establishes theoretical techniques to quantify the capacity conditions on all types of roadways, intersections, ramps, pedestrian facilities, etc. A basic concept that is applicable to most of these techniques is the idea of level of service (LOS). This concept establishes a rating system that quantifies the quality of traffic flow, as perceived by motorists and/or passengers. The general system is similar to a school grade scale, and is outlined as follows:

Level of Service (LOS)	General Quality of Traffic Flow	Description of Corresponding Conditions
А	Excellent	Roadways – Free flow, high maneuverability Intersections – Very few stops, very low delay
В	Very Good	Roadways – Free flow, slightly lower maneuverability Intersections – Minor stops, Iow delay
С	Good	Roadways – Stable flow, restricted maneuverability Intersections – Significant stops, significant delay
D	Fair	Roadways – Marginally stable flow, congestion seriously restricts maneuverability Intersections – High stops, long but tolerable delay
E.	Poor	Roadways – Unstable flow*, lower operating speeds, congestion severely restricts maneuverability Intersections – All vehicles stop, very long queues and very long intolerable delay
F	Very Poor	Roadways – Forced flow, stoppages may be lengthy, congestion severely restricts maneuverability Intersections – All vehicles stop, extensive queues and extremely long intolerable delay

*Unstable flow is such that minor fluctuations or disruptions can result in rapid degradation to LOS F.


LOS	С	ONTROL DELAY (S/VEH	1}
EQ3	SIGNALIZED	UNSIGNALIZED	ROUNDABOUT
A	≤10	≤10	≤10
В	>10-20	>10-15	>10-15
С	>20-35	>15-25	>15-25
D	>35-55	>25-35	>25-35
E	>55-80	>35-50	>35-50
۴	>80	>50	>50

LOS CRITERIA: SIGNALIZED & UNSIGNALIZED INTERSECTIONS

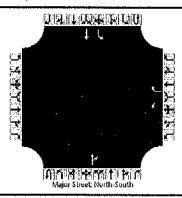
Another measure of intersection capacity that is often used in the evaluation of intersection operations is the volume to capacity (V/C) ratio. This ratio is defined as "the ratio of flow rate to capacity", and is a good measure of how much of an intersection's available capacity has been used up by the analysis volumes. Conversely, it also provides an indication of the reserve capacity available for future growth in traffic volumes.

The Intersection Capacity Utilization (ICU) is another measure that expresses a value similar to the V/C ratio. Specifically, the ICU method "sums the amount of the time required to serve all movements at saturation for a given cycle length and divides by that reference cycle length." The ICU is considered a more accurate measure of volume to capacity conditions for a signalized intersection, primarily because it accounts for the effects of the signal timing on intersection capacity.

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway Road
Analysis Year	2018	North/South Street	Karns Valley Drive
Time Analyzed	AM Peak Existing	Peak Hour Factor	0.95
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS	· · · · · · · · · · · · · · · · · · ·	

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U.	1	Т	R	U	Ł	т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	D	0	1	0	0	1	1	0
Configuration						L		R				TR		L.	Т	
Volume (veh/h)				1		8		89			88	20		175	522	ĺ
Percent Heavy Vehicles (%)				l		3		3			1			3		
Proportion Time Blocked																
Percent Grade (%)						- ()									
Right Turn Channelized						N	la									
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)						7.1		6.2	<u> </u>					4.1		[
Critical Headway (sec)						6.43		6.23						4,13		
Base Follow-Up Headway (sec)						3,5		3,3						2.2		Ī
Follow-Up Headway (sec)						3.53		3,33						2.23		
Delay, Queue Length, an	d Leve	l of Se	ervice	;												
How Rate, v (veh/h)						8		94	-					184	Ι	
Capacity, c (veh/h)						295		9 49					:	1469	1	
v/c Ratio						0.03		0.10						0.13		
95% Queue Length, Q ₉₅ (veh)						0.1		0.3						0.4		
Control Delay (s/veh)						17,5		9,2						7,8		
Level of Service (LOS)			_			С		А						A		
Approach Delay (s/veh)					9.9								2.0			
Approach LOS]					A	1									


Generated: 12/14/2018 8:46:19 AM

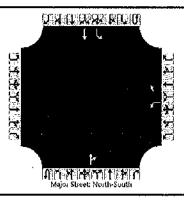
ł

:

÷

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway Road
Analysis Year	2018	North/South Street	Karns Valley Drive
Time Analyzed	PM Peak Existing	Peak Hour Factor	0.91
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS		

Vehicle Volumes and Adjustments

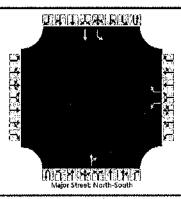

Approach	· ·	Facth	ound			Macth	oound		Y	Morth	bound		Southbound				
	 								<u> </u>	r							
Movement	U		Ť	R	U	ι	T	R	U	L	r	R	U U	L	Τ.	R	
Priority		10	11	12		7	8	9	10	1	2	3	40	4	5	6	
Number of Lanes		0	0	0		1	0	1	0	0	1	0	D	1	1	0	
Configuration						L		R				TR	ļ	L	т		
Volume (veh/h)						10		50			312	15		26	183		
Percent Heavy Vehicles (%)				I		3		3						3			
Proportion Time Blocked																	
Percent Grade (%)						()									Augusta	
Right Turn Channelized						N	0										
Median Type Storage				Left	Only								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						7,1		6,2			[[4.1			
Critical Headway (sec)						6,43		6.23						4.13			
Base Follow-Up Readway (sec)						3.5		3.3						2,2			
Follow-Up Headway (sec)						3.53		3.33						2.23			
Delay, Queue Length, an	id Leve	l'of Se	ervice														
Flow Rate, v (veh/h)						11		55						29			
Capacity, c (veh/h)		:				539		690						1194			
v/c Ratio						0.02		0.08						0.02			
95% Queue Length, Qas (veh)						0,1		0.3						0.1			
Control Delay (s/Veh)						11.8		10.7						8.1			
Level of Service (LOS)						8		8						А			
Approach Delay (s/veh)						10	.9				ن <u> </u>	·	1.0				
Approach LOS						B	l										

aREV1-Karns Valley-Byington-Solway-ExistPM.xtw

Generated: 12/14/2018 8:47:08 AM

÷

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	сст	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway Road
Analysis Year	2023	North/South Street	Karns Valley Drive
Time Analyzed	AM Peak Background	Peak Hour Factor	0.95
Intersection Orlentation	North-South	Analysis Time Period (hrs)	0.25
· · · · · · · · · · · · · · · · · · ·	¥		



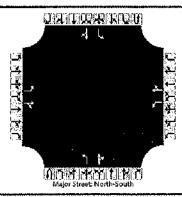
Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	pound			North	bound			South	bound		
Movement	υ	L	т	R	U	I.	Ŧ	R	ប	L	Ţ	R	υ	L	Ţ	R	
Priorily		10	11	12		7	8	9	10	1	2	3	40	4	5	6	
Number of Lanes		0	0	0		1	0	1	0	0	1.	0	0	1	1	0	
Configuration						Ĺ		R		ì		TR		L	т		
Volume (veh/h)						9		101			100	23		198	591		
Percent Heavy Vehicles (%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (%)						()	•					1	•			
Right Turn Channelized						N	0		1				[
Median Type Storage				Łeft	Only								1				
Critical and Follow-up H	eadwa	ys														•	
Base Critical Headway (sec)						7.1		6,2						4.1	ľ		
Critical Headway (sec)						6.43		6,23						4.13	1		
Base Follow-Up Headway (sec)						3.5		3.3						2,2			
Follow-Up Headway (sec)						3.53		3.33						2.23			
Delay, Queue Length, an	d Leve	l of Se	ervice									2	.	· · ·			
Flow Rate, v (veh/h)						9		106						208	l l		
Capacity, c (veh/h)						253		932			1		-	1450			
v/c Ratio						0.04		0,11						0.14			
95% Queue Length, Q95 (veh)]					0,1		0.4						0.5			
Control Delay (s/veh)						19.8		9.4						7.9			
Level of Service (LOS)						¢		A						A			
Approach Delay (s/veh)					10.2						-		2.0				
Approach LOS						Ē	;										

Generated: 12/14/2018 8:42:44 AM

General Information	· · · · ·	Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway Road
Analysis Year	2023	North/South Street	Karns Valley Drive
Time Analyzed	PM Peak Background	Peak Hour Factor	0.91
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS	• · · · · · · · · · · · · · · · · · · ·	*

Vehicle Volumes and Adjustments


Approach		Eastb	ound			West	ound			North	bound			South	bound		
Movement	U	٤	Т	R	U	Ł	Ŧ	R	ប	1	т	R	U	L	T	R	
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		1	0	1	0	0	1	0	0	1	1	0	
Configuration						L		ĸ	[TR		L	ĩ		
Volume (veh/h)						11		57	[353	17	ļ	29	207		
Percent Reavy Vehicles (%)						3		3						3			
Proportion Time Blocked																	
Percent Grade (%)						. ()										
Right Turn Channelized						Ň	o									<u> </u>	
Median Type Storage			************	Left	Only								1				
Critical and Follow-up H	eadway	ys				•	•							· .			
Base Critical Headway (sec)	1					71		6,2						4.1			
Critical Headway (sec)						6.43		6.23						4.13		:	
8ase Follow-Up Headway (sec)						3.5		3.3						2,2			
Follow-Up Headway (sec)						3.53		3.33						2.23			
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)						12		63						32		ĺ	
Capacity, c (veh/h)						503		650						1147			
v/c Ratio						0.02		0.10						0.03			
95% Queue Length, Q ₉₅ (veh)						0.1		0.3						0.1			
Control Delay (s/veh)						12.3		11.1						8.2			
Level of Service (LOS)						8		8						А			
Approach Delay (s/veh)						11	.3						1.0				
Approach LOS						E	}										

Copyright © 2018 University of Florida, All Rights Reserved, H

HCS™ TWSC Version 7.5

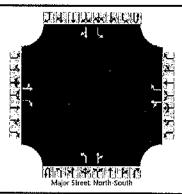
Generated: 12/14/2018 8:43:30 AM

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/13/2018	East/West Street	Byington-Solway Road
Analysis Year	2023	North/South Street	Karns Valley Drive
Time Analyzed	AM Peak Combined	Peak Hour Factor	0.95
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS	· .	•

Vehicle Volumes and Adjustments

venicle volumes and Ad												•				
Approach		Eastt	ound			West	bound			North	bound	-		South	bound	<u> </u>
Movement	ម	L	T	R	U	L	T	R	U	Ĺ	T	ጽ	U	Ł	Ţ	Ŕ
Priority		10	11	12		1	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		1	1	0		1	1	0	0	1	1	0	0	1	1	0
Configuration		L		TR		L		TR		L		TR		L		TR
Volume (veh/h)		27	11	48		9	2	101		18	100	23		198	591	9
Percent Heavy Vehicles (%)		3	3	З		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0			I	0									
Right Turn Channelized																
Median Type Storage				Left	Only								1			
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6,2		4,1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow Up Headway (sec)		3,5	4,0	3,3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33	ļ	3.53	4.03	3.33		2.23				2,23	ļ	
Delay, Queue Length, an	ıd Leve	l of S	ervice	1				-								
Flow Rate, v (veh/h)		28		62		9		108	[19				208		
Capacity, c (veh/h)		187		343		150		849		945				1450		
v/c Ratio	1	0.15		0.18		0.06		0.13		0.02			[0.14		
95% Queue Length, Q _{as} (veh)		0.5		0.7		0,2		0,4		0,1				0,5		
Control Delay (s/veh)		27.7		17.8		30.6		9.9		8.9				7.9		
Level of Service (LOS)		D		С		D		A		А				A		
Approach Delay (s/veh)		20),9		11,5					1	.1		2.0			
Approach LOS	1		2				B									

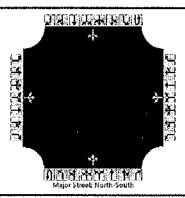
Copyright © 2018 University of Florida, All Rights Reserved.


HCS[™] TWSC Version 7.5

Generated: 12/14/2018 8:48:30 AM

:

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 1
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/13/2018	East/West Street	Byington-Solway Road
Analysis Year	2023	North/South Street	Karns Valley Drive
Time Analyzed	PM Peak Combined	Peak Hour Factor	0,91
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS	· · · · · · · · · · · · · · · · · · ·	··· Euro. ······


Vehicle Volumes and Adjustments

Approach		East	oound			West	bound			North	ibound			South	bound	
Movement	U	L	Ţ	R	υ	Ł	Т	R	U	L	Т	R	U	L	т	R
Priority		10	11	12		7	8	9	10	1	2	3	40	4	5	6
Number of Lanes		0	1	1		0	1	1	U	1	1	0	0	1	1	0
Configuration		LT		R		LT	1	R	1	L		TR		L.		זא
Volume (veh/h)		17	4	-35		11	6	57		61	353	17		29	207	25
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked							1									-
Percent Grade (%)	1		0	•			0	2		<u></u>		•			1	
Right Turn Channelized	1	Ν	!o			4	lo		1							
Median Type Storage				l.eft	Only								1			
Critical and Follow-up H	eadwa	ys	•													
Base Critical Headway (sec)		7.1	6.5	6,2		7.1	6.5	6.2	[4.1				4.1		:
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6,23		4.13				4.13		
Base Follow-Up Headway (sec)		3,5	4.0	3.3		3,5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)	1	3.53	4.03	3.33		3,53	4.03	3,33		2.23				2.23		
Delay, Queue Length, an	d Leve	l of S	ervice												• •	
Flow Rate, v (veh/h)		23		38		19		63		67				32		
Capacity, c (veh/h)		308		795		319		650		1303				1147		
v/c Ratio		0,07		0.05		0.06		0.10		0,05			**************************************	0.03		
95% Queue Length, Q95 (veh)		0,2		0 ,2		0.2		0.3		0.2				0,1		
Control Delay (s/veh)		17.6		9.8		17.0		11.1		7.9				8.2		
Level of Service (LOS)		С		A		С		ß		A				٨		
Approach Delay (s/veh)		12	.7			12	1.5			1.	1	î		0	.9	
Approach LOS	1	E	;				3									

Copyright © 2018 University of Florida. All Rights Reserved.

BCS™ TWSC Version 7.5 aREV1-Karns Valley-Byington-Solway-Comb PM.xtw Generated: 12/14/2018 8:48:57 AM

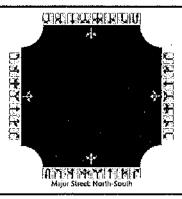
General Information		Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co.	ССІ	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway/C, Jones
Analysis Year	2018	North/South Street	Site/Coward Mill Road
Time Analyzed	AM Peak Existing	Peak Hour Factor	0.89
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS		

Vehicle Volumes and Adjustments

venicie volumes and Ad	1	·							1				1			
Approach	1		ound	<u> </u>	L	West	bound	•		North	bound			South	bound	-
Movement	U	Ł	T	R	U	L	Т	R	บ	L_	T	R	υ	L	٦ م	R
Priority		10	11	12		/	8	9	10	1	2	3	4U	4	5	6
Number of Lanes	:	0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR			Ι	LTR				LTR				LTR	
Volume (veh/h)		1	106	34		25	12	0		11	0	24		0	0	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked					:											
Percent Grade (%)			0			I	D									
Right Turn Channelized													[
Median Type Storage				Undi	vided								A			
Critical and Follow-up H	eadwa	ys								·						
Base Critical Headway (sec)		7,1	6.5	δ,2		7,1	6.5	6,2]	4.1				4.1		
Critical Headway (sec)	ľ	7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2,2		
Follow-Up Headway (sec)		3,53	4,03	3.33		3,53	4.03	3,33		2.23				2.23		
Delay, Queue Length, an	d Leve	l of S	ervice			*****										
Flow Rate, v (veh/h)			158				42			12				0		
Capacity, c (veh/h)			880				764			1613				1580		
v/c Ratio			0.18				0.05			0.01				0.00		
95% Queue Length, Qes (veh)			0.7				0.2			0,0 ·				0.0		
Control Delay (s/veh)			10.0				10.0			7.2		0.1	· · · · ·	7.3		0.0
Level of Service (LOS)			А				A			A		Α		A		A
Approach Delay (s/veh)		10).0			1(0.0		2.3				0.0			
Approach LOS	1	· · · /	1				4									

Copyright © 2018 University of Florida. All Rights Reserved.

HCS™ TWSC Version 7.5 aREV1-Study Int 2-ExistAM.xtw Generated: 12/13/2018 5:09:59 PM


i

General Information							Site	Infor	natio	n						
	1 110						<u> </u>		natio							
Analyst	ALC							section				/ Int 2				
Agency/Co.	CCI	mana						diction			·{	County	1.5. (
Date Performed		2/2018						West Str					way/C. J			
Analysis Year	2018	1.5.						n/South			· · ·	Coward I	Mill Roa	c1		
Time Analyzed		eak Exis	ung					Hour Fa			0,90					
Intersection Orientation		n-South	L. C. L	4			Anasy	/sis lime	Period	(hrs)	0,25					
Project Description	Garris	son Heiç	ints Sub	division	115									<u></u>		
Lanes																
						, 1 .	K C. U									
					() Majo	n an I I In a R I Street No	rth-South									
Vehicle Volumes and Adj	justme	nts														
Approach		Easth	ound			West	bound		ľ	North	bound			South	bound	
Movement	υ	L	Т	R	υ	L	Ŧ	R	υ	L	Т	R	U	E L	T	R
Priority		10	11	12		1	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR			Ì	LTR				LTR	
Volume (veh/h)	i i	0	68	21		28	23	0		15	1	40		0	0	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
			<u> </u>	l	1						[
Proportion Time Blocked																
Proportion Time Blocked Percent Grade (%)			 	<u> </u>		.	0	<u> </u>								
		I	0	l		1	0									
Percent Grade (%)			0	Undi	vided	.	0									
Percent Grade (%) Right Turn Channelized	eadway		0 	Undi	vided	I	0	•	····						-	
Percent Grade (%) Right Turn Channelized Median Type Storage	eadway		6.5	Undi	vided	7,1	6.5	6.2		4.1				4,1		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He	eadway	ys	· · · · · ·		vided	F		6.2 6.23		4.1				4,1		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec)	eadway	y s 7.1	6.5	6.2	vided	7,1	6.5									
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec)	eadwaj	7.1 7.13	6.5 6.53	6.2 6.23	vided	7.1 7.13	6.5 6.53	6.23		4.13				4,13		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0	6.23 3.3		4.13 2.2				4,13 2.2		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03	6.23 3.3		4.13 2.2 2.23				4,13 2.2 2.23		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h)		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice 99	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03	6.23 3.3		4.13 2.2 2.23 17				4,13 2.2 2.23 0		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice 99 852	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03 57 801	6.23 3.3		4.13 2.2 2.23 17 1613				4,13 2.2 2.23 0 1556		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice 99 852 0.12	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03 57 801 0.07	6.23 3.3		4.13 2.2 2.23 17 1613 0.01				4.13 2.2 2.23 0 1556 0.00		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₆₅ (veh)		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice 99 852 0.12 0.4	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03 57 801 0.07 0.2	6.23 3.3		4.13 2.2 2.23 17 1613 0.01 0.0				4.13 2.2 2.23 0 1556 0.00 0,0		
Percent Grade (%) Right Turn Channelized Median Type Storage Critical and Follow-up He Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio		7.1 7.13 3.5 3,53	6.5 6.53 4.0 4.03 ervice 99 852 0.12	6.2 6.23 3.3 3.33	vided	7.1 7.13 3.5	6.5 6.53 4.0 4.03 57 801 0.07	6.23 3.3		4.13 2.2 2.23 17 1613 0.01		0.1 A		4.13 2.2 2.23 0 1556 0.00		

Copyright © 2018 University of Florida. All Rights Reserved.

HCS™ TWSC Version 7.5 aREV1-Study Int 2-£xistPM.xtw Generated: 12/13/2018 5:09:06 PM

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co,	ССІ	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway/C. Jones
Analysis Year	2023	North/South Street	Site/Coward Mill Road
Time Analyzed	AM Peak Background	Peak Hour Factor	0.89
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS	· · · · ·	•

Vehicle Volumes and Adjustments

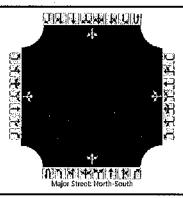
Approach		East	bound			West	bound			North	bound		1	South	bound	
Movement	U	L	r	R	υ	٤	T	R	U	Ł	r	R	υ	L	ר	R
Priority		10	11	12		7	8	9	1U	1	2	3	40	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	i	0	0	0	1	0
Configuration			LTR				LTR				LTR		1	[LTR	
Volume (veh/h)		1.	1.20	39		28	14	0		12	0	27		0	0	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)	1		0				U									
Right Turn Channelized				-												
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7,13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3,3		3,5	4,0	3,3		2,2				2.2		
Follow-Up Headway (sec)		3,53	4.03	3,33		3.53	4,03	3,33		2,23				2,23		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		[180]	47		[13				0		
Capacity, c (veh/h)			875				740			1613				1576		
v/c Ratio			0,21				0,06			0,01				0.00		
95% Queue Length, Qss (veh)	T		0.8				0.2			0.0				0.0		
Control Delay (s/veh)			10.2				10.2			7.3		0.1		7.3		0.0
Level of Service (LOS)			В				8			A		А		A		Α
Approach Delay (s/veh)		10).2			10).2			2.	.3			0	.0	······
Approach LOS		8	3			E	3									

Copyright © 2018 University of Florida. All Rights Reserved.

Generated: 12/14/2018 7:08:15 AM

General Information	u dalim ketak T		an a	etas Már	a si se si f	350768A	o-Co Sito 1		natio	9 - Samara	9-1-1-2-2- 				1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	
							<u> </u>		nauo							
Analyst	ALC						1	section				/ Int 2				
Agency/Co.	cci							liction				County				
Date Performed	+	2/2018						West Str				iton-Soh				
Analysis Year	2023							/South :				Coward I	vill Road	d		
Time Analyzed		eak Back	ground				·	Hour Fac			0,90					
Intersection Orientation		n-South					Analy	sis Time	Períod ((hrs)	0.25					
Project Description	Garri	son Heig	hts Subo	division	115											
Lanes																
					ATT	s‡r s∱r n Streek No										
Vehicle Volumes and Adj	justme	ents					•									•
Approach		Eastb	ound			West	bound			North	bound		1	South	bound	
Movement	U	. I.	Т	R	U	L	Τ	R	U	L	т	R	U	L	Т	R
Priority		10	11	12	<u> </u>	7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0	1	0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR	[LTR				LTR				ETR	
Volume (veħ/ħ)		0	77	24	Í	32	26	0		17	1	45	1	0	0	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked			· · · ·				1	1				1		1		
Percent Grade (%)			0				0							•		
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys	`													
Base Critical Headway (sec)	1	7.1	6,5	6,2		7,1	6.5	6.2	I	4.1		I		4.1		
Critical Headway (sec)	İ	7.13	6.53	6,23		7,13	6.53	6.23	[····	4.13				4.13		
Base Follow-Up Headway (sec)		3,5	4.0	3.3		3.5	4.0	3,3		2,2				2,2		
Follow-Up Headway (sec)	1	3.53	4.03	3.33	1	3.53	4.03	3.33		2.23				2.23		Γ
Delay, Queue Length, and	d Leve	l of S	ervice							•						
Flow Rate, v (veh/h)	1		112				64		1	19		1	1	a		1
Capacity, c (veh/h)		<u> </u>	843		<u> </u>		780		Į	1613			l	1549		
v/c Ratio		<u> </u>	0.13		<u> </u>		0,08			0.01				0.00		
95% Queue Length, Q ₉₅ (veh)	1	[0.13				0.3			0.0				0.00		┢──
Control Delay (s/veh)			9,9			<u> </u>	10.0			7.3		0.1		7.3		0.
COBULCTION (S/ VEH)		I	7,7	l			10.0			1.3			Ļ	1 1.3		L
Level of Service (LOS)	T		A				8			A		A		A		A

Copyright © 2018 University of Florida, All Rights Reserved,


Generated: 12/14/2018 7:11:18 AM

:

;

HCS™ TWSC Version 7.5 aREV1-Study Int 2-BckgdPM.xtw

General Information	•	Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/12/2018	East/West Street	Byington-Solway/C, Jones
Analysis Year	2023	North/South Street	Site/Coward Mill Road
Time Analyzed	AM Peak Combined-Exist Op	Peak Hour Factor	0.89
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS		· · · · · · · · · · · · · · · · · · ·

Vehicle Volumes and Adjustments

Approach	1	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Ŧ	R	U	L	Т	R	U	1	Τ	R	U	L	7	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR		1	1	LTR			1	LTR	
Volume (veh/h)		3	120	39		28	1.4	3		12	2	27		11	5	6
Percent Heavy Vehicles (%)	1	3	З	3		3	3	3		3				3		[
Proportion Time Blocked																
Percent Grade (%))				D								•	
Right Turn Channelized																
Median Type Storage				Undi	videđ											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)	Τ	7.1	6.5	6.2		7.1	6.5	6.2		4.1				4,1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6,23		4.13				4.13		
Base Follow-Up Headway (sec)		3,5	4.0	3,3		3,5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3,53	4,03	3,33		3,53	4.03	3.33		2,23				2.23		
Delay, Queue Length, and	d Leve	l of Se	ervice												f	· .
Flow Rate, v (vch/h)			182				51	:		13			:	12		
Capacity, c (veh/h)			837				710			1598				1573	ŀ	
v/c Ratio			0.22				0.07			0.01				0.01		
95% Queue Length, Q ₉₅ (veh)			0.8				0.2			0.0				0.0		
Control Delay (s/veh)			10.5				10.5			7,3		0.1		7.3		0,1
Level of Service (LOS)			В				8			Α		A		А		A
Approach Delay (s/veh)		10	.5			10	5			2.	2			3	.7	
Approach LOS		Ē				ł	}									

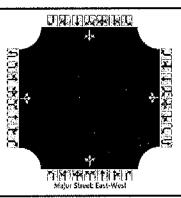
Copyright © 2018 University of Florida, All Rights Reserved, HCS™ TWSC Version 7.5

aREV1-Study Int 2-CombAM-Existing Operation.xtw

Generated: 12/14/2018 7:20:30 AM

		ŀ	CS7	Two	-Way	/ Sto	р-Со	ntro	l Rep	oort						
General Information				,			Site	Infor	natio	n						
Analyst	ALC						Inter	section			Study	y Int 2				
Agency/Co.	CC1						Juriso	diction			Knox	County				
Date Performed	12/12	2/2018					East/	West Str	eet		Bying	jton-Sol	way/C. J	ones		
Analysis Year	2023						Norti	h/South	Street		Site/	Coward	Mill Roa	d		
Time Analyzed	PM P	eak Con	ibined-E	xist Op			Peak	Hour Fa	ctor		0.90					******
Intersection Orientation	Nort	1-South					Analy	/sis Time	Period	(hrs)	0.25					
Project Description	Garri	son Heig	hts Sub	division	tis											
Lanes																
						دله ۲۰۱۰ - ۲۰۱۰ ۲۰۱۰ - ۲۰۱۰ - ۲۰۱۰ ۲۰۱۰ - ۲۰۱۰ - ۲۰۱۰	[1] 19] F									
Vehicle Volumes and Ad	justme	ents							· .							
Approach		Eastt	ound		I	West	bound			North	bound			South	bound	·····
Movement	U	L	T	R	U	L	Т	R	ម	L	Т	R	U	·L	T	R
Priority		10	11	12	1	7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR]			LTR				LTR		Ι		LTR	[
Volume (veh/h)		12	77	24		32	26	12		17	7	45		7	4	5
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0				0				·					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.1	6,5	6,2		7,1	6.5	6.2		4.1		1	T	4.1		
Critical Headway (sec)		7.13	6,53	6.23		7,13	6,53	6,23		4.13				4,13	-	
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3,3		2,2				2.2	Ī	[
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2,23	I		-	2.23		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			126				78	:		19	Γ	I]	8	I	
Capacity, c (veh/h)			814				782			1601				1540		
v/c Ratio			0,15				0.10			0.01				0.01		
95% Queue Length, Q ₉₅ (veh)			0,5				0.3			0.0				0.0	1	
Control Delay (s/veh)			10.2				10.1			7.3		0.1		7.3		0.0
Level of Service (LOS)			В				в			Α		A		A		A
Approach Delay (s/veh)		10	.2			10).1			1	.9		[3	,2	
Approach LOS		E	3				3									

Copyright © 2018 University of Florida. All Rights Reserved.


Generated: 12/14/2018 7:15:28 AM

ł

į

HCS™ TWSC Version 7.5 aREV1-Study Int 2-BckgdPM.xtw

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co,	CCI	Jurisdiction	Knox County
Date Performed	12/13/2018	East/West Street	Byington-Solway/C. Jones
Analysis Year	2023	North/South Street	Site/Coward Mill Road
Time Analyzed	AM Peak Combined-Reverse	Peak Hour Factor	0.89
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Garrison Heights Subdivision TIS		

Vehicle Volumes and Adjustments

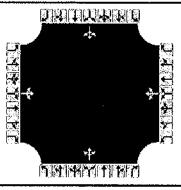
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	Ĺ	T	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6	[7	8	9		10	11	12
Number of Lanes	0	0	1	Ó	0	0	1	0	[0	1	0		0	1	0
Configuration			LTR				LTR				ŁTR	-		1	£TR	
Vojume (veh/h)		3	120	39		28	14	3		12	2	27		11	5	6
Percent Heavy Vehicles (%)		3				3			ĺ	3	3	3		3	3	.3
Proportion Time Blocked	1								1]		
Percent Grade (%)	1										0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys .													•	
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4,13				7,13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4,0	3.3		3.5	4.0	3,3
Follow-Up Headway (sec)		3,53				2.23				2.23	4.03	3.33		3.53	4.03	3,33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		3				31					46				25	
Capacity, c (veh/h)		1007				1391					905				719	
v/c Ratio		0.00				0.02					0.05				0.03	
95% Queue Length, Q35 (veh)		0.0				0.1					0.2				0.1	
Control Delay (s/veh)		8.6		0.0		7.6		0.2			9.2				10.2	
Level of Service (LOS)		A		A		А		A			A				В	
Approach Delay (s/veh)	0,2				4.8			9.2			10.2					
Approach LOS	T									/	٩				8	

Copyright © 2018 University of Florida, All Rights Reserved.

HCS™ TWSC Version 7.5 aREV1-Study Int 1-CombAM.xtw Generated: 12/14/2018 7:32:40 AM

:

			ICS7	Two	-Way	/ Sto	p-Cc	ontro	l Rep	oort						
General Information			2000 - 10-0 j 2 9-1				Site	Infor	matio	n .	an ay Mary .				na ara-	,,
Analyst	ALC						Inter	section		·	Stud	y Int 2				
Agency/Co.	CCI						Juris	diction			Knox County					
Date Performed	1.2/1	2/2018					Easi/	West Str	reet		Byington-Solway/C. Jones					
Analysis Year	2023						North/South Street				Site/	Coward	- Mill Roa	d		
Time Analyzed	PMP	Peak Con	nbined-t	Reverse			Peak Hour Factor 0.90									
Intersection Orientation	East-	West					Analysis Time Period (hrs) 0,25									
Project Description	Garri	son Heig	ghts Sub	division	TTIS		•							•••••		
Lanes		· .			:											
					ŎJŁ Maj	rdr or Street, Ea	st-West									
Vehicle Volumes and Ad	justme	ents					•									
Approach		Easti	ound			West	bound			North	nbound		1	South	bound	
Movement	U	L	7	R	υ	L	т	R	U	L	Т	R	U	E	Т	R
Priority	າປ	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		D	1	0
Configuration		ļ	L,TR			Į	LTR			Ĺ	LTR				ĹTR	
Volume (veh/h)		12	77	24	<u> </u>	32	26	12		17	7	45		7	4	5
Percent Heavy Vehicles (%)		3			ļ	3				3	3	3		3	3	3
Proportion Time Blocked			<u> </u>							1					<u> </u>	[
Percent Grade (%)											0				0	
Right Tum Channelized	_												:			
Median Type Storage	i			Undi	vided											
Critical and Follow-up H	eadwa	ys										,				
Base Critical Headway (sec)		4.1			1	4,1]	I	7,1	6,5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6,23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2,2				2.2				3.5	4.0	3.3		3,5	4.0	3.3
Follow-Up Headway (sec)		3.53				2.23				2.23 ·	4.03	3.33		3,53	4.03	3.33
Delay, Queue Length, an	d Leve	l of S	ervice	, ·												
Flow Rate, v (veh/h)		13				36		1			77				18	T
Capacity, c (veh/h)		992	· · · · ·			1471					926				717	1
v/c Ratio		0.01				0.02		[0.08				0.02	
95% Queue Length, Q ₈₅ (veh)		0.0				0.1					0,3				0.1	
Control Delay (s/veh)	1	8,7		0,1		7.5		0.2			9.2				10.2	
Level of Service (LOS)		A		A		٨		A			A				ß	
Approach Delay (s/veh)	1	1.	0	h		3.	5			9	.2			1.0),2	
							3.5 9.1 A									


Copyright © 2018 University of Florida. All Rights Reserved.

d. HCS™ TWSC Version 7.5 aREV1-Study Int 2-CombPM-Reverse Operation.xtw Generated: 12/14/2018 7:36:17 AM

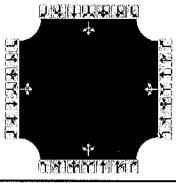
ł

ļ

	HCS7 All-	Way Stop Control Report	
General Information	n an	Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/14/2018	East/West Street	Byington-Solway/C. Jones
Analysis Year	2023	North/South Street	Site/Coward Mill Road
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.89
Time Analyzed	AM Peak Combined-4 Wa	y	
Project Description	Garrison Heights Subdivisi	ion TIS	
Lanes			

Vehicle Volume and Adjustments Approach Eastbound Westbound Northbound Southbound Ł Т Т Movement R L R I. Т R L Ţ R Volume 3 120 39 28 14 3 12 2 27 11 s 6 % Thrus in Shared Lane L1 L2 13 LI 12 L3 L1 L2 L3 ι1 ۲2 L3 Lane Configuration LTR LTR LTR 1.TR Flow Rate, v (veh/h) 182 51 46 25 Percent Heavy Vehicles 2 2 2 2 **Departure Headway and Service Time** initial Departure Headway, hd (s) 3,20 3.20 3.20 3,20 Initial Degree of Utilization, x 0.045 0.162 0.041 0.022 Final Departure Headway, hd (s) 4.35 4,00 4.12 4,41 Final Degree of Utilization, x 0.202 0.061 0.053 0.030 Move-Up Time, m (s) 2.0 2,0 2.0 2,0 Service Time, ts (s) 2.00 2.35 2.12 2,41 Capacity, Delay and Level of Service Flow Rate, v (veh/h) 182 51 46 25 900 828 874 Capacity 815 95% Queue Length, Q₉₅ (veh) 0,8 0.2 0.2 0.1 Control Delay (s/veh) 8.0 7.6 7.3 7.6 Level of Service, LOS A А ٨ А Approach Delay (s/veh) 8,0 7.6 7.3 7.6 A Approach LOS А ٨ А

Copyright © 2018 University of Florida. All Rights Reserved.


Intersection Delay, s/veh | LOS

7,8

А

i

General Information		Site Information	
Analyst	ALC	Intersection	Study Int 2
Agency/Co.	CCI	Jurisdiction	Knox County
Date Performed	12/14/2018	East/West Street	Byington-Solway/C. Jones
Analysis Year	2023	North/South Street	Site/Coward Mill Road
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.90
Time Analyzed	PM Peak Combined-4 Way	/	· ··· • · · · · · · · · · · · · · · · ·
Project Description	Garrison Heights Subdivisi	on TIS	

Vehicle Volume and Adjustments

Vehicle Volume and Adjus	stments										•	
Approach		Eastbound	1		Westboun	d		Northboun	d	9	Southbour	id
Movement	L	Т	R	L	т	R	L	т	R	1	Т	R
Volume	12	77	24	32	26	12	17	7	45	7	4	5
% Thrus in Shared Lane												
Lane	£1.	12	1.3	1.1	L2	13	L1	L2	L3	Ll	Ł2	13
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	126			78			- 77			18		
Percent Heavy Vehicles	2			2			2			2		
Departure Headway and S	ervice Ti	me										
Initial Departure Headway, hd (s)	3.20			3.20			3.20			3,20		ľ
Initial Degree of Utilization, x	0,112			0.069			0.068			0,016		
Final Departure Headway, hd (s)	4,11			4.25			4.05			4.35		
Final Degree of Utilization, x	0,143			0.092			0.086			0.021		
Move-Up Time, m (s)	2.0			2.0		ŀ	2,0			2.0		
Service Time, ts (s)	2.11			2,25			2.05			2.35		
Capacity, Delay and Level	of Servic	e										
Flow Rate, v (veh/h)	126			78			77			18		
Capacity	876			847			889			827		
95% Queue Length, Qss (veh)	0.5			0.3			0,3			0.1		
Control Delay (s/veħ)	7.8			7.7			7.4			7.4		ĺ
Level of Service, LOS	A			A			A			Α		
Approach Delay (s/veh)		7.8		7.7			7,4			7.4		
Approach LOS		A			А		A			۸		
Intersection Delay, s/veh LOS			7	.7					1	4		

Copyright © 2018 University of Florida. All Rights Reserved.

ł

.

TABLE 58
KNOX COUNTY RIGHT-TURN LANE VOLUME THRESHOLDS
FOR 2-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN		THR	OUGH VOLUME PLU	IS LEFT-TURN VOLU	ME *	
VOLUME	< 100	100 - 199	200 - 24 9	250 - 299	300 - 349	350 - 399
Fewer Than 25	3.0					
25 - 49			\bigcirc			
50 - 99						
100 - 149						
150 - 199		·				
200 - 249						Yes
250 - 299					Yes	Yes
300 - 349				Yes	Yes	Yes
350 - 399			Yes	Yes	Yes	Yes
400 - 449			Yes	Yes	. Yes	Yes
450 - 499		Yes	Yes	Yes	Yes	Yes
500 - 549		Yes	Yes	Yes	Yes	Yes
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN		THR	OUGH VOLUME PLU	S LEFT-TURN VOLU	ME *	
VOLUME	350 - 399	400 - 44 9	450 - 499	500 - 549	550 - 599	= / > 600
Fewer Than 25					\square	
25 - 49					Yes	Yes
50 - 99				Yes	Yes	Yes
100 - 149			Yes	Yes	Yes	Yes
150 - 199		Yes	Yes	Yes	Yes	Yes
200 - 249	Yes	Yes	Yes	Yes	Yes	Yes
250 - 299	Yes	Yes	Yeş	Yes	Yes	Yes
300 - 349	Yes	Yes	Yes	Yes	· Yes	Yes
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes
400 - 449	Yes	Yes	Yes	Yes	Yes .	Yes
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes
600 or More	Yes	Yes	Yes	Yes	Yes	`Yes

* Or through volume only if a left-turn lane exists

	Intersection	Time Period	Through Volume	Right-Turn Volume	Right-Turn Lane Warranted (Yes / No)
\odot	Study Int. 1	AM Peak	591	9	No
3	Study Int. I	PM Peak	207	25	No
Ī	Study Int. Z	AM Peak	42	3	No
\odot	Study Int. 2	PM Peak	58	12.	No

Source: Knox County Department of Engineering and Public Works "Access Control and Driveway Design Policy"

TABLE 4A	Project No: Garrison Heights Subd.
KNOX COUNTY LEFT-TURN LANE VOLUME THRESHOLDS	Project Name: Traffic Impact Study
FOR 2-LANE ROADWAYS WITH A PREVAILING SPEED OF 0 TO 35 MPH	Notes: Complement Traffic

OPPOSING		THRO	DUGH VOLUME PLU:	S RIGHT-TURN VOLU	IME *	
VOLUME	100 - 1 49	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
1.00 - 149	300	235	185	145	120	100
150 - 199	245	200	160	130	110	90
200 - 249	205	170	140	115	100	80
250 - 299	175	150	125	105	90	70
300 - 349	155	135	110	95	80	65
350 - 399	135	120	100	85	70	60
400 - 449	120	105	90	75	65	55
450 - 499	105	90	80	70	60	50
500 - 549	95	80	70	65	55	50
550 - 599	85	70	65	60	50	45
600 - 649	75	65	60	55	45	40
650 - 69 9	70	60	55	50	40	35
700 - 749	65	55	50	45	35	30
750 or More	60	50	45	40	35	30

(If the left-turn volume exceeds the table value a left-turn lane is needed)

OPPOSING		THRO	OUGH VOLUME PLU	S RIGHT-TURN VOLU	JME *	
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= /> 600
100 - 149	100	80	70	60	55	50
150 - 199	90	75	65	55	50	45
200 - 249	80	72	60	55	50	45
250 - 299	70	65	55	50	45	40
300 - 34 9	65	60	50	50	45	40
350 - 399	60	55	50	45	40	40
400 - 449	55	50	45	45	40	35
450 - 499	50	45	45	40	35	35
500 - 549	50	45	40	40	35	35
550 - 599	45	40	40	35	35	35
600 - 649	40	35	35	35	35	30
650 - 699	35	35	35	30	30	30
700 - 749	30	30	30	30	30	30
750 or More	30	30	30	30	30	30

* Or through volume only if a right-turn lane exists

(-)0	intersection	Time Period	Opposing Volume	Through Volume	Left-Turn Volume	Warrant Threshold	Left-Turn Lane Warranted (Yes / No)
	Study Int. Z.	AM Peak	17	159	3	NA*	No
	Study Int. 2.	PM Peak	38	101	2.	NA*	No

Source: Knox County Department of Engineering and Public Works "Access Control and Driveway Design Policy" * Opposing Volume too Low For table.

APPENDIX D

KNOXVILLE / KNOX COUNTY MPC COMMENTS

.....

APPENDIX D - KNOXVILLE / KNOX COUNTY MPC COMMENTS

Alan Childers

From:	Tarren Barrett <tarren.barrett@knoxplanning.org></tarren.barrett@knoxplanning.org>				
Sent:	Wednesday, December 12, 2018 8:18 AM				
То:	Alan Childers				
Subject:	Re: Revised Concept for Garrison Road				

When do you think is the earliest we can expect a revision of the study? In order to move forward for the January 10th Planning Commission meeting, we will need it by Friday, December 14th. We need to have time before the Christmas holidays to review the study and provide comments (if needed). Thanks!

On Tue, Dec 11, 2018 at 4:02 PM Tarren Barrett <<u>tarren.barrett@knoxplanning.org</u>> wrote: Alan,

After my initial review of the TIS, I have a couple of items that need to be added to the revision.

Along with the update of the access points of two from Karns Valley Road to one from Karns Valley Road & one from Garrison Drive, can you also please add the total 1,922 weekday trips (in Table 2) to the table? Also, please discuss what is hindering sight distance on page 14.

Thanks!

....

Tarren Barrett, EIT Transportation Engineer 865-215-3826

	×	e la participación enclara	Andrew Court Barrier 2 19.	dalah da kabura			
Knoxville-F	(nox (Count	y Plar	ning	Kno	xPlanni	ng.oi
400 Main							

On Fri, Dec 7, 2018 at 5:09 PM Alan Childers <<u>achilders@cannon-cannon.com</u>> wrote: Thanks Tarren. We are on it. You have a nice weekend as well!

Sent from my iPhone

> On Dec 7, 2018, at 4:10 PM, Tarren Barrett <<u>tarren.barrett@knoxmpc.org</u>> wrote:

>

>

> Alan,

> If you didn't know already, Garrison Heights (off Karns Valley Drive) site plan has been changed due to recommendations by Knox County on access. The applicant (Southland Engineering Consultants/ Primos

Alan Childers

From: Sent: To: Cc: Subject: Attachments: Tarren Barrett <tarren.barrett@knoxmpc.org> Friday, December 07, 2018 4:11 PM Alan Childers Mike Conger Fwd: Revised Concept for Garrison Road MYSCAN_20181206_0001.PDF; MYSCAN_20181206_0002.PDF

Alan,

If you didn't know already, Garrison Heights (off Karns Valley Drive) site plan has been changed due to recommendations by Knox County on access. The applicant (Southland Engineering Consultants/ Primos Land Company) has already be informed that they will have to update their traffic study with counts from Garrison Rd, since one of the access points has shifted. The attachment is the new site plan with those changes. I just wanted to make sure that this information was relayed to you.

Have a great weekend!

V/R, Tarren

Tarren Barrett, EIT Transportation Engineer Knoxville Regional TPO & Metropolitan Planning Commission 400 Main St, Suite 403 Knoxville, TN 37902 Phone: 865-215-3826 Fax: 865-215-2068 tarren.barrett@knoxtrans.org

----- Forwarded message ------From: **Tom Brechko** <<u>tom.brechko@knoxmpc.org</u>> Date: Fri, Dec 7, 2018 at 4:03 PM Subject: Fwd: Revised Concept for Garrison Road To: Tarren Barrett <<u>tarren.barrett@knoxmpc.org</u>>

FYI

------ Forwarded message ------From: Wanis Rhegbi <<u>wrghebi@sengconsultants.com</u>> Date: Thu, Dec 6, 2018 at 4:15 PM Subject: Revised Concept for Garrison Road To: Tom Brechko <<u>tom.brechko@knoxmpc.org</u>>