Addendum to:

1-SF-23-C / 1-E-23-DP 11-SA-22-C / 11-A-22-DP (subdivisions combined)

Addendum Date: 1/30/2030

Original TIS Version Date: 12/22/2022

11812 Black Road Knoxville, Tennessee 37932 Phone (865) 556-0042 ajaxengineering@gmail.com

January 30, 2023

PROJECT NAME: Beeler Road Subdivision

TO: Knoxville-Knox County Planning

SUBJECT: Memo for the Beeler Road Subdivision Transportation Impact Study (TIS) (1-SF-23-C/1-E-23-DP)

Knoxville-Knox County Planning & Knox County Engineering Staff:

An email from Mike Conger, PE, dated January 30th, 2023, requested a response to address the number of proposed dwelling units and types being revised in the Beeler Road Subdivision development site plan.

The final TIS report for the Beeler Road Subdivision was submitted on December 22nd, 2022. This TIS included both the Beeler Road Subdivision and Fairview Road Subdivision since the Fairview Road Subdivision was proposed to have road access to Beeler Road via the Beeler Road Subdivision. The final TIS was based on trip generation calculations for 87 single-family detached houses for the Beeler Road Subdivision. The following table was included in this report:

TABLE 7
TRIP GENERATION FOR BEELER ROAD SUBDIVISION
87 Single-Family Detached Houses

ITE LAND USE CODE		UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
#210	Single-Family	87 Houses	888	26%	74%		63%	37%	
	Detached Housing			17	49	66	55	32	87
To	tal New Volume Site	Trips	888	17	49	66	55	32	87

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

Since the final TIS submittal, the site plan designed by Batson, Himes, Norvell, and Poe has been revised and includes a different mixture of residential types. The new site plan includes 3 single-family detached houses and 87 multi-family attached townhouses. The updated trip generation is presented in the following table, and the calculations are attached to the end of this memo:

UPDATED TRIP GENERATION FOR BEELER ROAD SUBDIVISION - 1/30/2023

3 Single-Family Detached Homes & 87 Multi-Family Attached Townhouses

ITE LAND USE CODE	LAND USE DESCRIPTION	# OF UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
	73333000000000			ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
#210	Single-Family	Detached 3	41	26%	74%		63%	37%	
	Detached Housing			1	2	3	3	1	4
Local Trip	Multi-Family	Attached 87	842	22%	78%		55%	45%	
Rate	Attached Townhouses			10	37	47	37	31	68
To	tal New Volume Sit	e Trips	883	11	39	50	40	32	72

ITE Trip Generation Manual, 11th Edition and Local Trip Rates

Trips calculated by using Fitted Curve Equations

Comparing the before and after shows that the updated total number of generated trips results in a slight reduction, as shown below:

REDUCTION IN NUMBER OF GENERATED TRIPS	GENERATED DAILY TRAFFIC	GENERATED TRA DAILY AM PEA		NERATED TRAFFIC PEAK HOUR		GENERATED TRAFFIC PM PEAK HOUR		
	220000	ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL	
Total New Volume Site Trips	-5	-6	-10	-16	-15	0	-15	

Since the change in residential types resulted in an overall reduction of projected generated trips, the site plan revision does not alter the recommendations presented in the final TIS submitted on December 22nd, 2022.

If you have any questions or further comments, please feel free to contact me.

Sincerely,

Ajax Engineering, LLC Robert W. Jacks, P.E.

UPDATED TRIP GENERATION FOR BEELER ROAD SUBDIVISION - 1/30/2023 3 Single-Family Detached Houses

3 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 1.10 + 2.68$$

Ln(T) = 3.69

T = 41 trips

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 1 + 0.12$$

Ln(T) = 1.12

T = 3 trips

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 1.10 + 0.27$$

Ln(T) = 1.30

T = 4 trips

UPDATED TRIP GENERATION FOR BEELER ROAD SUBDIVISION - 1/30/2023 87 Multi-Family Attached Townhouses

87 Residential Houses = X

Weekday:

Fitted Curve Equation: $T = 15.193(X)^{0.899}$

T = 15 * 55.42

T = 842 trips

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: $T = 0.758(X)^{0.924}$

T = 0.758 * 62

T = 47 trips

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: T = 0.669(X)+10.069

T = 0.669 * 87 + 10.07

T = 68 trips

Transportation Impact Study
Fairview Road Subdivision &
Beeler Road Subdivision
Knox County, Tennessee

Revised December 22, 2022

Prepared for: Eagle Bend Development Attn: Scott Davis P.O. Box 11315 Knoxville, TN 37939

> 1-SF-23-C / 1-E-23-DP and revision to: 11-SA-22-C / 11-A-22-DP (subdivisions combined)

Version Date: 12/22/2022

TABLE OF CONTENTS

SECTION	PAGE
EXECUTIVE SUMMARY	1
DESCRIPTION OF EXISTING CONDITIONS	6
Study Area	
Existing Roadways	9
Рното Ехнівітѕ	
Existing Transportation Volumes per Mode	16
On-Street Parking	17
PEDESTRIAN AND BICYCLE FACILITIES	17
Walk Score	19
Transit Services	20
PROJECT DESCRIPTION	21
LOCATION AND SITE PLAN	21
Proposed Uses and Zoning Requirements	24
DEVELOPMENT DENSITY	25
On-Site Circulation	25
SERVICE AND DELIVERY VEHICLE ACCESS AND CIRCULATION	25
ANALYSIS OF EXISTING AND PROJECTED CONDITIONS	27
Existing Traffic Conditions	27
Projected Traffic Conditions (Without the Project)	37
Trip Generation	44
Trip Distribution and Assignment	46
Projected Traffic Conditions (With the Project)	52
POTENTIAL TRANSPORTATION SAFETY ISSUES	56
CONCLUSIONS & RECOMMENDATIONS	59
Beeler Road at Beeler Farms Lane	59
Beeler Road at Beeler Road Subdivision Entrance	59
East Emory Road at Beeler Road	61
FAIRVIEW ROAD SUBDIVISION INTERNAL ROADS	70

APPENDIX

APPENDIX

APPENDIX A - HISTORICAL TRAFFIC COUNT DAT	COUNT DATA
---	------------

APPENDIX B - WALK SCORE

APPENDIX C - KNOXVILLE AREA TRANSIT MAP AND INFORMATION

APPENDIX D - ZONING MAP

APPENDIX E - MANUAL TRAFFIC COUNT DATA

APPENDIX F - CAPACITY ANALYSES – HCM WORKSHEETS (SYNCHRO 11)

APPENDIX G - ITE TRIP GENERATION RATES

APPENDIX H - 2019 CENSUS BUREAU DATA

APPENDIX I - KNOX COUNTY AND TDOT TURN LANE VOLUME THRESHOLD WORKSHEETS

APPENDIX J - SIMTRAFFIC VEHICLE QUEUE WORKSHEETS

APPENDIX K - TRAFFIC SIGNAL WARRANT WORKSHEETS

APPENDIX L - RESPONSE LETTER TO ADDRESS COMMENTS

LIST OF FIGURES

FIG	URE	PAGE
1.	LOCATION MAP	8
2.	TRAFFIC COUNT LOCATION, TRAFFIC SIGNAGE & EXISTING LANE CONFIGURATIONS.	12
3.	PROPOSED PLAN LAYOUT – FAIRVIEW ROAD SUBDIVISION	23
4A.	2022 PEAK HOUR TRAFFIC VOLUMES – EXISTING CONDITIONS	29
4B.	2022 PEAK HOUR TRAFFIC VOLUMES – EXISTING CONDITIONS (MINUS TRIPS FROM EXISTING HOUSES TO THE NORTH)	34
4C.	2022 PEAK HOUR TRAFFIC VOLUMES – EXISTING CONDITIONS (MINUS TRIPS FROM BEELER FARMS SUBDIVISION)	35
4D.	2022 PEAK HOUR TRAFFIC VOLUMES – EXISTING CONDITIONS (TRIPS FROM HOUSES TO THE SOUTH ON BEELER ROAD)	36
5A.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER FARMS SUBDIVISION	39
5в.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER ROAD SUBDIVISION	40
5C.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER FARMS AND BEELER ROAD SUBDIVISIONS	41
5D.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITHOUT THE PROJECT)	42
6A.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR FAIRVIEW ROAD SUBDIVISION	48
6в.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR BEELER FARMS SUBDIVISION	49
6C.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR BEELER ROAD SUBDIVISION	50
7.	TRAFFIC ASSIGNMENT OF GENERATED TRAFFIC FROM FAIRVIEW ROAD SUBDIVISION DURING AM AND PM PEAK HOUR	51

LIST OF FIGURES (continued)

FIG	URE	PAGE
8.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITH THE PROJECT)	53
9.	2030 PEAK HOUR TRAFFIC VOLUMES – PROJECTED CONDITIONS (WITH THE PROJECT)	66

LIST OF TABLES

TAE	BLE	PAGE
1.	STUDY CORRIDOR CHARACTERISTICS	9
2.	LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS	31
3.	2022 Intersection Capacity Analysis Results – Existing Traffic Conditions	32
4.	2027 Intersection Capacity Analysis Results – Projected Traffic Conditions (Without the Project)	43
5.	TRIP GENERATION FOR FAIRVIEW ROAD SUBDIVISION	44
6.	TRIP GENERATION FOR BEELER FARMS SUBDIVISION	45
7.	TRIP GENERATION FOR BEELER ROAD SUBDIVISION	45
7.1.	TRIP GENERATION FOR FAIRVIEW ROAD & BEELER ROAD SUBDIVISIONS	45
8.	2027 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project)	54
9.	INTERSECTION CAPACITY ANALYSIS SUMMARY – EAST EMORY ROAD AT BEELER ROAD	55
10.	2027 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project) Including Recommended Eastbound and Northbound Right-Turn Lanes	63
11.	TURN LANE STORAGE & VEHICLE QUEUE SUMMARY – 2027 PROJECTED PEAK HOUR TRAFFIC VOLUMES (WITH THE PROJECT) INCLUDING RECOMMENDED EASTBOUND AND NORTHBOUND RIGHT-TURN LANES	64
12.	2030 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project) with TDOT Widening Project and Northbound Right-Turn Lane on Beeler Road	65
13.	Turn Lane Storage & Vehicle Queue Summary – 2030 Projected Traffic Conditions (With the Project) with TDOT Widening Project and Northbound Right-Turn Lane on Beeler Road	65

LIST OF TABLES (continued)

14.	Intersection Capacity and Vehicle Queue Analysis Results –	
	EAST EMORY ROAD AT BEELER ROAD	69

EXECUTIVE SUMMARY

Beginning Commentary:

Since the original submission of the Transportation Impact Study (TIS) for Fairview Road Subdivision in August 2022 and Beeler Road Subdivision in June 2022, a substantial change to the proposed road access for the Fairview Road Subdivision has been made. The initial subdivision design for Fairview Road Subdivision proposed a single road access point via the end of the cul-de-sac in the existing, recently constructed Beeler Farms Subdivision off Beeler Road. Due to problems with access rights to Beeler Farms Subdivision, Fairview Road Subdivision is now proposing an access point to Beeler Road via another subdivision. The new access point will be via Beeler Road Subdivision. Beeler Road Subdivision has not begun construction and will be located directly south of Beeler Farms Subdivision and directly west of Fairview Road Subdivision. The Beeler Road Subdivision concept plan and TIS were approved earlier in June 2022 but have since been updated and modified to accommodate an access point for the Fairview Road Subdivision to Beeler Road. The modifications included re-designing the proposed internal roads in the Beeler Road Subdivision to provide a connection to Fairview Road Subdivision and also included a proposed land use change in the Beeler Road Subdivision from townhouses to single-family detached housing. Due to all these modifications, the Fairview Road Subdivision TIS has been revised in the following report. This revised report takes into account the modifications proposed for the Beeler Road Subdivision as it relates to the connection to the Fairview Road Subdivision. The Fairview Road Subdivision and the Beeler Road Subdivision will be developed separately but will be coordinated to facilitate road access. Both subdivisions are expected to reach full build-out and occupancy by 2027. This revised, updated report incorporates both developments in its analysis.

Preface:

Eagle Bend Development is proposing a residential development off Beeler Road in Northeast Knox County, TN. This report references the proposed development as "Fairview Road Subdivision" since a formal name has not yet been chosen. (Note: This name does not confer that the development will access Fairview Road).

The proposed Fairview Road Subdivision development will include 128 single-family detached houses on 93.44 +/- acres and is anticipated to be fully built and occupied by 2027. In addition to this subdivision, two other subdivisions have recently been proposed at Beeler Road, both adjacent and to the west of the proposed Fairview Road Subdivision. One of these other

subdivisions, Beeler Farms Subdivision, is currently reaching full construction build-out and occupancy. The other subdivision, Beeler Road Subdivision, has not begun construction. The Fairview Road Subdivision proposes a single access point to Beeler Road via the Beeler Road Subdivision entrance, which has not begun construction.

This study's primary purpose is to determine and evaluate the potential impacts of the development on the adjacent transportation system. The study includes a review of the primary access roads and intersections and is a Level 1 study established by Knoxville/Knox County Planning. Recommendations and mitigation measures are offered if transportation operations are projected to be below recognized engineering standards.

Study Results:

The findings of this study include the following:

- The Fairview Road Subdivision, with 128 single-family detached houses, is estimated to generate 1,267 trips at full build-out and occupancy on an average weekday by 2027. Of these daily trips, 93 are estimated to occur during the AM peak hour and 125 in the PM peak hour.
- Fairview Road Subdivision will have a singular access point to Beeler Road via the entrance constructed for the Beeler Road Subdivision. The construction of left and right-turn lanes on Beeler Road at the Beeler Road Subdivision entrance for entering traffic is not necessary to accommodate the subdivisions. A single exiting lane at the Beeler Road Subdivision entrance approach will be sufficient for the residents in the proposed Beeler Road and Fairview Road Subdivisions.
- As required to be included in the study, the intersection of East Emory Road at Beeler Road has been calculated to operate with high vehicle delays for motorists on the northbound approach of Beeler Road at East Emory Road in the existing and projected 2027 conditions. A Tennessee Department of Transportation (TDOT) project provided through the IMPROVE Act will widen East Emory Road from 2 to 5 lanes by 2030 and will include a center turn lane. This road widening, coupled with the recommendations in this study, is projected to provide additional roadway capacity and mitigate the excessive vehicle delays on the northbound approach of Beeler Road at the intersection of East Emory Road.

Recommendations:

The following recommendations are offered based on the study analyses. The recommendations are to minimize the impacts of the proposed development on the adjacent transportation system while attempting to achieve an acceptable traffic flow and improved safety.

- A Stop Sign (R1-1) is recommended to be installed, and a 24" white stop bar be applied to the Beeler Road Subdivision entrance approach at Beeler Road. This Stop Sign (R1-1) and stop bar will control the exiting motorists from both Beeler Road and Fairview Road Subdivisions at Beeler Road. The stop bar should be applied a minimum of 4 feet away from the edge of Beeler Road and placed at the desired stopping point that maximizes the sight distance.
- The intersection and stopping sight distances from the Beeler Road Subdivision entrance approach location at Beeler Road were measured visually to be adequate. With a posted speed limit of 25-mph on Beeler Road, the required intersection sight distance is 250 feet looking in each direction from the Beeler Road Subdivision entrance approach. Based on the posted speed limit of 25-mph on Beeler Road and the existing road grades, the stopping sight distance is calculated to be 155 feet to the north and south at the intersection of the Beeler Road Subdivision entrance approach.
- The TDOT project provided through the IMPROVE Act will widen East Emory Road from 2 to 5 lanes and supply the necessary roadway capacity to limit vehicle delays and queues for the turning movements from East Emory Road onto Beeler Road.
- Before the TDOT widening project is completed, in the interim, an eastbound right-turn lane was recommended to be constructed on East Emory Road in the previous Transportation Impact Study (TIS) prepared for the Beeler Road Subdivision. Due to the physical limits present at this location, the eastbound right-turn lane was recommended to have 25 feet of storage with a 75-foot taper. This lane is recommended to be absorbed into the 5-lane road section that TDOT will construct in the future, and a separate right-turn lane will not be required when the TDOT project is completed in 2030.
- It is further recommended in this study that a northbound right-turn lane with 100 feet of vehicle storage be constructed on Beeler Road at East Emory Road. The recommended eastbound and northbound right-turn lanes at this intersection should be coordinated in design and construction to reduce costs and construction times. These lanes should be constructed once the Beeler Road and Fairview Road

- Subdivisions commence construction to provide additional road capacity and moderate vehicle delays and queues until the TDOT project is completed.
- The 100-foot northbound right-turn lane on Beeler Road should be marked with a white turn arrow, as shown in TDOT Standard Drawing T-M-4.
- It is recommended that new traffic counts be conducted in the future to examine whether the intersection of East Emory Road at Beeler Road could meet traffic signal warrants once the subdivisions on Beeler Road are constructed and fully occupied, and the East Emory Road widening project is under design. Based on this study's projected 2030 volumes at the intersection, the primary warrant for a traffic signal, Warrant #1, will not be fully met. However, Warrant #2 is projected to be met. Higher growth than anticipated in this study could occur and increase traffic volumes large enough to meet Warrant #1.
- Two 25-mph Speed Limit (R2-1) signs are recommended to be installed on the connector road between Beeler Road and Fairview Road Subdivisions. One sign should be installed for eastbound travel into Fairview Road Subdivision and one for westbound travel into the Beeler Road Subdivision.
- Stop Signs (R1-1) and 24" white stop bars are recommended on the new internal roadways in the Fairview Road Subdivision, as shown in the report.
- Sight distance at the new internal subdivision road intersections must not be impacted by signage, parked cars, or future landscaping. With a proposed speed limit of 25-mph in the development, the internal intersection sight distance is 250 feet. The required stopping sight distance is 155 feet for a level road grade. The site designer should ensure that internal sight distance lengths are met and account for different proposed road grades.
- The internal roads of "A" and "B" in the Fairview Road Subdivision have relatively long straight road segments. Straight road segments encourage motorists to travel at higher speeds, especially with steep grades. It is recommended that the site designer consider traffic calming measures on these internal roads. If implemented, speed humps and chokers are recommended for traffic calming in this development. Chokers are recommended when the internal road grades are greater than 8%. Details of any traffic calming should be coordinated with Knox County Engineering in the detailed design phase.
- All drainage grates and covers for the residential development must be pedestrian and bicycle safe.
- Any sidewalk proposed in the subdivision should be 5 feet minimum in width to meet Knox County regulations. The provision of internal sidewalks in the Beeler

- Road Subdivision has been removed. The provision of sidewalks in Fairview Road Subdivisions is not known.
- Knox County completed a greenway study in 2020. They recommended Beaver Creek as a preferred route for a new greenway connecting the area around Interstate 75 in Powell to the Knox County/Union County line. With Beaver Creek adjacent to the development site and on the development property to the south of the proposed houses, the developer should discuss with Knox County if this potential greenway path is feasible to implement while the property is being developed.
- For residential subdivisions with a single access point and more than 150 houses, Knox County has a long-standing unwritten design policy requiring a second entrance or a boulevard road typical section at the entrance. According to the County, the intent of a boulevard road typical section is to provide a substantial alternate travel path by constructing one up to an internal intersection. This requirement and the appropriate mitigation are evaluated on a case-by-case basis and may require further discussions at future stages of the design plan process. There is a potential for an additional access point to the north in Fairview Road Subdivision that would provide two travel paths. The final decision on the most appropriate way to address this policy will be decided by Knox County Engineering and Public Works.
- All road grade and intersection elements should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

DESCRIPTION OF EXISTING CONDITIONS

STUDY AREA:

The proposed location of this new residential development is shown on a map in Figure 1. This proposed development will be located off Beeler Road in the Gibbs community in Northeast Knox County, TN. Beeler Farms Lane is a newly constructed residential street built for Beeler Farms Subdivision and will be located directly west of Fairview Road Subdivision. In addition to Beeler Farms Subdivision, the Fairview Road Subdivision will be located east and adjacent to another recently proposed residential subdivision. This other residential development will be directly to the south of Beeler Farms Subdivision and is referred to in this report as the Beeler Road Subdivision since an official name has not been announced. The Fairview Road Subdivision will have external road access via the proposed Beeler Road Subdivision entrance on Beeler Road by constructing a connector road between the two subdivisions.

As Knoxville/Knox County Planning requested, transportation impacts associated with the proposed Fairview Road Subdivision development were analyzed at the intersection of East Emory Road at Beeler Road, which is 1,900 feet to the north of the development site. The revised report for Fairview Road Subdivision includes an analysis of the subdivision entrance on Beeler Road at the Beeler Road Subdivision. The report also includes an analysis of the existing subdivision entrance, Beeler Farms Lane, for Beeler Farms Subdivision.

Existing View of Proposed Fairview Road Subdivision Development Site (Looking East from West End of Development Site)

The proposed development property is in a rural and agricultural area undergoing increased development. The Gibbs community is a growing and independent area that is becoming more suburbanized and residential in nature. The growing number of residential units in the surrounding area includes stand-alone single-family residences and residential subdivisions with single-family detached houses in Beeler Farms, Opportunity Ridge, Twin Brooks, Victoria's Landing, and Huntington Place.

The Fairview Road Subdivision will be on a large, jigsaw puzzle-shaped property. The proposed development property is currently undeveloped with forested areas, but most of it is cleared for farm activities. The property is roughly divided in the center to the north and south by Beaver Creek and a 200-foot-wide Tennessee Valley Authority electric transmission line and easement. The residential houses are proposed on the northern side, and the southern side will remain undeveloped.

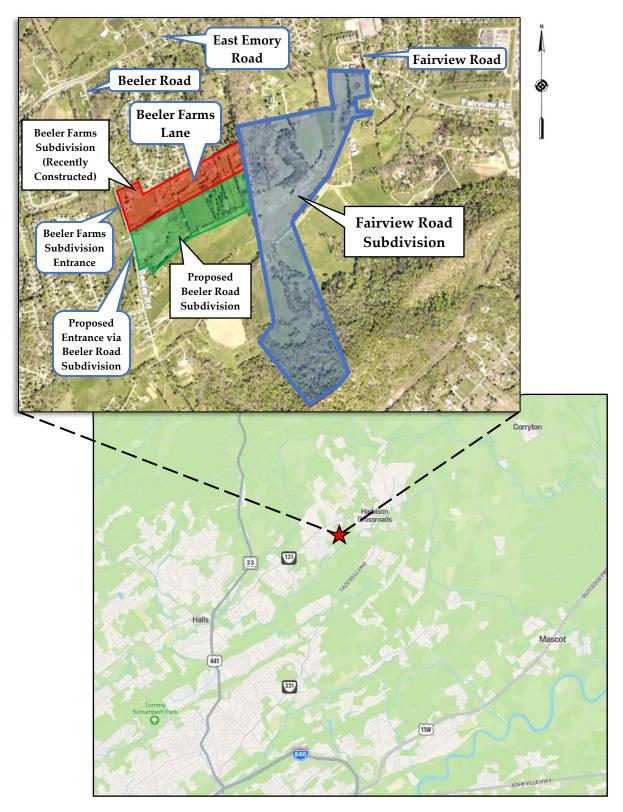


Figure 1 Location Map

EXISTING ROADWAYS:

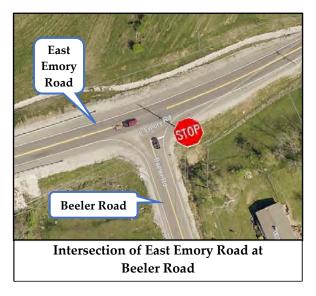

Table 1 lists the characteristics of the existing primary access roadways adjacent to the development property and included in the study:

TABLE 1 STUDY CORRIDOR CHARACTERISTICS

NAME	CLASSIFICATION 1	SPEED LIMIT	LANES	ROAD WIDTH ²	TRANSIT 3	PEDESTRIAN FACILITIES	BICYCLE FACILITIES
East Emory Road (SR 131)	Major Arterial	45 mph	2 undivided	42 feet	None	None	None
Beeler Road	Major Collector *	25 mph	2 undivided	18.5 feet	None	None	None
Beeler Farms Lane	Local Street	25 mph	2 undivided	26 feet	None	None	None

¹ 2018 Major Road Plan by Knoxville/Knox County Planning

East Emory Road (SR 131) is classified as a Major Arterial and generally traverses in a general southwest-northeast direction in the study area. East Emory Road is a state route and is a relatively straight road with minor horizontal and vertical curvature. The section of East Emory Road near the project site currently consists of a 2-lane pavement section approximately 42 feet wide with approximately 11.5-foot travel lanes and 8′-10′ paved shoulders outside the travel lanes. The roadway pavement is marked with a double yellow centerline and white edge lines. Skip line

rumble strips are provided outside the white edge lines on both sides. The posted speed limit on East Emory Road is 45-mph. A single utility light is provided at the intersection of East Emory Road at Beeler Road for road illumination.

The East Emory Road designation officially transitions from West Emory Road at the intersection with Heiskell Road/Central Avenue Pike to the west of Interstate 75. On the northeast end, the

² From edges of pavement

³ According to Knoxville Area Transit System Map

^{*}Major Collector from Stormer Road to East Emory Road

road continues into Grainger County. The total length of East Emory Road in Knox County is approximately 18.5 miles.

Box Culvert for Kerns Branch on East Emory Road (Looking West)

The area around the intersection of East Emory Road at Beeler Road has been modified within the last few years. From 2017 to 2018, TDOT replaced a box culvert for Kerns Branch just west of the intersection. This replacement included shifting the alignment of East Emory Road further to the north and extending Beeler Road slightly further to the north. This project also included installing new guardrails and providing widened and paved shoulders.

In 2017, the State of Tennessee passed the IMPROVE Act (Improving Manufacturing, Public Roads and Opportunities for a Vibrant Economy Act). This act provided cuts to the state sales tax on groceries and the Hall income tax, increases in fuel taxes, and included a list of 962 transportation projects to be paid with the new funding. One of these TDOT projects includes widening East Emory Road (SR 131). This project is currently in the design phase and proposes widening East Emory Road from 2 to 5 lanes with a total length of 4.8 miles. This project is expected to be completed by 2030 and is estimated to cost \$70.6 million.

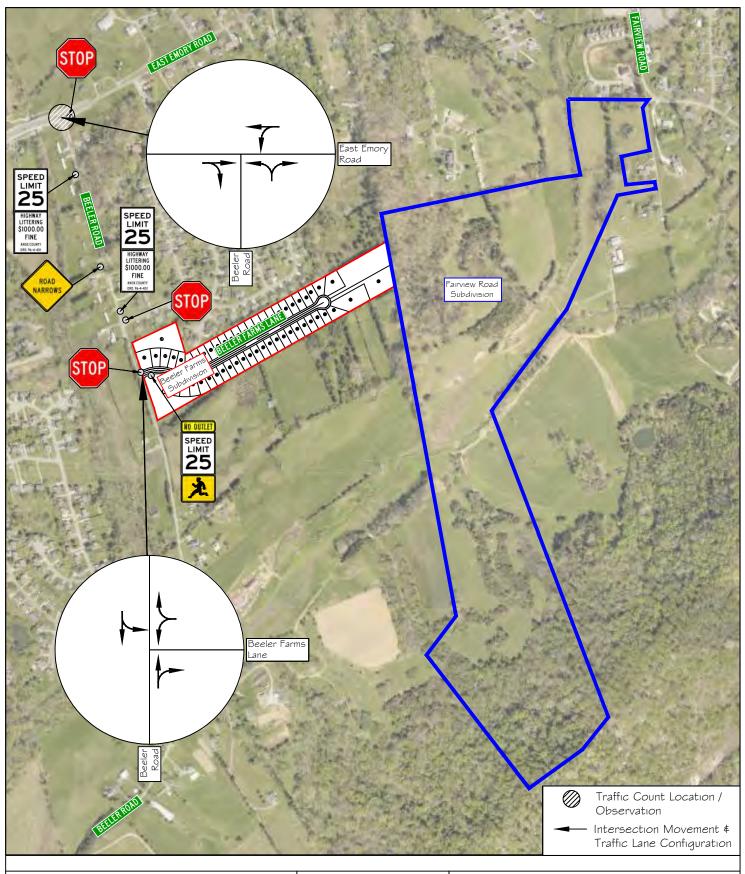
For the proposed development, East Emory Road will provide access to the southwest towards north Knoxville and the northeast towards Harbison Crossroads and further into the Gibbs community. East Emory Road primarily provides access to residential subdivisions, stand-alone residences, and farm properties in the study area.

Beeler Road is classified as a Major Collector between Stormer Road and East Emory Road and has a posted speed limit of 25-mph. It intersects East Emory Road twice with a circuitous route with a total length of 2.2 miles. On its east end, closer to the development site, Beeler Road intersects East Emory Road at an unsignalized t-intersection and continues southward past the proposed development property and the existing Twin Brooks Subdivision entrance. The road pavement narrows significantly and is more isolatedly populated beyond the Twin Brooks Subdivision entrance. Beeler Road continues west to Stormer Road and then northward back to East Emory Road at an unsignalized t-intersection. The two intersections of Beeler Road at East

Emory Road are separated by approximately 1 mile. Both approaches of Beeler Road at East Emory Road are controlled by a Stop Sign (R1-1) with single lanes. East Emory Road motorists operate freely at these intersections.

At the intersection of Beeler Road at East Emory Road included in this study, Beeler Road has 12-foot lanes with a total pavement width of about 30 feet. Wider lanes were provided during the box culvert reconstruction project on East Emory Road. About 250 feet south of this intersection, Beeler Road narrows down to 20 feet and continues to the south towards the development site averaging between 18 to 20 feet. Beeler Road is marked with a "Road Narrows" sign halfway between the development property and East Emory Road. Beeler Road was measured to be 18.5 feet wide immediately north and south of Beeler Farms Lane. The pavement on Beeler Road is marked with a double yellow centerline and is characterized by mailboxes, private driveways, trees, drainage ditches, and utility poles outside the roadway pavement.

Beeler Farms Lane was recently constructed for Beeler Farms Subdivision and has a posted speed limit of 25-mph. Fifty-three single-family detached houses were proposed for the Beeler Farms Subdivision. Nearly all these houses were built and occupied when the original Fairview Road Subdivision TIS was completed in August 2022. As of August 11th, 2022, only 14 houses remained that were not occupied. The remaining houses were either not entirely constructed or still for sale. At Beeler Road,



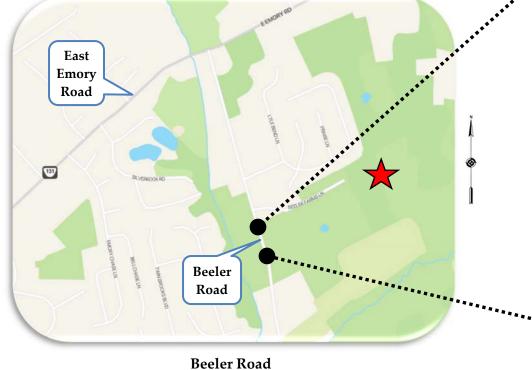
End of Beeler Farms Lane at Cul-de-Sac (Looking East)

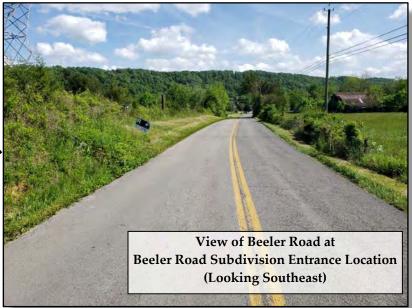
Beeler Farms Lane provides a single exit lane; separate left and right-turn entering lanes on Beeler Road are not provided. Sidewalks are not provided on Beeler Farms Lane.

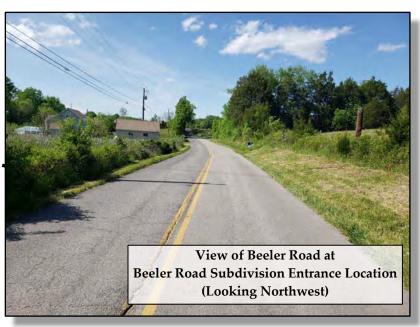
Figure 2 shows the lane configurations of the existing intersection examined in the study, the traffic count location for the study, and the current traffic road signage in the study area. The road signage shown in Figure 2 only includes warning and regulatory signage near the development site. The pages following Figure 2 give a further overview of the site study area with photographs.

11

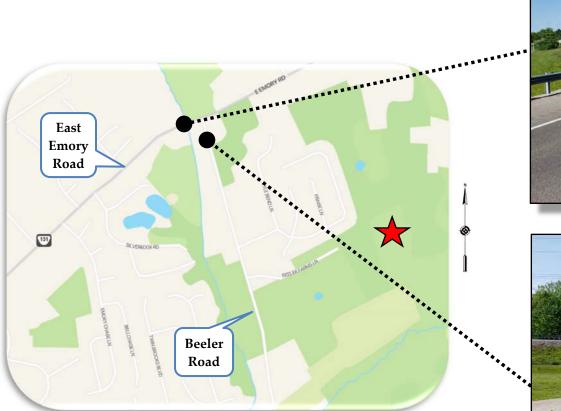
11812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com NOT TO SCALE

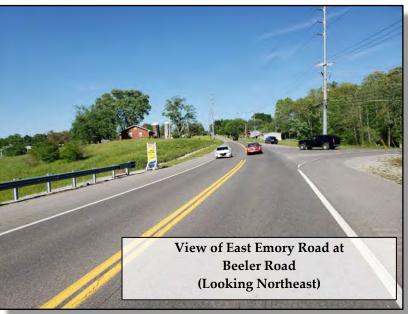



FIGURE 2


Fairview Road Subdivision

Traffic Count Location, Traffic Signage \$ Existing Lane Configurations


PHOTO EXHIBITS



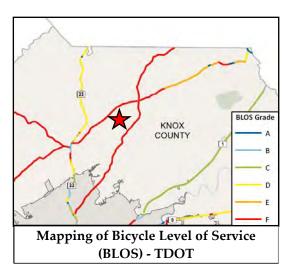
Beeler Road at East Emory Road

■ EXISTING TRANSPORTATION VOLUMES PER MODE:

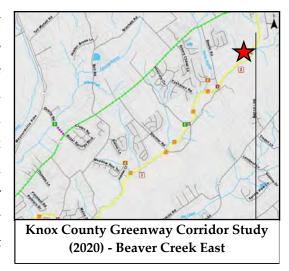
One annual vehicular traffic count location exists nearby in the study area, and TDOT conducts this count. The count location data is the following and can be viewed with further details in Appendix A:

- Existing vehicular roadway traffic:
 The TDOT reported an Average Daily Traffic (ADT) on East Emory Road, east of Tazewell Pike, at 5,702 vehicles per day in 2021. From 2011 to 2021, this count station has indicated a 0.5% average annual traffic growth rate.
- The average daily pedestrian and bicycle traffic is unknown along East Emory Road and Beeler Road. Due to the lack of facilities and nearby amenities, it is assumed that there is a minimal number of pedestrians and bicyclists on these roads in the study area. During the traffic counts for this project at the intersection of East Emory Road at Beeler Road, no pedestrians or bicyclists were observed over 8 hours.

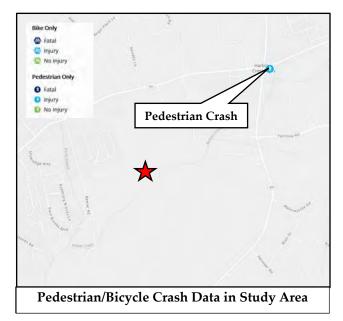
An online website, <u>strava.com</u>, provides "heat" maps detailing exercise routes taken by pedestrians, joggers, and bicyclists. The provided heat maps show the last two years of data, are updated monthly, and are gathered from individuals allowing their smart devices to track and compile their routes (millions of users). The activities in the maps are shown on the roads with color intensities with lighter colors signifying higher activity. The Strava heat map

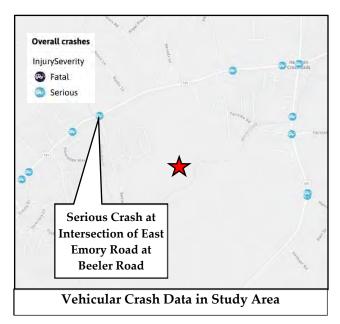

data shows that hardly any recorded pedestrian or bicycle traffic occurs in the study area. Some pedestrian activity has been recorded in the existing Huntington Place Subdivision west of the development site and Beeler Road. Some pedestrian activity is also shown around the public schools in the Gibbs community to the northeast.

• ON-STREET PARKING:


On-street parking was not observed during the site review and is not allowed on East Emory Road or Beeler Road adjacent to the project site. However, on-street parking is expected to occur along the future internal roads in Beeler Road and Fairview Road Subdivisions.

PEDESTRIAN AND BICYCLE FACILITIES:


Bicycle facilities (lanes) are not available within the project site study area. Sidewalks are not provided either. Even though bicycle facilities are not provided on East Emory Road, TDOT has published mapping illustrating the Bicycle Level of Service (BLOS) for state routes in Knox County. BLOS is a nationally used measure of bicyclist comfort based on a roadway's geometry and traffic conditions. BLOS A designates the route as most suitable for bicyclists and BLOS F as the least suitable. The BLOS for East Emory Road (SR 11) in the study area at Beeler Road shows F grades.


Knox County completed a Greenway Corridor Study in 2020. This study evaluated potential alignments for greenways throughout Knox County. One of the corridors, Beaver Creek East, was identified and evaluated in the study. This corridor would run from the area around Interstate 75 in Powell to the Knox County/Union County line. One of the preferred routes for this corridor is shown following Beaver Creek across the proposed development property and up to the intersection of East Emory Road at Fairview Road.

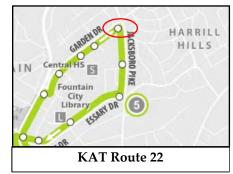
The executive summary in the Knox County greenway study states: "The greenway corridor study will be utilized when asking for greenway easements from developers and property owners as their proposed construction projects go through Knoxville-Knox County Planning for approval. The County's policy is to acquire property or easements for greenways only through voluntary donation or sale."


The Knoxville TPO provided a 2020 update to bicycle and pedestrian crash data for Knox County, Blount County, and other surrounding counties. According to the data, one of these incidents occurred near the study area in the past couple of years. This crash occurred on March 5th, 2019, near the intersection of East Emory Road at Tazewell Pike but did not list the cause of the crash. This incident involved a pedestrian and resulted in an injury.

The Knoxville TPO also provides data related to "Life-Altering Traffic Crashes". This data lists "the location of 2,326 traffic crashes in the Knoxville region that resulted in a fatality or serious injury between January 2016 and June 2019." Several "Serious" crashes are shown on this TPO mapping on East Emory Road in the vicinity of the proposed development site. The closest crash to the development site occurred at the intersection of East Emory Road at Beeler Road, but details of the crash are not listed. The other "Serious" crashes along East Emory Road included one involving a DUI and one with a teen driver.

■ WALK SCORE:

A private company offers an online website at walkscore.com that grades and gives scores to locations within the United States based on "walkability", "bikeability", and transit availability based on a patented system. According to the website, the numerical values assigned for the Walk Score and the Bike Score are based on the distance to the closest amenity in various relevant categories (businesses, schools, parks, etc.) and are graded from 0 to 100.



Appendix B shows maps and other information for the Walk Score, Bike Score, and Transit Score at the approximate development property address (7335 Fairview Road). The project site location is graded with a Walk Score of 3. This Walk Score indicates that all errands require a vehicle at the property site due to the lack of sidewalks and the travel lengths required to amenity locations. The site is graded with a Bike Score of 5, which means there is minimal bike infrastructure, but it is somewhat bikeable. The site is not given a Transit Score.

19

■ TRANSIT SERVICES:

The City of Knoxville has a network of public transit opportunities offered by Knoxville Area Transit (KAT). Bus service is not available in this area, and the overall KAT bus system map is in Appendix C. The closest public transit bus stop is 7.5 miles away by roadway off N Broadway on Garden Drive and is on Route 22, "Broadway". It operates on weekdays and weekends; this route map is included in Appendix C. KAT has had to reduce its service schedule due

to workforce shortages. These changes took place on August 29th, 2022, and the reduced schedule for Route 22 is also included in Appendix C. Other transit services in the area include the East Tennessee Human Resource Agency (ETHRA) and the Community Action Committee (CAC), which provides transportation services when requested.

PROJECT DESCRIPTION

LOCATION AND SITE PLAN:

The proposed plan layout with 128 single-family detached houses is designed by Urban Engineering and is shown in Figure 3. The figure also shows the existing Beeler Farms Subdivision and the proposed Beeler Road Subdivision (designed by others). As shown in the figure, one external road access point will be provided for the Fairview Road Subdivision. The access point for Fairview Road Subdivision to Beeler Road will be via roads constructed for Beeler Road Subdivision. As labeled in the Beeler Road Subdivision concept plan, these roads include Road "D" and the main subdivision entrance road, Road "A". With the construction of a connector road, the total roadway length between the western edge of the Fairview Road Subdivision property line and the Beeler Road Subdivision entrance at Beeler Road via Roads "A" and "D" will be approximately 2,150 feet.

In the Fairview Road Subdivision, four new streets labeled Road "A" thru Road "D" will be constructed internally with a total length of 4,210 feet (0.8 miles). This length includes the short connector road between Road "B" in Fairview Road Subdivision and Road "D" in Beeler Road Subdivision. All the internal roads will end at cul-de-sacs in Fairview Road Subdivision except for Road "D". The internal roadways in Fairview Road Subdivision will have a paved road width of 26 feet. Lot 197 in Fairview Road Subdivision on Road "B" has been called out as a potential public right-of-way for a stub-out road to the north. Whether this potential stub-out is pursued will be determined later in the design process.

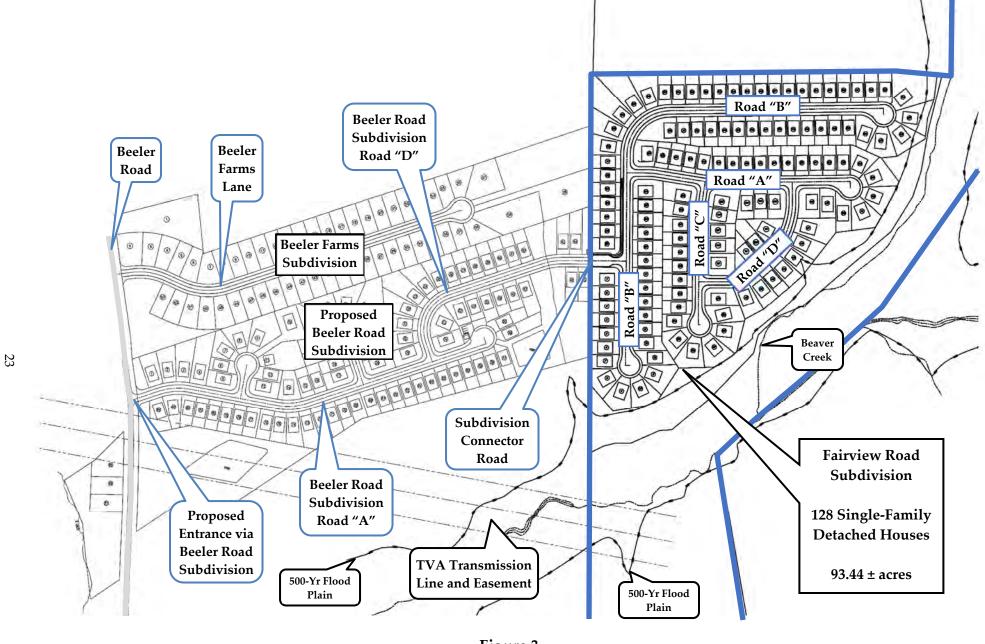
The residents in the Fairview Road Subdivision will own the individual lots and houses, and the typical house lot size will be 6,600 square feet (120 feet x 55 feet), with several over 10,000 square feet in area. Each single-family house will have an individual driveway with a garage.

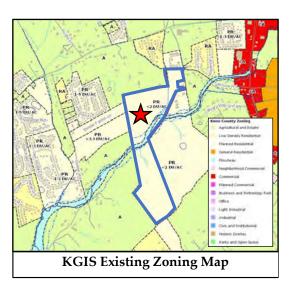
A mailbox delivery center for Fairview Road Subdivision will be constructed along with six parallel parking spaces alongside the connector road between the Beeler Road and Fairview Road Subdivisions. The provision of internal sidewalks in the Beeler Road Subdivision has been removed. The provision of sidewalks in Fairview Road Subdivisions is not known.

Stormwater detention ponds and controls will be constructed along the southern and eastern edges of the development property adjacent to Beaver Creek. All the houses will be built outside the 500-year flood plain. The 65-acre southern portion of the development property across Beaver

Creek will remain undeveloped.

The schedule for completing the Fairview Road Subdivision depends on economic factors and construction timelines. In the past couple of years, the real estate market in the area has been experiencing large amounts of activity and growth. However, the market has slowed down from its peak due to rising interest rates and other factors. This project is contingent on permitting, design, and other regulatory approvals. This study assumed that the total construction build-out of the development and full occupancy would occur within the next five years (2027). 2027 is the same horizon year assumed for the adjacent Beeler Road Subdivision that has not begun construction.




Figure 3 **Proposed Plan Layout Fairview Road Subdivision**

Not to Scale

■ PROPOSED USES AND ZONING REQUIREMENTS:

The Fairview Road Subdivision development property is within Knox County, TN, and is zoned as Planned Residential (PR) with a maximum of two dwelling units per acre. The Planned Residential (PR) zone allows for various land uses primarily within the residential realm. Uses permitted in this zone include single-family dwellings, duplexes, and multidwelling structures and developments. The most recently published online KGIS zoning map is provided in Appendix D and shown here. The existing adjacent surrounding zoning and land uses are the following:

- o Fifty-three single-family detached houses will exist west of the development property in the Beeler Farms Subdivision. Thirty-nine houses in this new subdivision were sold and occupied as of May 5th, 2022. The remaining houses were either reaching the end of construction or had not yet sold. These residences to the west are in the Planned Residential (PR) zone with less than 3.25 density units per acre. Beeler Farms Subdivision only has access to Beeler Road to the west via Beeler Farms Lane.
- Another eighty-seven single-family detached houses will exist west of the development property in the proposed Beeler Road Subdivision. This development has not yet begun construction. These future residences in the Beeler Road Subdivision will be in the Planned Residential (PR) zone with less than 3.3 density units per acre. Beeler Road Subdivision will only have road access via Beeler Road to the west, and the entrance will provide external road access for the Fairview Road Subdivision.
- One large parcel is zoned as Agricultural (A) and is north of the proposed development property. This property has large undeveloped areas with a sprawling single-family residence with several outbuildings. This property has road access to East Emory Road to the north. To the northeast of the Fairview Road Subdivision property, a couple of parcels are zoned in the Planned Residential (PR) zone, consist of condominiums with access to Fairview Road, and are in the recently constructed Maria Meadows Condominium development.

- Nearly the entire length of the east side development property line is adjacent to a single large parcel in the Planned Residential (PR) zone. This parcel is undeveloped and currently used for farm purposes. This adjacent large parcel has road access to Fairview Road via a joint permanent easement.
- Two parcels are located to the south of the development property. These properties are zoned as Agricultural (A) and Planned Residential (PR), with both having access to Tazewell Pike to the south. The Agricultural (A) parcel is mainly undeveloped, and the Planned Residential (PR) property is also, except for a single-family house on the south end near Tazewell Pike.

DEVELOPMENT DENSITY:

The Fairview Road Subdivision development's proposed density is based on a maximum of 128 single-family detached houses on 93.44 acres. One-hundred twenty-eight housing units over 93.44 acres computes to 1.37 dwelling units per acre which is less than the maximum allowed of two units per acre.

• ON-SITE CIRCULATION:

The internal roads in Fairview Road Subdivision will be designed and constructed to Knox County, TN specifications. The internal roads will be asphalt paved and include 6" concrete curbs. The lane widths will be 13 feet each, totaling a 26-foot pavement within a 50-foot right-of-way. The internal roads will be public and will be maintained in the future by Knox County. The provision of internal sidewalks in the Beeler Road Subdivision has been removed. The provision of sidewalks in Fairview Road Subdivisions is not known.

• SERVICE AND DELIVERY VEHICLE ACCESS AND CIRCULATION:

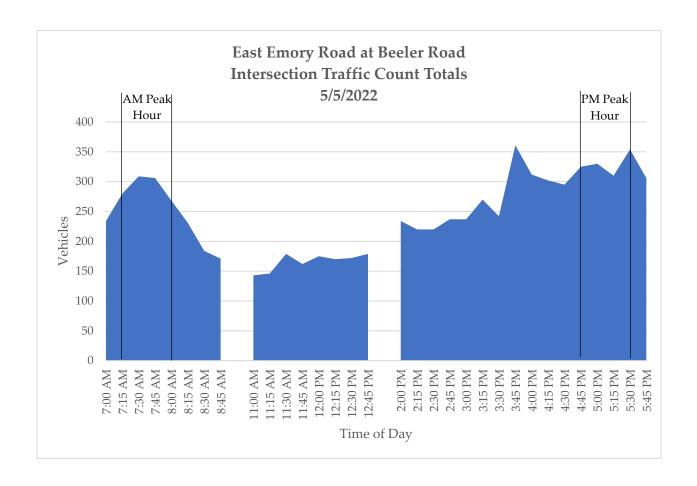
Besides residential passenger vehicles, the internal development roads will also provide access to service, delivery, maintenance, and fire protection/rescue vehicles. None of these other vehicle types should impact roadway operations other than when they occasionally enter and exit the development.

It is expected that the future residents in the development will be provided the opportunity for public school and private trash collection services if desired. The internal roadways will be designed and constructed to Knox County specifications and are expected to be adequate for fire

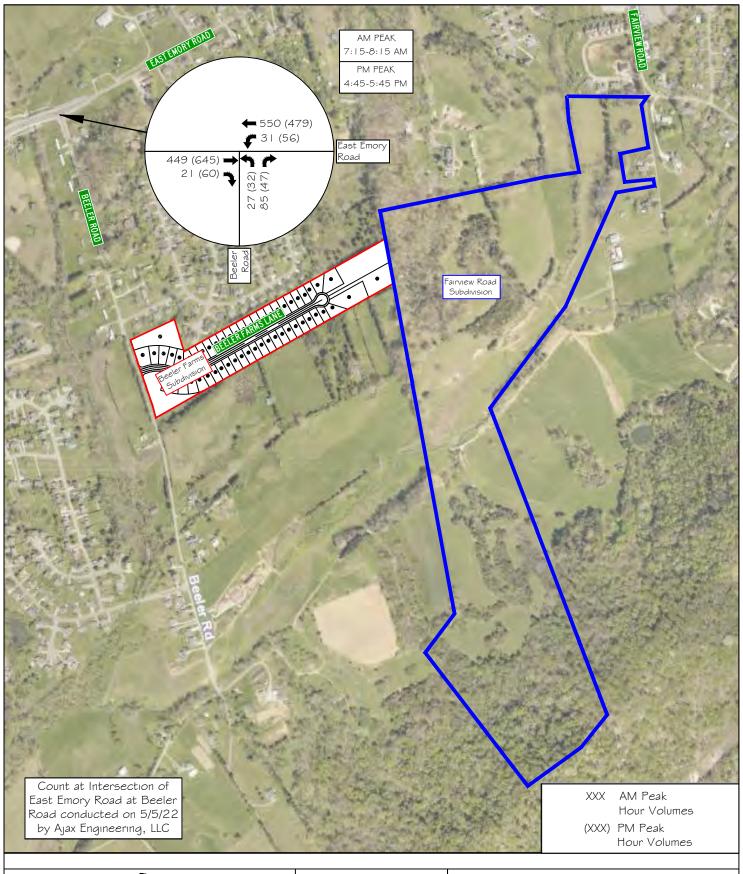
protection and rescue vehicles, trash collection trucks, school buses, and single-unit delivery trucks. The development's internal road will accommodate the larger vehicle types and residents' standard passenger vehicles.

ANALYSIS OF EXISTING AND PROJECTED CONDITIONS

EXISTING TRAFFIC CONDITIONS:


An 8-hour traffic count was conducted previously at the intersection of East Emory Road at Beeler Road on Thursday, May 5th, 2022, by Ajax Engineering, LLC, for the TIS for the proposed adjacent Beeler Road Subdivision. These counts were used in this study for the Fairview Road Subdivision. The manual traffic counts were conducted to tabulate the morning and afternoon peak period volumes and travel directions near the proposed development site. Based on the traffic volumes collected, the AM and PM peak hours were observed at 7:15 – 8:15 am and 4:45 – 5:45 pm at the intersection. Local county public schools were in session when the traffic counts were conducted.

The manual tabulated traffic counts can be reviewed in Figure 4a and Appendix E, and some observations from the count are listed below.


- No bicyclists or pedestrians were observed during the traffic count.
- Most of the observed traffic was passenger vehicles, but the traffic stream on East Emory Road and Beeler Road also included public school buses and dump trucks. Vehicles associated with the adjacent Beeler Farms Subdivision construction were observed on Beeler Road. These vehicles included concrete mixer trucks and large work trucks with trailers. A few semi-tractor trailers were observed on East Emory Road.
- From 7-8 am, heavier traffic was observed turning right from Beeler Road towards the east onto East Emory Road than to the left. From 8-9 am, the number of right-turning and left-turning vehicles on Beeler Road averaged closer to each other. Since all the existing properties on Beeler Road are zoned for the Gibbs Schools located to the north and east, it is believed that this imbalance of right-turn motorists towards the east is partially contributable to parents taking their children to school. A brief spike in traffic was also observed around 3:30 pm at the intersection, coinciding with the Gibbs Middle and High School's dismissal.
- The existing northbound approach of Beeler Road is a single lane for left and right turns onto East Emory Road. However, the travel lane and the shoulder pavement width on Beeler Road provide enough width to simultaneously allow two vehicles to be side-by-side for both left and right-turns. Occasionally, when a left-turning motorist on Beeler Road had significant delays due to heavy traffic on East Emory Road, right-turning motorists were observed driving on the shoulder alongside the stopped left-turning

- vehicle. This maneuver was taken to avoid the vehicle queue and allow the motorist to complete their turn to the right without waiting.
- Likewise, similar shoulder activity was observed on East Emory Road. Some eastbound motorists on East Emory Road turning right onto Beeler Road used the paved shoulder to remove themselves from the eastbound thru traffic stream. More dangerously, some impatient westbound motorists used the shoulder on East Emory Road to pass vehicles stopped on East Emory Road attempting to turn left onto Beeler Road. This maneuver was observed several times and included some motorists passing more than one stopped and queued vehicle. The riskiest observed maneuver was when a stopped westbound left-turn motorist on East Emory Road was courteous and allowed a left-turning motorist from Beeler Road to turn first onto East Emory Road. While this was occurring, a westbound thru motorist on East Emory Road passed the stopped vehicle by using the shoulder and nearly caused a sideswipe collision with the left-turning motorist from Beeler Road.

NOT TO SCALE

FIGURE 4a

Fairview Road Subdivision

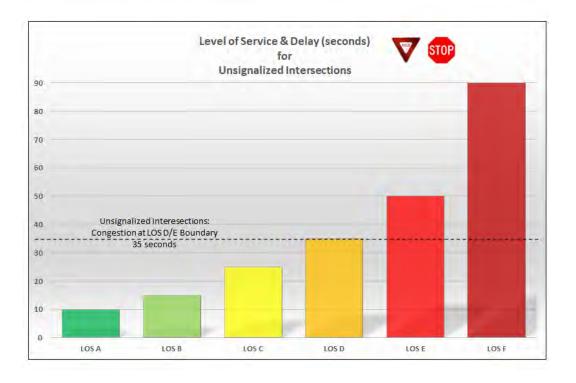
2022 Peak Hour Traffic Volumes - EXISTING CONDITIONS

Capacity analyses were undertaken to determine the Level of Service (LOS) for the existing 2022 traffic volumes shown in Figure 4a at the intersection of East Emory Road at Beeler Road. The capacity analyses were calculated following the Highway Capacity Manual (HCM) methods and utilizing Synchro Traffic Software (Version 11).

Methodology:

LOS is a qualitative measurement developed by the transportation profession to express how well an intersection or roadway performs based on a driver's perception. LOS designations include LOS A through LOS F. The designation of LOS A signifies a roadway or intersection operating at best, while LOS F signifies road operations at worst. This grading system provides a reliable, straightforward means to communicate road operations to the public. The HCM lists level of service criteria for unsignalized intersections and signalized intersections.

LOS is defined by delay per vehicle (seconds), and roadway facilities are also characterized by the volume-to-capacity ratio (v/c). LOS designations, which are based on delay, are reported differently for unsignalized and signalized intersections. For example, a delay of 20 seconds at an unsignalized intersection would indicate LOS C, and this delay would represent the additional delay a motorist would experience traveling through the intersection. Also, for example, a v/c ratio of 0.75 for an approach at an unsignalized intersection would indicate that it is operating at 75% of its available capacity. This difference is primarily due to motorists having different expectations between the two road facilities. Generally, for most instances, the LOS D / LOS E boundary is considered the upper limit of acceptable delay during peak periods in urban and suburban areas.


For unsignalized intersections, LOS is measured in terms of delay (in seconds). This measure is an attempt to quantify delay that includes travel time, driver discomfort, and fuel consumption. For unsignalized intersections, the analysis assumes that the mainline thru and right-turn traffic does not stop and is not affected by the traffic on the minor side streets. Thus, the LOS for a two-way stop (or yield) controlled intersection is defined by

the delay for each minor approach and major street left-turn movements. Table 2 lists the level of service criteria for unsignalized intersections. The analysis results of unsignalized intersections using the HCM methodologies are conservative due to the more significant vehicle gap parameters used in the method. More often, in normal road conditions, drivers are more willing to accept smaller gaps in traffic than what is modeled using the HCM methodology. The unsignalized intersection methodology also does not account for more significant gaps sometimes produced by nearby upstream and downstream signalized intersections. For unsignalized intersections, in most instances, the upper limit of acceptable delay during peak hours is the LOS D/E boundary at 35 seconds.

TABLE 2
LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS VIOLENTIAN TO STOP

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY (seconds/vehicle)		
A	Little or no delay	0 - 10		
В	Short Traffic Delays	>10 -15		
С	Average Traffic Delays	>15 - 25		
D	Long Traffic Delays	>25 - 35		
E	Very Long Traffic Delays	>35 - 50		
F	Extreme Traffic Delays	>50		

Source: Highway Capacity Manual, 6th Edition

Intersection capacity results from the existing 2022 peak hour traffic are shown in Table 3. The intersection in the table is shown with a LOS designation, delay (in seconds), and v/c ratio (volume/capacity) for the AM and PM peak hours. Appendix F includes the worksheets for the existing 2022 peak hour capacity analyses.

As shown in Table 3, the westbound left-turn movement on East Emory Road was calculated to be LOS A in the AM and PM peak hours. However, the northbound approach of Beeler Road is calculated with poor LOS and high vehicle delays in the existing 2022 conditions, particularly in the PM peak hour with LOS F.

TABLE 3 2022 INTERSECTION CAPACITY ANALYSIS RESULTS -EXISTING TRAFFIC CONDITIONS

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK		
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	V/C	LOS	DELAY	V/C
				(seconds)			(seconds)	
East Emory Road (EB & WB) at	zed	Northbound Left/Right	D	26.9	0.449	F	62.4	0.664
Beeler Road (NB)	STOP E	Westbound Left/Thru	A	8.5	0.038	A	9.7	0.081
	Sign							
	ų							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

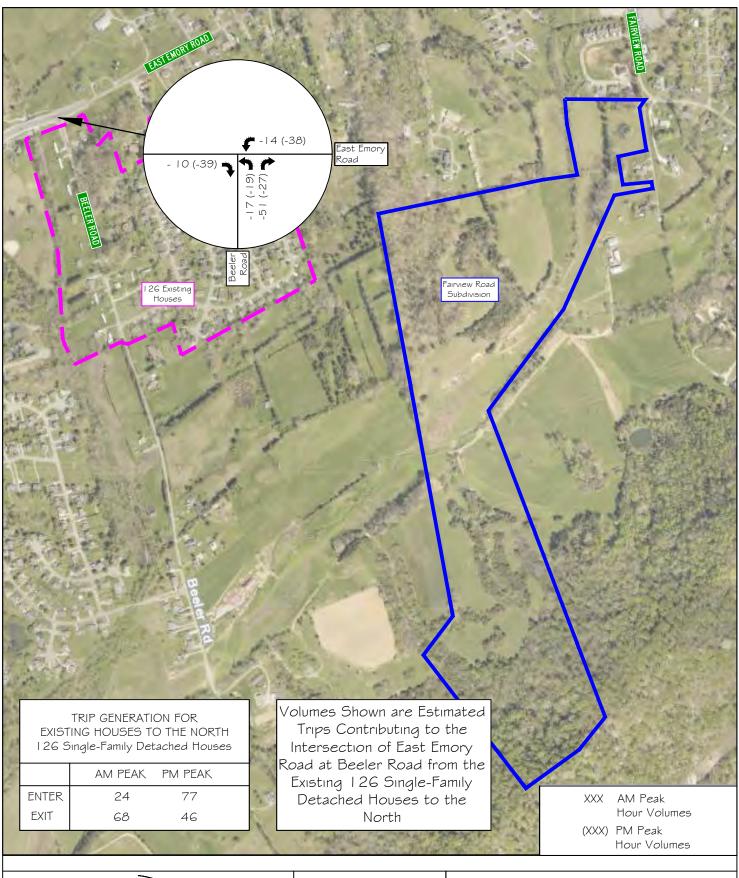
The original TIS for Fairview Road Subdivision (and Beeler Road Subdivision) was not required to analyze capacity at the new and proposed subdivision entrances on Beeler Road to the south. Thus, a traffic count was not conducted on the southern end of Beeler Road adjacent to these subdivisions. However, for this revised report, the two entrances on Beeler Road for the three subdivisions (Beeler Farms, Beeler Road, and Fairview Road Subdivisions) were analyzed with respect to intersection capacity and evaluating the need for turn lanes. The analysis for the Beeler Farms Subdivision at the intersection of Beeler Road at Beeler Farms Lane was included since the trips generated by the Beeler Road and Fairview Road Subdivisions will pass thru this intersection.

There are many existing houses between East Emory Road and the three subdivisions (Beeler Farms, Beeler Road, and Fairview Road Subdivisions) to the south. Therefore, a simple transfer of entering and exiting volumes on Beeler Road at East Emory Road to the subdivision entrances is not possible since these houses were contributing to the tabulated volumes at the intersection and would not be present at the two subdivision entrances to the south on Beeler Road (all travel is assumed to/from East Emory Road to the north). There are 126 existing houses between East

a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio


Emory Road and the two subdivision entrances to the south on Beeler Road. Most of these houses are single-family detached housing units in Opportunity Ridge Subdivision to the north, but some are manufactured homes along Beeler Road. For the analysis, all 126 houses were assumed to be single-family detached houses to simplify calculations.

Figures 4b, 4c, and 4d show the additional information used to estimate the existing thru traffic volumes on Beeler Road at the new and proposed subdivision entrances. Figure 4b shows the estimation of trips contributed to the intersection of East Emory Road at Beeler Road from the existing 126 single-family houses to the north of the three subdivisions. This estimation was made by utilizing trip generation calculations and assuming trip distribution, as described later in the report. The volumes in Figure 4b are shown as "negative" since these volumes are to be subtracted from the volumes tabulated during the traffic count at the intersection of East Emory Road at Beeler Road. These volumes were subtracted to calculate the thru volumes on Beeler Road to the south and adjacent to the two new and proposed subdivision entrances for Beeler Farms, Beeler Road, and Fairview Road Subdivisions.

Figure 4c also shows "negative" volumes at the intersection of East Emory Road at Beeler Road to account for the existing 27 houses constructed and occupied in the Beeler Farms Subdivision when the traffic count was conducted on May 5th, 2022. When the traffic counts were conducted, approximately half of the houses in the Beeler Farms Subdivision were constructed and occupied. Thus, the existing traffic count at the intersection of East Emory Road at Beeler Road included the trips generated by half the residents in the Beeler Farms Subdivision. The estimated volumes for these 27 houses in Beeler Farms Subdivision were also estimated using trip generation calculations and trip distribution methods, as described later in the report.

Figure 4d is the culmination of the subtracted trips from the tabulated volumes obtained on May 5th, 2022, at the intersection due to the contributions from the houses to the north and the 27 houses in the Beeler Farms Subdivision. This subtraction allows the calculation of the thru volumes on Beeler Road to the south and adjacent to the new and proposed subdivision entrances. Effectively, these volumes shown in Figure 4d represent the trips generated by the houses further to the south on Beeler Road, including a handful of stand-alone houses along Beeler Road and the several dozen single-family detached houses in the existing Twin Brooks Subdivision.

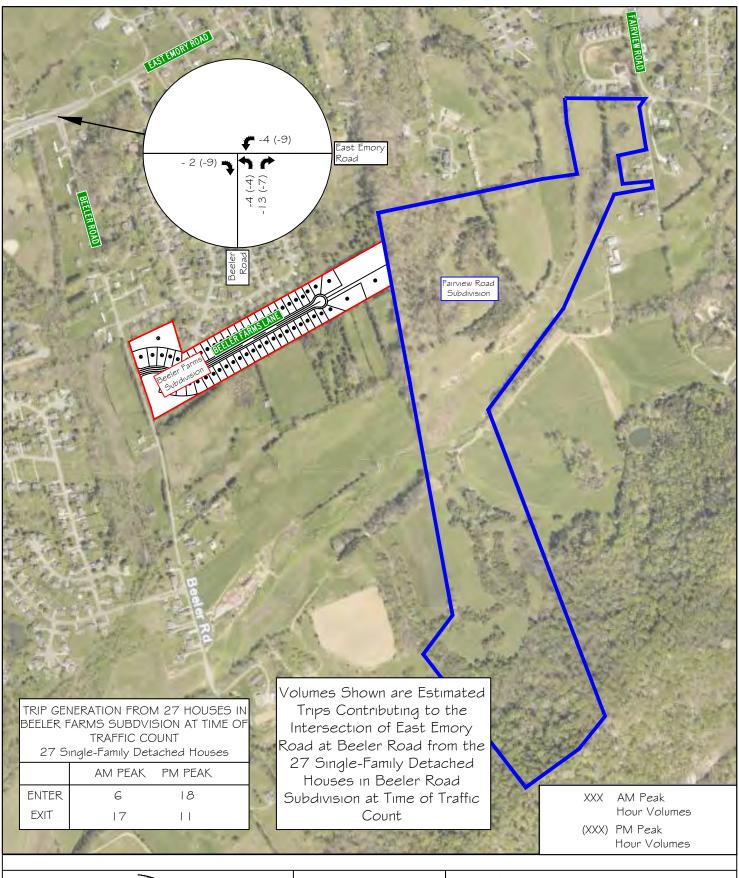

NOT TO SCALE

FIGURE 4b

Fairview Road Subdivision

2022 Peak Hour Traffic Volumes - EXISTING CONDITIONS (MINUS TRIPS FROM EXISTING HOUSES TO THE NORTH)

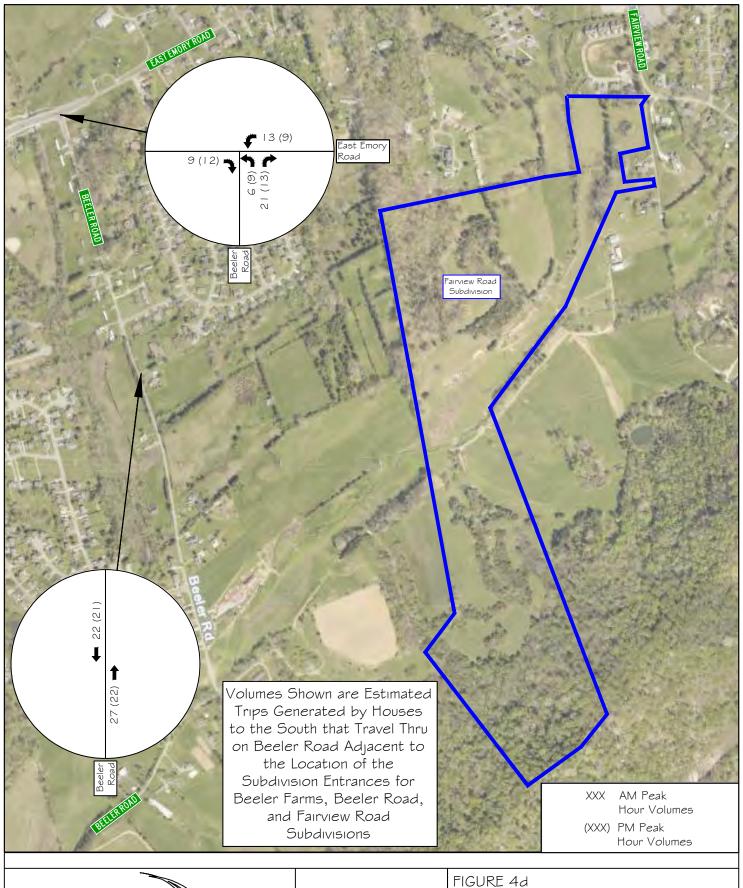
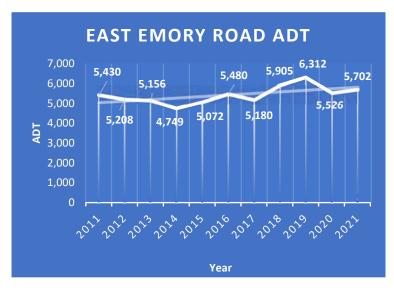

NOT TO SCALE

FIGURE 4c

Fairview Road Subdivision

2022 Peak Hour Traffic Volumes - EXISTING CONDITIONS (MINUS TRIPS FROM BEELER FARMS SUBDIVISION)

NOT TO SCALE


Fairview Road Subdivision

2022 Peak Hour Traffic Volumes - EXISTING CONDITIONS (TRIPS FROM HOUSES TO THE SOUTH ON BEELER ROAD)

PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT):

Horizon year traffic conditions represent the projected traffic volumes in the study area without the proposed project being developed (no-build option). The build-out and full occupancy for the Fairview Road Subdivision development is assumed to occur by 2027. This horizon year corresponds to five years for this development to reach full capacity and occupancy. The same horizon year was assumed and used in the TIS for the adjacent Beeler Road Subdivision.

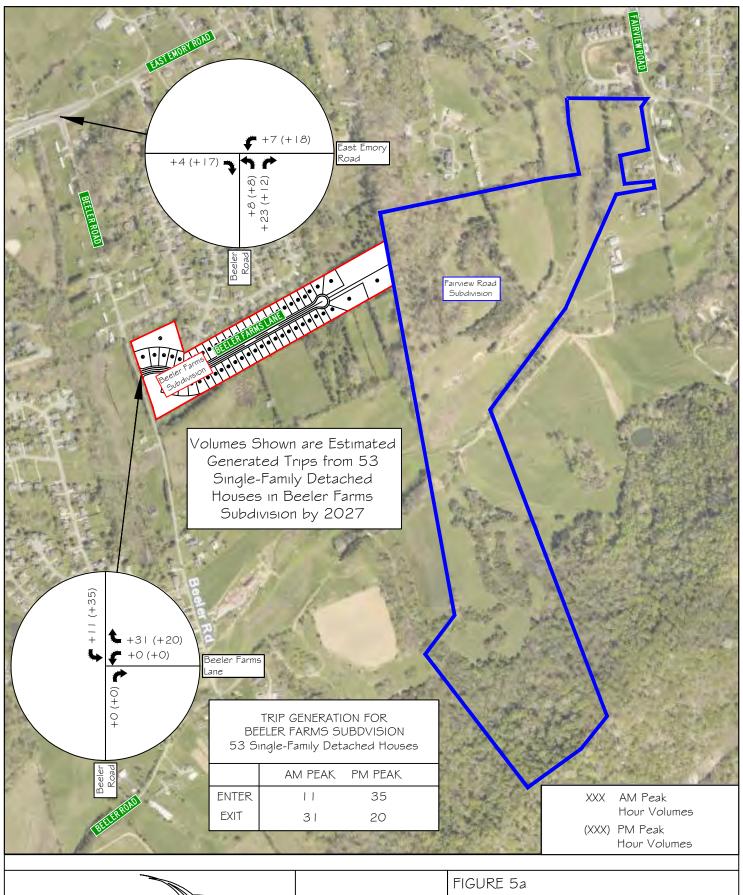
Vehicular traffic on East Emory Road in the study area has shown low annual growth over the past ten years (0.5%), according to the TDOT traffic count station and as shown in Appendix A. For this study, a higher annual growth rate of 1.0% was used to calculate future growth of the thru volumes on East Emory Road up to 2027 to account for potential traffic growth in the study area and provide a conservative analysis.

In addition to the possibility of general growth in the area, this study took into account the traffic growth as a result of the Beeler Farms and Beeler Road Subdivisions reaching completion and contributing trips to the intersections by 2027 without the construction of Fairview Road Subdivision. These trips were calculated and distributed as described in the following sections of the report.

Figure 5a shows the trips increased by the 53 houses in Beeler Farms Subdivision by 2027. These trips will add to the volumes at the intersection of East Emory Road at Beeler Road and the intersection of Beeler Road at Beeler Farms Lane.

Figure 5b shows the trips increased by the 87 houses in Beeler Road Subdivision by 2027. These trips will add to the volumes at the intersection of East Emory Road at Beeler Road, at the intersection of Beeler Road at Beeler Farms Lane, and the intersection of Beeler Road at the Beeler Road Subdivision entrance. As shown in the figure, a few trips will be added on Beeler Road at the Beeler Road Subdivision entrance to and from the south due to the proposed three single-

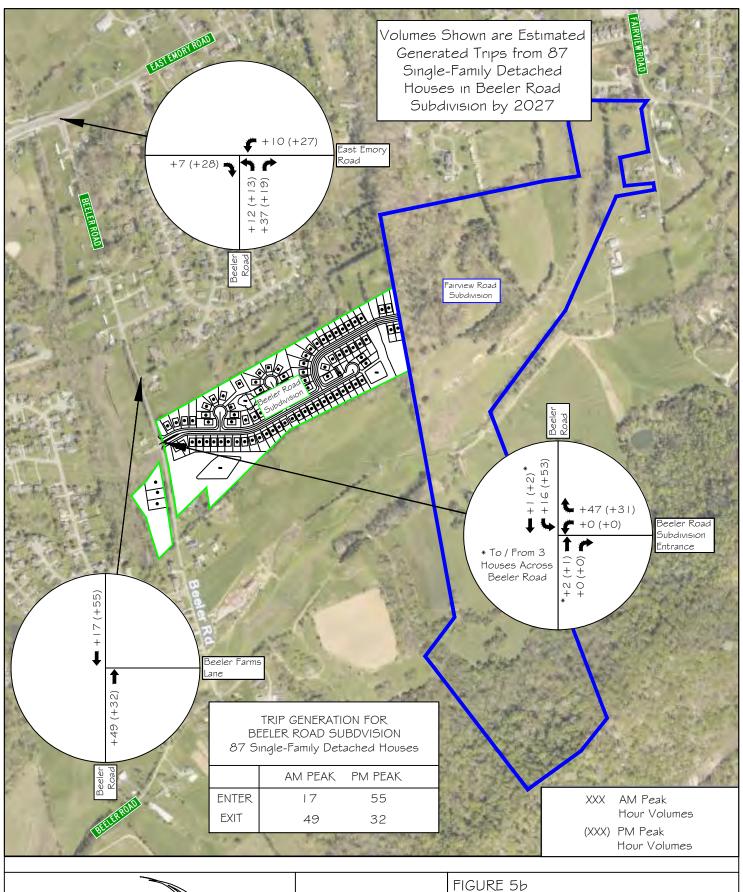
family detached houses that will be constructed across Beeler Road as a part of the Beeler Road Subdivision development.


Figure 5c shows the culmination of the trips added to the intersections generated by the 53 houses in the Beeler Farms Subdivision and the 87 houses in the Beeler Road Subdivision by 2027.

Finally, Figure 5d shows the cumulative 2027 traffic volumes at the intersections without the Fairview Road Subdivision development during the AM and PM peak hours. The volumes in Figure 5d include the assumed future growth of 1% for the eastbound and westbound thru volumes on East Emory Road. General traffic growth was not assumed to increase for the entering and exiting traffic volumes on Beeler Road at East Emory Road other than the included residential developments of Beeler Farms and Beeler Road Subdivisions. Thus, general future growth of 1% was not applied to entering and exiting traffic volumes to and from Beeler Road but only to the thru volumes on East Emory Road. (Note: Figure 5d includes the subtraction of the trips generated by the 27 houses in Beeler Farms Subdivision that were included during the traffic count conducted on May 5th, 2022, and shown in Figure 4c. This subtraction eliminates double counting of these trips to and from the Beeler Farms Subdivision.)

Capacity analyses were undertaken to determine the projected LOS in 2027 without the Fairview Road Subdivision project at the intersection of East Emory Road at Beeler Road, Beeler Road at Beeler Farms Lane, and Beeler Road at the Beeler Road Subdivision entrance. The results are shown in Table 4. The results in Table 4 show higher vehicle delays for the northbound approach of Beeler Road at East Emory Road compared to the existing 2022 results. Also, the v/c ratio in the PM peak hour for northbound Beeler Road at East Emory Road is calculated to be 1.417, indicating that the approach will operate above capacity, resulting in high vehicle delays. These results show that this intersection is projected to operate poorly in 2027 for northbound motorists on Beeler Road at East Emory Road, even if the Fairview Road Subdivision is not constructed.

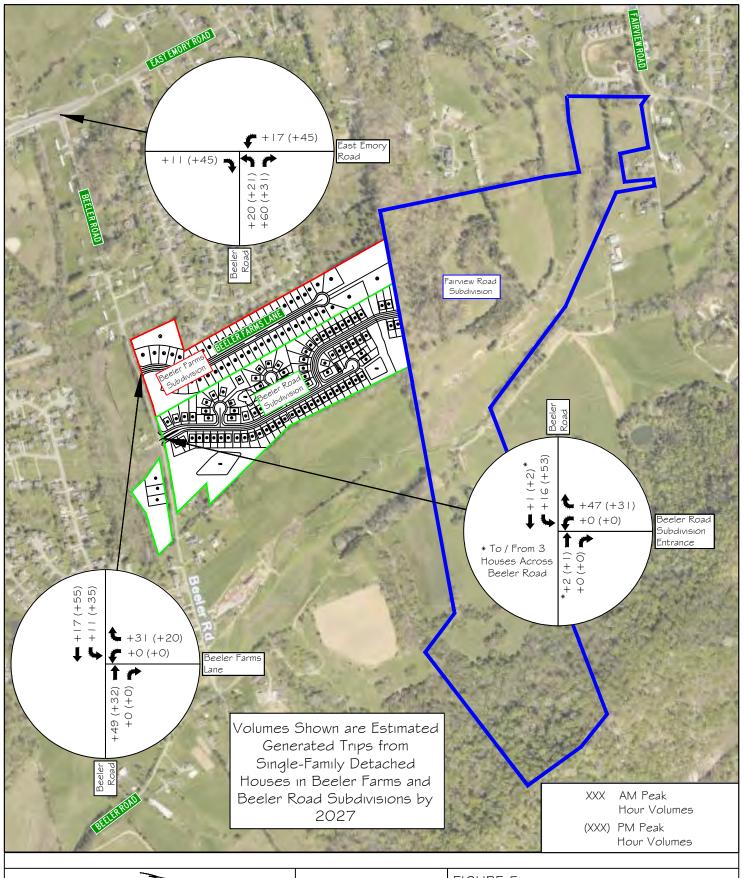
The entrances for Beeler Farms and Beeler Road Subdivisions on Beeler Road in 2027 without the Fairview Road Subdivision are calculated to operate with very good LOS and low vehicle delays.



NOT TO SCALE

Fairview Road Subdivision

2027 Peak Hour Traffic Volumes - PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER FARMS SUBDIVISION



NOT TO SCALE

Fairview Road Subdivision

2027 Peak Hour Traffic Volumes -PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER ROAD SUBDIVISION

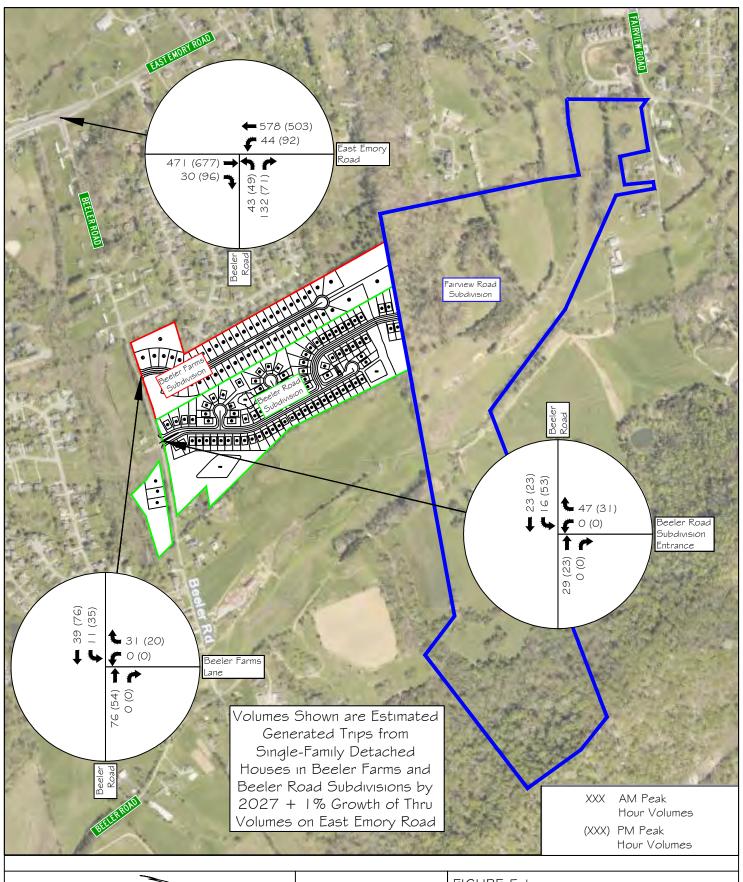

NOT TO SCALE

FIGURE 5c

Fairview Road Subdivision

2027 Peak Hour Traffic Volumes - PROJECTED CONDITIONS (WITHOUT THE PROJECT) WITH BEELER FARMS AND BEELER ROAD SUBDIVISIONS

NOT TO SCALE

FIGURE 5d

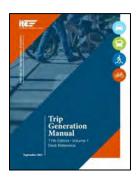
Fairview Road Subdivision

2027 Peak Hour Traffic Volumes - PROJECTED CONDITIONS (WITHOUT THE PROJECT)

TABLE 4
2027 INTERSECTION CAPACITY ANALYSIS RESULTS PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	V/C	LOS	DELAY	V/C
				(seconds)			(seconds)	
East Emory Road (EB & WB) at	zed	Northbound Left/Right	F	60.0	0.810	F	299.0	1.417
Beeler Road (NB)	STOP in string is	Westbound Left/Thru	A	8.7	0.055	В	10.4	0.144
	Unsign							
Beeler Road (SB & NB) at	zed	Westbound Left/Right	A	8.8	0.035	A	8.7	0.022
Beeler Farms Lane (WB)	STOP E	Southbound Left	A	7.4	0.008	A	7.4	0.025
	Unsignali							
Beeler Road (SB & NB) at	zed	Westbound Left/Right	A	8.6	0.050	A	8.5	0.033
Beeler Road Subdivision	STOP E	Southbound Left	A	7.3	0.011	A	7.3	0.037
Entrance (WB)	Unsignali							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology


^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

■ TRIP GENERATION:

A generated trip is a single or one-direction vehicle movement entering or exiting the study site. The estimated amount of traffic that the 128 single-family detached houses in the Fairview Road Subdivision will generate was calculated based on rates and equations provided by the <u>Trip Generation Manual</u>, 11th Edition, a publication of the Institute of Transportation Engineers (ITE). The <u>Trip Generation Manual</u> is the traditional and most popular resource for determining trip generation rates when transportation

impact studies are produced. The data and calculations for the proposed land use are shown in Appendix G. A summary of this information is presented in the following table:

TABLE 5
TRIP GENERATION FOR FAIRVIEW ROAD SUBDIVISION
128 Single-Family Detached Houses

ITE LAND LAND USE USE CODE DESCRIPTION		UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
			ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL	
	Single-Family	hadan ad		26%	74%		63%	37%	
#210 Detached Housing	128 Houses	1,267	24	69	93	79	46	125	
To	tal New Volume Sit	e Trips	1,267	24	69	93	79	46	125

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

For the proposed residential development, with 128 single-family detached houses, it is estimated that 24 vehicles will enter and 69 will exit, for a total of 93 generated trips during the AM peak hour in the year 2027. Similarly, it is estimated that 79 vehicles will enter and 46 will exit, for a total of 125 generated trips during the PM peak hour in the year 2027. The calculated trips generated for an average weekday are estimated to be 1,267 vehicles for the proposed development. No vehicle trip reductions were included in the calculations or analysis.

As discussed in the previous sections, trip generation calculations were conducted for Beeler Farms and Beeler Road Subdivisions, as shown in Figures 5a and 5b. Table 6 presents the trip generation results for the 53 houses in the Beeler Farms Subdivision. Table 7 shows the trip generation results for the proposed Beeler Road Subdivision. Table 7.1 shows the combination of the trip generation results for the Fairview Road and Beeler Road Subdivisions. The calculations for these adjacent subdivisions are shown in Appendix G. Appendix G includes the other

calculations discussed previously, including the 126 houses to the north along Beeler Road and the Opportunity Ridge Subdivision.

TABLE 6
TRIP GENERATION FOR BEELER FARMS SUBDIVISION
53 Single-Family Detached Houses

ITE LAND LAND USE USE CODE DESCRIPTION		UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
			ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL	
	Single-Family	and the second		26%	74%		63%	37%	
#210 Detached Housing	53 Houses	563	11	31	42	35	20	55	
To	tal New Volume Site	e Trips	563	11	31	42	35	20	55

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

TABLE 7
TRIP GENERATION FOR BEELER ROAD SUBDIVISION

87 Single-Family Detached Houses

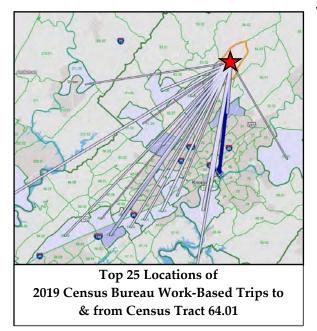
ITE LAND LAND USE USE CODE DESCRIPTION		UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
	F + 1 +			ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
	Single-Family	mily	Anna Pillana	26%	74%		63%	37%	
#210 Detached Housing	87 Houses	888	17	49	66	55	32	87	
To	tal New Volume Site	e Trips	888	17	49	66	55	32	87

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

TABLE 7.1
TRIP GENERATION FOR FAIRVIEW ROAD & BEELER ROAD SUBDIVISIONS
215 Single-Family Detached Houses

The second secon	LAND USE DESCRIPTION	Charles Salaring	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
	A STATE OF THE STA			ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
	Single-Family	5.00		26%	74%		63%	37%	
#210 Detached Housing	215 Houses	2,155	41	118	159	134	78	212	
To	tal New Volume Sit	e Trips	2,155	41	118	159	134	78	212


ITE Trip Generation Manual, 11th Edition

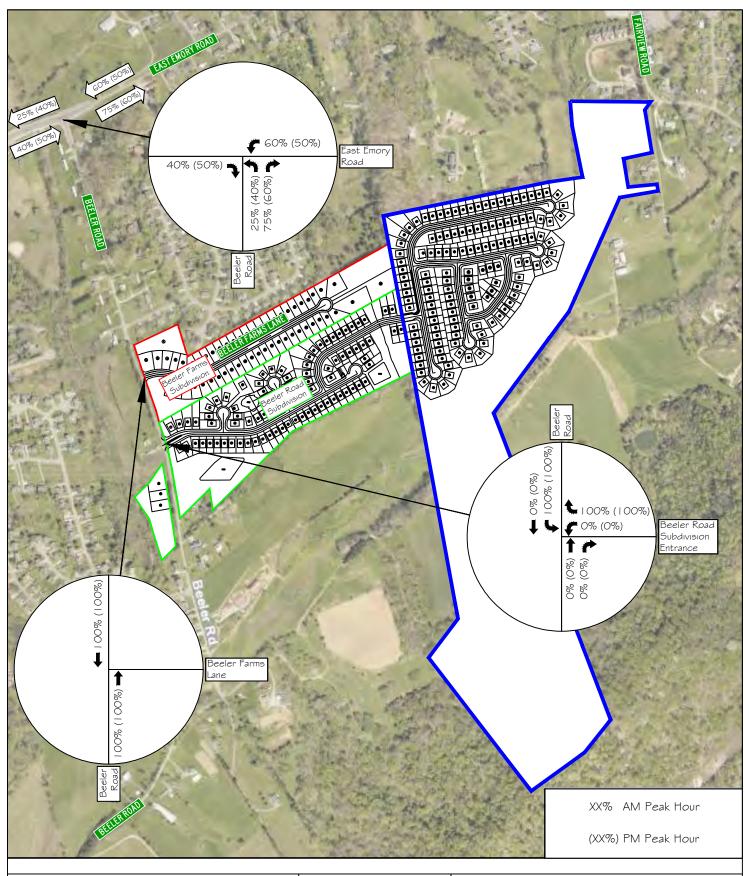
Trips calculated by using Fitted Curve Equation

TRIP DISTRIBUTION AND ASSIGNMENT:

Figure 6a shows the projected distribution of traffic entering and exiting the proposed Fairview Road Subdivision. The assumed percentages in Figure 6a are based on several sources and engineering judgments. The first and primary source is based on the traffic count volumes and the observed directions of travel collected at the existing intersection of East Emory Road at Beeler Road.

The second source for projected trip distribution is based on work-related trips in the local area. Work-based trips will be a significant impetus for generated trips by the development, and these trips are more likely to travel to and from the south and southwest. This assertion is based on data from the United States Bureau website for Census Tract 64.01, where the development property is located. Based on 2019 (latest available) census data and as shown in Appendix H, most work-based trips in the surrounding area correspond to downtown Knoxville (including the University of Tennessee) and other areas of West Knoxville.

In addition to employment centers, some generated traffic will travel to and from public and private schools. Schools will be another impetus for external trip-making. The development property is currently zoned for Gibbs Elementary, Middle, and High School. All these schools are located next to each other and are 2.4 miles north and east of the development property off Tazewell Pike.


The Knox County Schools Transportation Department has developed Parental Responsibility Zones (PRZ) to determine whether students are offered transportation services to and from school. The PRZ is defined as being 1.5 miles for grades 6-12 and 1.0 miles for grades K-5 from where the students' parcel is accessed to the point where the buses unload at the school. This development will be outside the PRZ for all the zoned schools, and all school-age children attending public schools in the development will be able to utilize this service if desired.

Overall, at first glance, a reasonable assumption would conclude that more traffic would be generated to and from the southwest via East Emory Road toward Knoxville. However, the existing traffic count showed that the existing residents along Beeler Road are heavily pulled towards the east and northeast towards Tazewell Pike. Much of this travel is assumed to be associated with the Gibbs Schools. Some travel can also be attributed to the shopping centers and other commercial developments in and around the Gibbs community to the northeast around Tazewell Pike.

The trip distribution rate at East Emory Road at Beeler Road was assumed heavily on the observed traffic for entering and exiting movements at the intersection. All entering and exiting subdivision traffic was assumed will travel via Beeler Road to and from the north. None of the subdivision trips are assumed will use Beeler Road's narrower and longer southern and western sections to reach East Emory Road. Figures 6b and 6c are supplements that show the assumed trip distribution for the Beeler Farms and Beeler Road Subdivisions trips that were calculated for the volumes shown earlier in Figures 5a and 5b (the projected 2027 traffic volumes without the Fairview Road Subdivision).

Figure 7 shows the traffic assignment of the computed trips generated by the Fairview Road Subdivision development shown in Table 5 based on the assumed distribution of trips shown in Figure 6a.

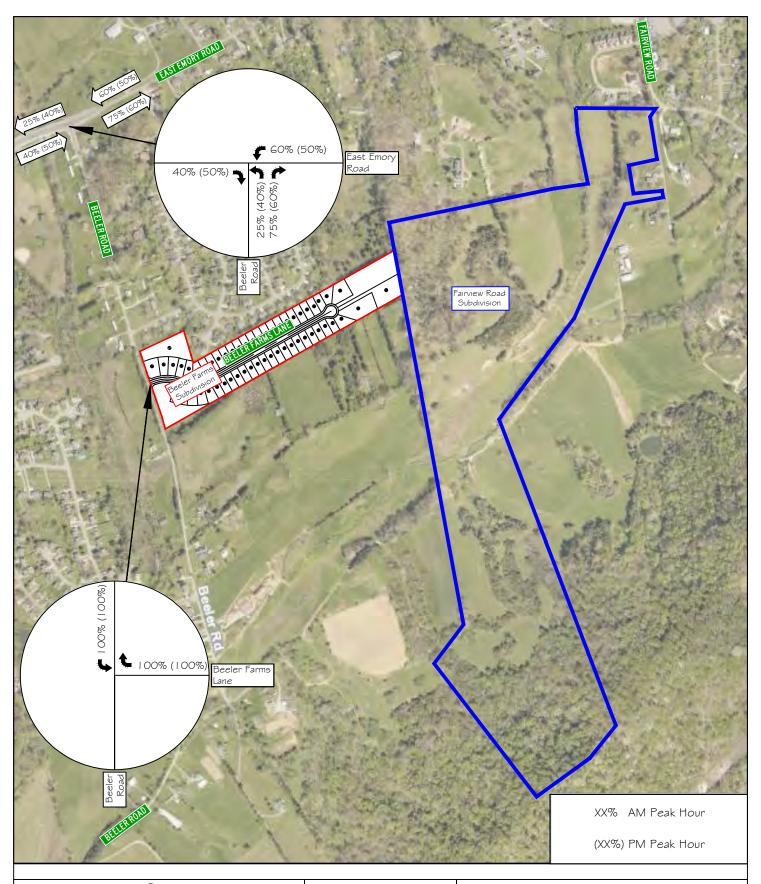

NOT TO SCALE

FIGURE 6a

Fairview Road Subdivision

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Fairview Road Subdivision

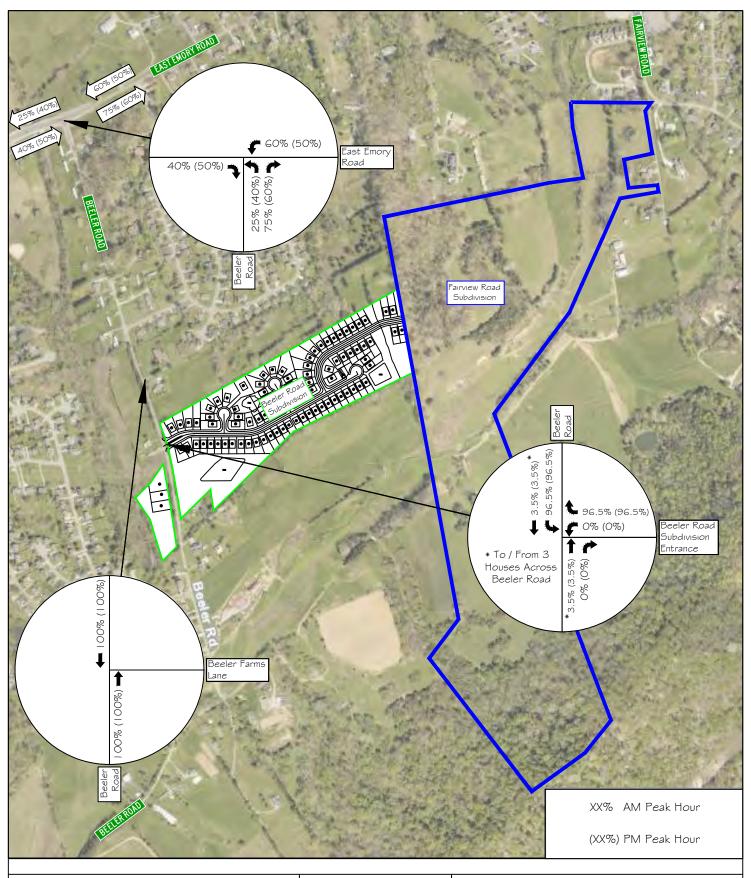

NOT TO SCALE

FIGURE 6b

Fairview Road Subdivision

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Beeler Farms Subdivision

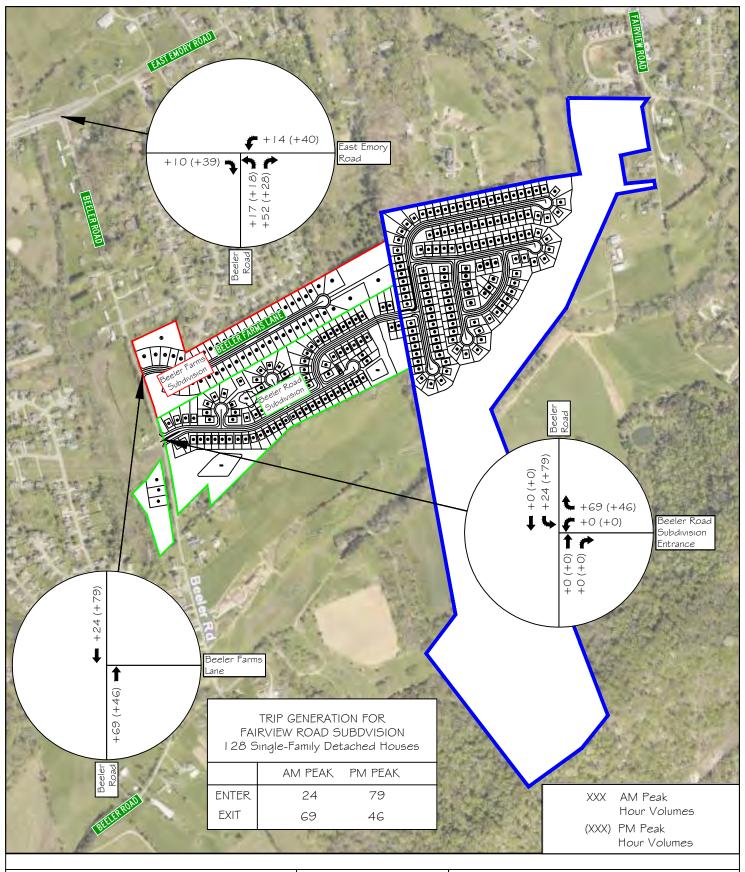
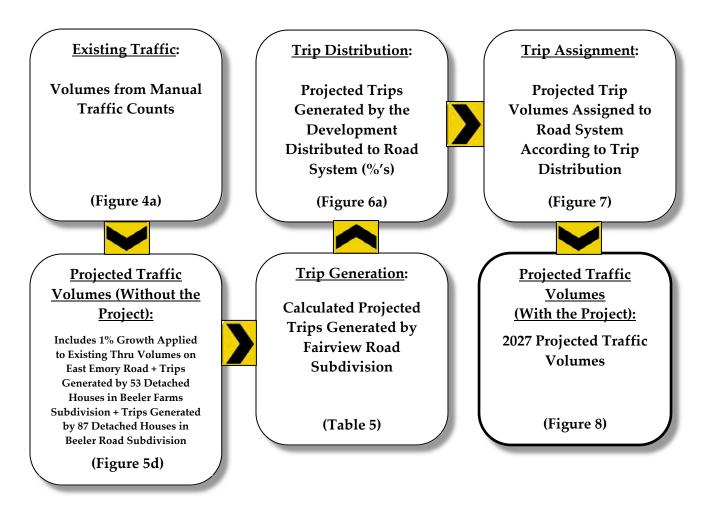

NOT TO SCALE

FIGURE 6c

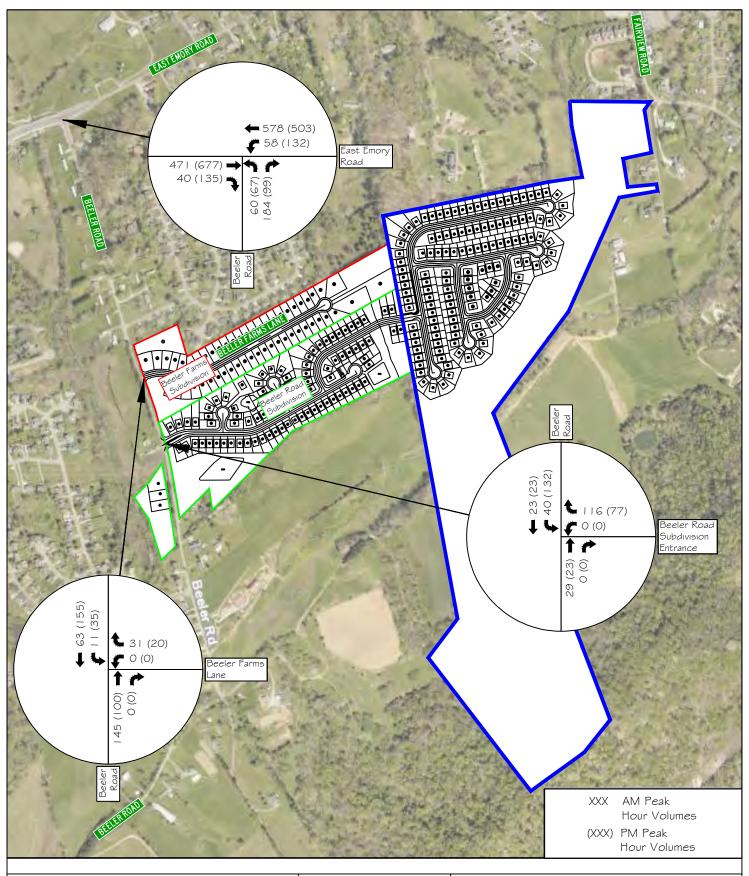
Fairview Road Subdivision

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Beeler Road Subdivision

NOT TO SCALE


FIGURE 7

Fairview Road Subdivision


Traffic Assignment of Generated Traffic from Fairview Road Subdivision during AM and PM Peak Hour

PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT):

Overall, several additive steps were taken to estimate the <u>total</u> projected traffic volumes at the studied intersections when the Fairview Road Subdivision, Beeler Farms Subdivision, and Beeler Road Subdivision are entirely constructed and occupied by 2027. The steps are illustrated below for clarity and review:

The calculated peak hour traffic (Table 5) generated by the Fairview Road Subdivision was added to the 2027 horizon year traffic (Figure 5d) by following the predicted trip distributions and assignments (Figures 6a and 7). These procedures were completed to obtain the <u>total</u> projected traffic volumes when the proposed Fairview Road Subdivision development is fully built out and occupied in 2027. Figure 8 shows the projected 2027 AM and PM peak hour volumes with the generated development traffic at the studied intersections.

NOT TO SCALE

FIGURE 8

Fairview Road Subdivision

2027 Peak Hour Traffic Volumes - PROJECTED CONDITIONS (WITH THE PROJECT)

Capacity analyses were conducted to determine the projected LOS at the intersections with all three subdivisions in 2027. The projected 2027 peak hour capacity results for the intersections with the project resulted in extremely poor LOS with high vehicle delays for the northbound approach on Beeler Road, as seen in Table 8. The v/c ratio in the AM and PM peak hours for northbound Beeler Road is calculated to be 1.215 and 2.584, indicating that the approach will operate above capacity during the 2027 peak hours. The subdivision entrance intersections have been calculated to operate very well in the projected 2027 conditions. Appendix F includes the worksheets for these capacity analyses.

TABLE 8
2027 INTERSECTION CAPACITY ANALYSIS RESULTS PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

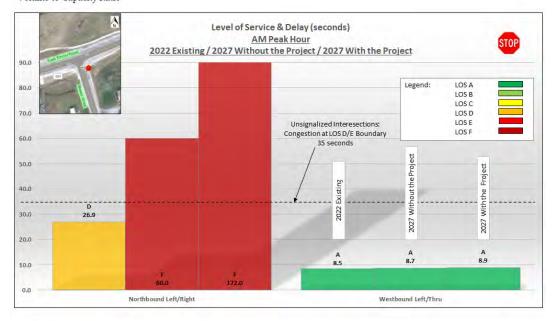
	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	V/C	LOS	DELAY	V/C
				(seconds)			(seconds)	
East Emory Road (EB & WB) at	pəz	Northbound Left/Right	F	172.0	1.215	F	820.2	2.584
Beeler Road (NB)	STOP signalis	Westbound Left/Thru	A	8.9	0.074	В	11.2	0.217
	Sign							
	ū							
Beeler Road (SB & NB) at	pəz	Westbound Left/Right	A	9.3	0.039	A	8.9	0.024
Beeler Farms Lane (WB)	Unsignali	Southbound Left	A	7.5	0.009	A	7.5	0.026
	Sig							
	'n							
Beeler Road (SB & NB) at	zed	Westbound Left/Right	A	8.9	0.123	A	8.7	0.081
Beeler Road Subdivision	Unsignali	Southbound Left	A	7.3	0.028	A	7.5	0.092
Entrance (WB)	Sigi							
	ū							

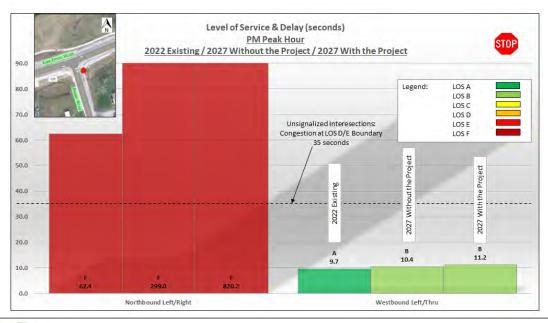
Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

A summary of the East Emory Road at Beeler Road intersection capacity analysis results is presented in Table 9. This table provides a side-by-side summary and comparison of the intersection for the following: 2022 existing conditions, projected conditions in the year 2027 without the project (but with the trips from the Beeler Farms and Beeler Road Subdivisions), and the projected conditions in the year 2027 with all the subdivisions including the Fairview Road Subdivision. As seen in the summary, the northbound approach of Beeler Road at East Emory Road currently operates and will operate with very poor LOS and extremely high vehicle delays even before the proposed Fairview Road Subdivision is constructed.

a Level of Service

b Average Delay (sec/vehicle)


^c Volume-to-Capacity Ratio


TABLE 9
INTERSECTION CAPACITY ANALYSIS SUMMARY
EAST EMORY ROAD AT BEELER ROAD

LOCATION / PEAK HOUR MOVEMENT	2022 EXISTING			2027 WIT	HOUT THE	PROJECT	2027 WITH THE PROJECT		
HOUR MOVEMENT	LOSª	Delay ^b	v/c ^c	LOSª	Delay	v/c ^c	LOSª	Delay	v/c°
AM Peak									
Northbound Left/Right	D	26.9	0.449	F	60.0	0.810	F	172.0	1.215
Westbound Left/Thru	A	8.5	0.038	A	8.7	0.055	A	8.9	0.074
PM Peak									
Northbound Left/Right	F	62.4	0.664	F	299.0	1.417	F	820.2	2.584
Westbound Left/Thru	A	9.7	0.081	В	10.4	0.144	В	11.2	0.217

Note: Analysis calculated in Synchro 11 software and reported with HCM 2010 methodology

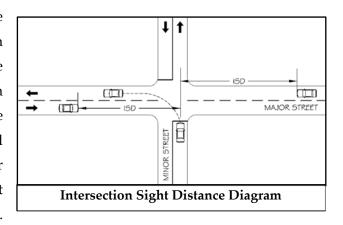
^c Volume-to-Capacity Ratio

^a Level of Service

^b Average Delay (sec/vehicle)

POTENTIAL TRANSPORTATION SAFETY ISSUES:

The study area was investigated for potential existing and future safety issues when the development is completed. These adjacent transportation system features are discussed in the following pages.


EVALUATION OF SIGHT DISTANCE

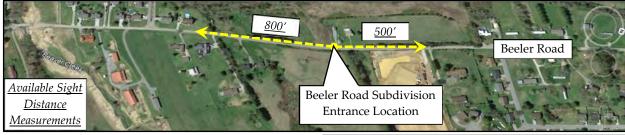
For intersections, sight distance evaluations have two categories: Stopping Sight Distance (SSD) and Intersection Sight Distance (ISD).

Methodology:

SSD is the distance required for a motorist on a major street to perceive, react, and the vehicle to come to a complete stop before colliding with an object on the road. For evaluating intersections, this object would be another vehicle entering the intersection from a minor street. SSD can be considered the <u>minimum</u> visibility distance standard for evaluating the safety of an intersection.

ISD is the required visibility distance standard for evaluating the safety of an intersection per section 3.04.J.5 in the Knoxville-Knox County Subdivision Regulations. ISD is based on the time required to perceive, react, and complete the desired traffic maneuver once a motorist on a minor street decides to perform a traffic maneuver.

Three traffic maneuvers are available for vehicles stopped on a minor street at a 4-way intersection: (1) left-turn, (2) right-turn, (3) or a crossing maneuver across the major street. For turns from the minor street, ISD is needed to allow a stopped motorist to turn onto a major street without being overtaken by an approaching vehicle. The most critical ISD is for left turns from the minor street. The ISD for this maneuver includes the time to turn left and clear half of the intersection without conflicting with the oncoming traffic from the left and accelerating to the road's operating speed without causing the approaching vehicles from the right to reduce their speed substantially.



With a posted speed limit of 25-mph on Beeler Road, the ISD is 250 feet looking north and south at the Beeler Road Subdivision entrance based on Knox County's requirement of 10 feet per 1-mph of the posted speed.

Fairview Road Subdivision will have external road access to Beeler Road via the Beeler Road Subdivision entrance. Beeler Road has a flat road grade at the Beeler Road Subdivision entrance location. Based on the posted speed limit of 25-mph on Beeler Road and the existing road grade, the SSD is calculated to be 155 feet to the north and 155 feet to the south.

Visual observations of the sight distances at the Beeler Road Subdivision entrance approach location were undertaken. Using a Nikon Laser Rangefinder at the future entrance approach location, the ISD was visually estimated to be 500 feet to the north and 800 feet to the south.

Based on visual observation, the intersection and stopping sight distances from the Beeler Road Subdivision entrance on Beeler Road will be adequate. Images of the existing sight distances at the Beeler Road Subdivision entrance location on Beeler Road are presented in the following, labeled with the ISD, SSD, and the rangefinder measured sight distances.

View of Sight Distance on Beeler Road at the Beeler Road Subdivision Entrance Location

(Looking South)

View of Sight Distance on Beeler Road at the Beeler Road Subdivision Entrance Location (Looking North)

EVALUATION OF TURN LANE THRESHOLDS

An evaluation of the need for separate entering left-turn lanes into the development in the projected 2027 conditions was conducted for the new and proposed subdivision entrances on Beeler Road. An evaluation for right-turn lanes on Beeler Road at the subdivision entrances was not conducted since northbound right turns into the subdivisions are not projected to occur. An evaluation was also conducted for the intersection of East Emory Road at Beeler Road.

The criteria used for this turn lane evaluation were based on Knox County's "Access Control and Driveway Design Policy" and TDOT's "Highway System Access Manual". These design policies relate vehicle volume thresholds based on prevailing speeds for two-lane and four-lane roadways.

According to Knox County's guidelines, with a posted speed limit of 25-mph, separate left-turn entering lanes on Beeler Road are not warranted at either of the two subdivision entrances based on the projected 2027 AM and PM peak hour traffic volumes.

According to Knox County's and TDOT's guidelines, with a posted speed limit of 45-mph, separate left and right-turn entering lanes on East Emory Road are warranted at Beeler Road based on the projected 2027 AM and PM peak hour traffic volumes.

A subsequent evaluation determined that the existing 2022 volumes currently warrant separate left and right-turn lanes on East Emory Road. The worksheets for these evaluations are provided in Appendix I.

CONCLUSIONS & RECOMMENDATIONS

The following is an overview of recommendations to minimize the transportation impacts of the proposed Fairview Road Subdivision with the other adjacent subdivisions on the transportation system while attempting to achieve an acceptable traffic flow and safety level.

Beeler Road at Beeler Farms Lane: The projected 2027 level of service calculations for this intersection resulted in excellent LOS and low vehicle delays. The construction of left and right-turn lanes on Beeler Road for entering traffic into Beeler Farms Subdivision at Beeler Farms Lane is not warranted. The single exit lane on Beeler Farms Lane at Beeler Road will be sufficient for the residents of Beeler Farms Subdivision.

<u>Beeler Road at Beeler Road Subdivision Entrance</u>: The projected 2027 level of service calculations for this intersection resulted in excellent LOS and low vehicle delays. The construction of left and right-turn lanes on Beeler Road for entering traffic into the Beeler Road Subdivision is not warranted. The single exit lane on the Beeler Road Subdivision entrance at Beeler Road will be sufficient for the residents of the Beeler Road Subdivision and the Fairview Road Subdivision.

- 2a) It is recommended that a Stop Sign (R1-1) be installed, and a 24" white stop bar be applied to the Beeler Road Subdivision entrance approach at Beeler Road. This Stop Sign (R1-1) and stop bar will control the exiting motorists from both Beeler Road and Fairview Road Subdivisions at Beeler Road. The stop bar should be applied a minimum of 4 feet away from the edge of Beeler Road and placed at the desired stopping point that maximizes the sight distance.
- 2b) Sight distances at the Beeler Road Subdivision entrance approach must not be impacted by future landscaping, signage, or vegetation. A visual inspection determined that the intersection and stopping sight distances are available. Based on a posted speed limit of 25-mph on Beeler Road, the required intersection sight distance is 250 feet looking in each direction at each entrance. The stopping sight distance is calculated to be 155 feet to the north and the south at the Beeler Road Subdivision entrance location. The site designer must ensure that these sight distances are accounted for and provided in the design plans.

2c) Knox County requires specific minimum spacing between intersecting streets. Beeler Road is designated as a Major Collector at the new and proposed entrance locations on Beeler Road, and the minimum intersection spacing is 300 feet.

The proposed spacing between the proposed entrance road for Beeler Road Subdivision and Beeler Farms Lane in Beeler Farms Subdivision will be approximately 500 feet from centerline to centerline, greater than the Knox County minimum.

<u>East Emory Road at Beeler Road</u>: The existing 2022 <u>and</u> projected 2027 level of service calculations for the intersection of East Emory Road at Beeler Road resulted in extremely high vehicle delays for the northbound approach of Beeler Road in the AM and PM peak hours.

- 3a) The previous Transportation Impact Study (TIS) for the adjacent proposed Beeler Road Subdivision recommended an eastbound right-turn lane with a storage length of 25 feet and a taper length of 75 feet on East Emory Road at Beeler Road. This eastbound right-turn lane is expected to be constructed as an interim remediation before the TDOT project widens East Emory Road from 2 to 5 lanes. When East Emory Road is reconstructed, this eastbound right-turn lane can be absorbed into one of the new thru lanes, and a separate right-turn lane will not be required when the TDOT project is completed in 2030. Providing an eastbound right-turn lane prior to the reconstruction will slightly reduce the vehicle queue and delay for northbound motorists on Beeler Road attempting to turn left and right onto East Emory Road.
- 3b) As determined in this study and the TIS for the Beeler Road Subdivision, a westbound left-turn lane on East Emory Road at Beeler Road was warranted based on the existing and projected traffic volumes. However, it was determined in the previous TIS that the construction of a westbound left-turn lane would not be critically needed at this time. Any construction to install a "temporary" westbound left-turn lane on East Emory Road will be shortly replaced by the TDOT widening project. In the interim, a "No Passing on Shoulder" (R4-18) sign was recommended in the previous study to be installed on East Emory Road. This recommendation was offered to address the illegal movements committed by some motorists occasionally using the shoulder to pass stopped westbound left-turning vehicles on East Emory Road at Beeler Road.

All the calculated high vehicle delays at this intersection are projected to only occur for the northbound motorists on Beeler Road attempting to turn left and right on East Emory Road. Providing a temporary westbound left-turn lane at this time would only primarily benefit westbound thru vehicles on East Emory Road since they would not be impeded by stopped vehicles attempting to turn left onto Beeler Road. Westbound left turns from East Emory Road onto Beeler Road were calculated to operate with low vehicle delays in the existing and projected 2027 conditions. Some safety benefits would be provided if a left-turn lane on East Emory Road were provided at this time, but it would not provide significant vehicle delay reductions for this movement since it is

directly correlated to the number of opposing vehicles and is calculated with good LOS and low vehicle delays.

The northbound approach of Beeler Road in 2027 was projected to operate with extremely high delays for the left and right-turning motorists. In addition to the recommended eastbound right-turn lane on East Emory Road from the previous TIS, it is recommended that a northbound right-turn lane with 100 feet of storage on Beeler Road be constructed. The existing and projected right turns at the northbound approach of Beeler Road at East Emory Road are much higher than left turns. Adding an exclusive right-turn lane on this approach would reduce delays for most northbound motorists. Several right-turning motorists on Beeler Road were observed during the traffic count using the shoulder to bypass vehicles waiting to turn left onto East Emory Road and avoid the delay. If not constructed, it is anticipated that more right-turning motorists will be tempted to use the shoulder to avoid excessive delays and queues. The recommended eastbound and northbound right-turn lanes at this intersection should be coordinated in design and construction to reduce costs and construction time. These lanes should be constructed once the Beeler Road and Fairview Road Subdivisions commence construction to provide additional road capacity and moderate vehicle delays and queues until the TDOT widening project is completed. The northbound right-turn lane on Beeler Road should be marked with a white turn arrow and lane markings, as shown in TDOT Standard Drawing T-M-4.

Separate left and right lanes at unsignalized intersections operating under stop conditions can be an issue due to motorists' potential to compete for sight distance. However, with the existing horizontal alignment on East Emory Road, it is anticipated that a northbound right-turn lane on Beeler Road could be constructed to allow left and right-turning motorists to see oncoming vehicles on East Emory Road in both directions freely without being obstructed by other vehicles.

Adding a northbound right-turn lane on Beeler Road would reduce the overall intersection delay and the excessive queue lengths on the northbound approach by spreading the vehicles into two lanes. The LOS calculation results of adding a northbound right-turn lane on Beeler Road with the previously recommended eastbound right-turn lane on East Emory Road in the projected 2027 conditions are shown in Table 10. The worksheets for these results are provided in Appendix F.

TABLE 10
2027 INTERSECTION CAPACITY ANALYSIS RESULTS PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)
INCLUDING RECOMMENDED EASTBOUND AND NORTHBOUND RIGHT-TURN LANES

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	V/C	LOS	DELAY	V/C
				(seconds)			(seconds)	
East Emory Road (EB & WB) at	ত	Northbound Left	F	108.8	0.769	F	611.8	1.912
Beeler Road (NB)	lize	Northbound Right	С	16.0	0.389	С	19.5	0.354
	STOP E	Westbound Left/Thru	A	8.9	0.074	В	11.2	0.217
	Unsi							
	ı							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

Since the projected northbound left-turn lane is computed to remain at LOS F even with the addition of an eastbound and northbound right-turn lane, the projected vehicle queues were calculated. An additional software program was used to calculate the projected 2027 AM and PM peak hour vehicle queues at the studied intersection with the addition of the recommended eastbound and northbound right-turn lanes. The previously mentioned Synchro Traffic Software includes SimTraffic. The Synchro portion of the software performs the macroscopic calculations for intersections, and SimTraffic performs micro-simulation and animation of vehicular traffic. SimTraffic (Version 11) software was utilized to estimate the projected vehicle queues.

The 95th percentile vehicle queue is the recognized measurement in the traffic engineering profession as the design standard used when considering vehicle queue lengths. A 95th percentile vehicle queue length means 95% certainty that the vehicle queue will not extend beyond that point. The calculated vehicle queue results were based on averaging the outcome obtained during ten traffic simulations. The calculated 95th percentile vehicle queue lengths at the intersection for the 2027 projected conditions with an eastbound and northbound right-turn lane are shown in Table 11. The vehicle queue worksheet results from the SimTraffic software are in Appendix J. As shown in Table 11, the longest vehicle queues will occur in the PM peak hour. In particular, the longest northbound left-turn queue is calculated to be 145 feet. Thus, even though the northbound left-turn lane will experience high vehicle delays, as shown in Table 10, the calculated 95th percentile queue is projected to be just under six passenger cars, assuming a length and spacing of 25 feet per vehicle.

^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

TABLE 11
TURN LANE STORAGE & VEHICLE QUEUE SUMMARY 2027 PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)
INCLUDING RECOMMENDED EASTBOUND AND NORTHBOUND RIGHT-TURN LANES

INTERSECTION	APPROACH/	PROPOSED	ADEQUATE	95 th PERCENTILE QUEUE LENGTH (ff)		
	MOVEMENT	STORAGE (ft)	LENGTH?	AM PEAK HOUR	PM PEAK HOUR	
East Emory Road (EB & WB) at	Eastbound Right	75	Yes	5	20	
Beeler Road (NB)	Westbound Left/Thru	n/a	n/a	105	216	
	Northbound Left	n/a	n/a	72	145	
	Northbound Right	100	Yes	79	99	

Note: 95th percentile queues were calculated in SimTraffic 11 software

3d) This report has determined that the documented need for separate left and right-turn lanes on East Emory Road at Beeler Road will be satisfied by the capacity provided by the future TDOT widening project in 2030. TDOT proposes widening East Emory Road from 2 to 5 lanes. This project will include two thru lanes in each direction and a center turn lane. East Emory Road will be widened to provide a center turn lane for westbound left-turns at Beeler Road, and the two thru lanes (in each direction) will eliminate the need for a separate eastbound right-turn lane at Beeler Road.

The thru volumes on East Emory Road shown in Figure 8 were increased by an annual growth factor of 1% from 2027 to 2030 to provide an analysis of the intersection in 2030 with the TDOT road widening project. These volumes are shown in Figure 9.

The eastbound right-turn volume thresholds were examined in the projected 2030 conditions to provide evidence that the need for a separate eastbound right-turn lane will be eliminated with a 5-lane roadway section. This examination included the AM and PM peak hour projected 2030 volumes on East Emory Road with five lanes, as shown in Figure 9. The worksheets from this examination are shown in Appendix I and show that a separate eastbound right-turn lane at the intersection would not be required with a 5-lane roadway section on East Emory Road with the projected 2030 traffic volumes.

The capacity and vehicle queues calculations were re-analyzed with five lanes on East Emory Road and the recommended northbound right-turn lane on Beeler Road, combined with the projected 2030 traffic volumes. The results of these calculations are

shown in Tables 12 and 13. The worksheets for these results are provided in Appendix F and J.

TABLE 12
2030 INTERSECTION CAPACITY ANALYSIS RESULTS PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)
WITH TDOT WIDENING PROJECT AND NORTHBOUND RIGHT-TURN LANE ON BEELER ROAD

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK				
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	V/C	LOS	DELAY	V/C			
				(seconds)			(seconds)				
East Emory Road (EB & WB) at	ਰ	Northbound Left	C	22.7	0.283	E	48.1	0.537			
Beeler Road (NB)	lize	Northbound Right	В	12.6	0.304	В	14.7	0.268			
	STOP E	Westbound Left	A	8.9	0.075	В	11.4	0.222			
	Unsi										
	1										

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

As shown in Table 12, the TDOT road widening project in 2030, coupled with the recommended northbound right-turn lane on Beeler Road, will provide the necessary road capacity to mitigate the excessive vehicle delays on the northbound approach at the intersection of East Emory Road at Beeler Road.

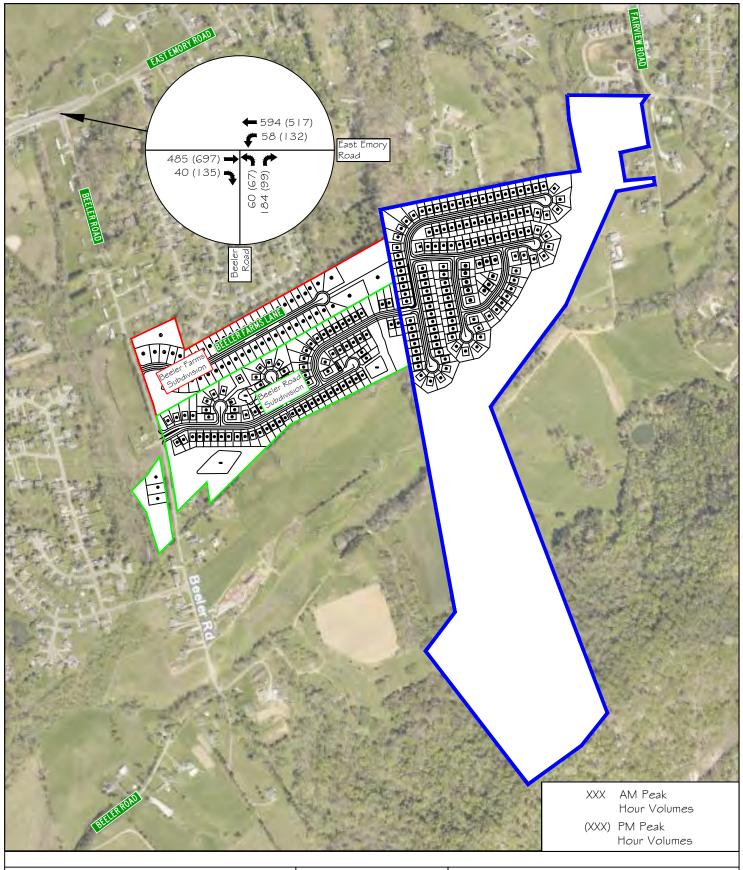
As shown in Table 13, the recommended northbound right-turn lane with 100 feet of storage will be adequate in the projected 2030 conditions since the longest 95th percentile vehicle queue is calculated to be 76 feet in the projected PM peak hour.

TABLE 13

TURN LANE STORAGE & VEHICLE QUEUE SUMMARY 2030 PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

WITH TDOT WIDENING PROJECT AND NORTHBOUND RIGHT-TURN LANE ON BEELER ROAD

INTERSECTION	APPROACH/	PROPOSED .	ADEQUATE	95 th PERCENTILE QUEUE LENGTH (ft)		
	MOVEMENT	STORAGE (ft)	LENGTH?	AM PEAK HOUR	PM PEAK HOUR	
East Emory Road (EB & WB) at	Eastbound Thru/Right	n/a	n/a	5	17	
Beeler Road (NB)	Westbound Left	n/a	n/a	45	71	
	Northbound Left	n/a	n/a	66	100	
	Northbound Right	100	Yes	66	76	


Note: 95th percentile queues were calculated in SimTraffic 11 software

a Level of Service

b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

11812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com NOT TO SCALE

FIGURE 9

Fairview Road Subdivision

2030 Peak Hour Traffic Volumes - PROJECTED CONDITIONS (WITH THE PROJECT)

3e) As a further investigation into potential remediation for this intersection in future conditions, an evaluation was conducted with respect to traffic signal warrants.

Methodology:

The Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD) presents nine different warrants that the traffic engineering profession has developed to determine whether a traffic signal is warranted. These warrants cover a broad range of minimum elements required to indicate whether a traffic signal is justified for any particular location. These elements include traffic volumes, pedestrian volumes, crash history, and other factors. The

MUTCD explicitly states that a traffic control signal should not be installed unless one or more of the Manual's signal warrants are met. However, the satisfaction of a warrant does not entirely in itself justify the need for a traffic signal. Sometimes further engineering studies and judgments must be applied before justifying the need for a traffic signal installation. These additional studies are significant in ensuring that a traffic signal's installation will not degrade safety and efficiency.

The MUTCD defines nine different warrants, two of which are potentially applicable for this intersection at this time and are explained below:

Warrant #1, Eight-Hour Vehicular Volume:

Warrant #1 is comprised of 2 conditions – A and B. The Minimum Vehicular Volume, Condition A, is intended for applications where the volume of intersecting traffic is the principal reason for consideration of signal installation. The Interruption of Continuous Traffic, Condition B, is intended for use at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Warrant #2, Four-Hour Vehicular Volume:

The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal.

Even though nine warrants are offered to justify a traffic signal, according to the TDOT Traffic Signal Manual, the agency gives precedence to Warrant #1 (Eight Hour Vehicular Volume) and Warrant #7 (Crash Experience). Even though Warrant #2 is not a primary warrant used by TDOT, it is included in this study. Furthermore, TDOT does not allow installing a traffic signal on a state route based on speculative developments or unrealized traffic volumes.

The intersection of East Emory Road at Beeler Road was evaluated in the projected 2030 conditions with the volumes shown in Figure 9 to determine whether a traffic signal could be justified based on the MUTCD Warrants listed above. Beeler Road was used as the minor side street for the warrant analysis, and East Emory Road was the major street. Warrant #7 was not analyzed at this intersection for this study. Warrant #7 was not included because one of the primary criteria for an intersection to meet the warrant is that an "Adequate trial of alternatives with satisfactory observance and enforcement has failed to reduce the crash frequency..."; therefore, this warrant was not included in this study.

A spreadsheet was developed and used to calculate the 2030 traffic volumes generated by the developments being added to the intersection during the highest 8 hours of traffic based on the study's assumed trip distribution and assignment. The volumes in the spreadsheet include the existing tabulated thru volumes on East Emory Road increased by 1% for eight years to the year 2030, and the generated traffic from the houses in Beeler Farms Subdivision, Beeler Road Subdivision, and the Fairview Road Subdivision. This spreadsheet is shown in Appendix K.

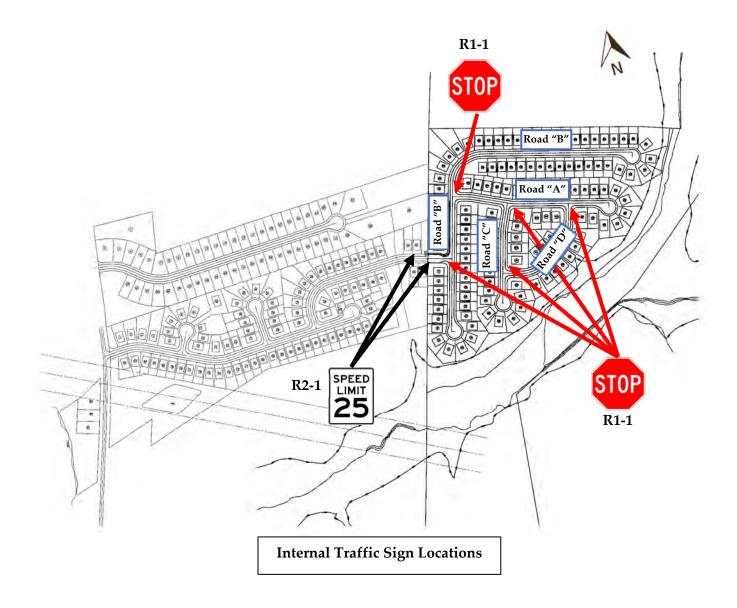
Traffic signal warrants for this intersection were analyzed with the additional lanes that will be provided on East Emory Road by the TDOT widening project. Based on the projected 2030 traffic volumes with the 5-lane section on East Emory Road, the results of this evaluation determined that Warrant #1 would not be fully met but would meet Warrant #2. Appendix K includes the traffic signal warrant spreadsheet for the projected traffic volumes in 2030, with East Emory Road having 5-lanes provided by the TDOT widening project.

In conclusion, since TDOT does not allow for a traffic signal to be constructed on speculative or projected volumes, it is recommended that traffic counts be re-conducted in the future once the subdivisions on Beeler Road are constructed and fully occupied,

and the road widening of East Emory Road is under design. Updated traffic counts will allow a re-examination of the Traffic Signal Warrants and establish a timeframe if this intersection could or should be signalized during the TDOT road widening project of East Emory Road. Traffic crash data should also be included in the examination.

Higher growth than anticipated in this study could occur and increase traffic volumes large enough to meet Warrant #1 fully.

In summary, and to provide a comparison of all the discussed options, Table 14 presents the calculated LOS and 95th percentile vehicle queues at the intersection of East Emory Road at Beeler Road for three scenarios. The scenarios in the table include the 2027 projected conditions with the project, the 2027 projected conditions with the project and an eastbound and northbound right-turn lane, and the 2030 projected conditions with the project with a northbound right-turn lane and the TDOT road widening with five lanes. As seen in the table, the vehicle delays and queues are reduced in each scenario when additional road capacity is provided.


TABLE 14
INTERSECTION CAPACITY AND VEHICLE QUEUE ANALYSIS RESULTS - EAST EMORY ROAD AT BEELER ROAD

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS	DELAY	QUEUE	LOS	DELAY	QUEUE
				(seconds)	LENGTH		(seconds)	LENGTH
					(ft)			(ft)
2027 Projected Conditions	pəz	Northbound Left/Right	F	172.0	156	F	820.2	298
(With the Project)	STOP Held	Westbound Left/Thru	A	8.9	114	В	11.2	242
	Unsignalized							
	ū							
2027 Projected Conditions	ਰੂ	Northbound Left	F	108.8	72	F	611.8	145
(With the Project)	lize	Northbound Right	С	16.0	79	C	19.5	99
with EB and NB Right-	STOP E	Westbound Left/Thru	A	8.9	105	В	11.2	216
Turn Lanes	Unsignalized							
2030 Projected Conditions	q	Northbound Left	С	22.7	66	E	48.1	100
(With the Project)	lize	Northbound Right	В	12.6	66	В	14.7	76
with 5-Lane TDOT Widening	Unsignalized	Westbound Left	A	8.9	45	В	11.4	71
and NB Right-Turn Lane	Jnsi							
	1							

<u>Fairview Road Subdivision Internal Roads:</u> The layout plan shows one entrance via Beeler Road Subdivision, as shown in Figure 3 and below.

- 4a) Two 25-mph Speed Limit (R2-1) signs are recommended to be installed on the connector road between Beeler Road and Fairview Road Subdivisions. One sign should be installed for eastbound travel into Fairview Road Subdivision and one for westbound travel into the Beeler Road Subdivision. This recommendation will provide a reinforcement notification of the speed limit within the subdivisions.
- 4b) Stop Signs (R1-1) with 24" white stop bars and other traffic signage are recommended to be installed at the internal locations in Fairview Road Subdivision, as shown below:

- 4c) Sight distance at the new internal subdivision road intersections must not be impacted by signage, parked cars, or future landscaping. With a proposed speed limit of 25-mph in the development, the internal intersection sight distance is 250 feet. The required stopping sight distance is 155 feet for a level road grade. The site designer should ensure that internal sight distance lengths are met and account for different proposed road grades.
- 4d) The internal roads of "A" and "B" in the Fairview Road Subdivision have relatively long and straight road segments. Straight road segments encourage motorists to travel at higher speeds, especially with steep grades. It is recommended that the site designer consider traffic calming measures on these internal roads. Roads "C" and "D" are relatively short and would not necessarily require traffic calming measures.

Speed humps are a prevalent traffic calming measure to install in residential areas to reduce vehicle speeds due to their relatively low cost. However, speed humps are not recommended on roads with grades greater than 8%.

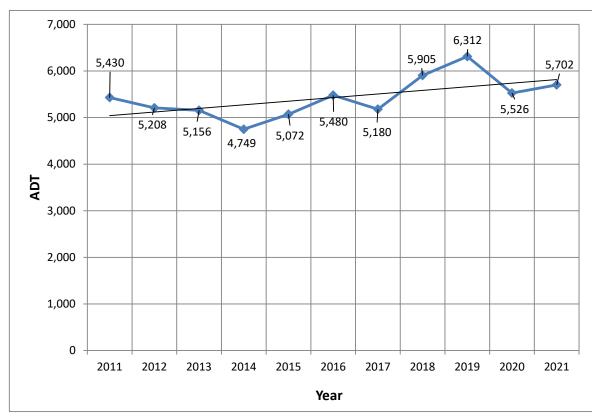
If implemented, it is recommended that the site designer consider speed humps and chokers. Chokers are recommended when the internal road grades are greater than 8%. A choker is used to discourage motorists from speeding and is appropriate in residential settings. A choker is created by narrowing the road using curb extensions or can be created by installing a planting strip on an island at the road edge. Any road design with chokers must consider driveway placement, stormwater, and sight distance. Details of any traffic calming should be coordinated with Knox County Engineering in the detailed design phase.

- 4e) All drainage grates and covers for the residential development must be pedestrian and bicycle safe.
- 4f) Any sidewalk proposed in the subdivision should be 5 feet minimum in width to meet Knox County regulations. The provision of internal sidewalks in the Beeler Road Subdivision has been removed. The provision of sidewalks in Fairview Road Subdivisions is not known.
- 4g) Knox County completed a greenway study in 2020. They recommended Beaver Creek as a preferred route for a new greenway connecting the area around Interstate 75 in

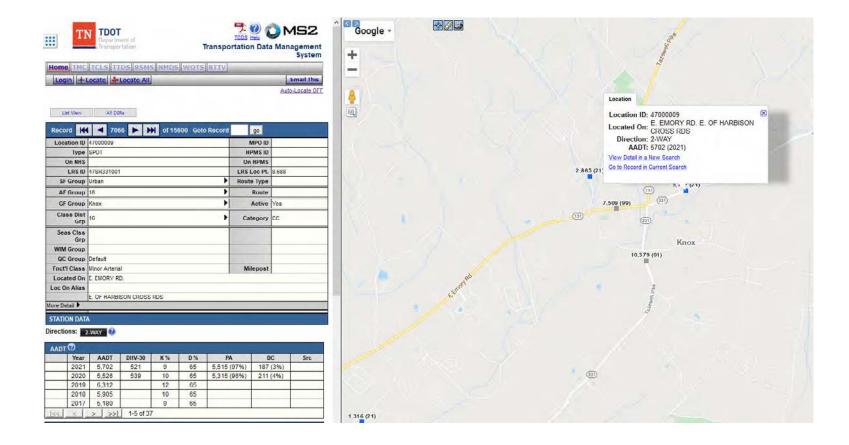
Powell to the Knox County/Union County line. With Beaver Creek adjacent to the development site and on the development property to the south of the proposed houses, the developer should discuss with Knox County if this potential greenway path is feasible to implement while the property is being developed.

- 4h) For residential subdivisions with a single access point and more than 150 houses, Knox County has a long-standing unwritten design policy requiring a second entrance or a boulevard road typical section at the entrance. According to the County, the intent of a boulevard road typical section is to provide a substantial alternate travel path by constructing one up to an internal intersection. This requirement and the appropriate mitigation are evaluated on a case-by-case basis and may require further discussions at future stages of the design plan process. There is a potential for an additional access point to the north in Fairview Road Subdivision that would provide two travel paths. The final decision on the most appropriate way to address this policy will be decided by Knox County Engineering and Public Works.
- 4i) All road grade and intersection elements should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

APPENDIX A


HISTORICAL TRAFFIC COUNT DATA

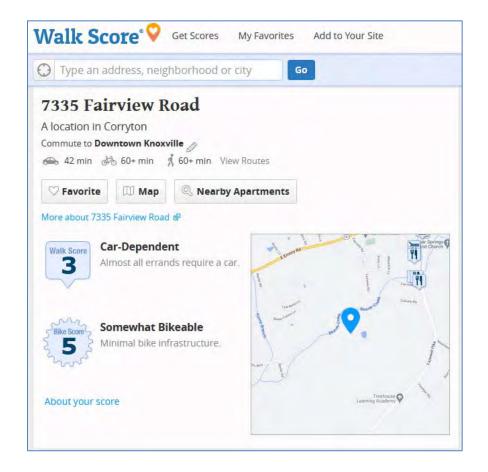
Historical Traffic Counts


Organization: TDOT Station ID #: 47000009

Location: East Emory Road, East of Tazewell Pike

YEAR	AADT	
2011	5,430	
2012	5,208	
2013	5,156	
2014	4,749	
2015	5,072	ine
2016	5,480	Trendline
2017	5,180	Tre
2018	5,905	
2019	6,312	
2020	5,526	
2021	5,702	V

2011 - 2021 Growth Rate = 5.0% Average Annual Growth Rate = 0.5%



APPENDIX B

WALK SCORE

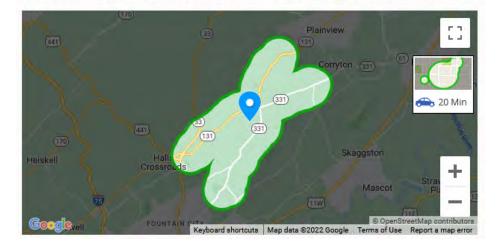
WALKSCORE

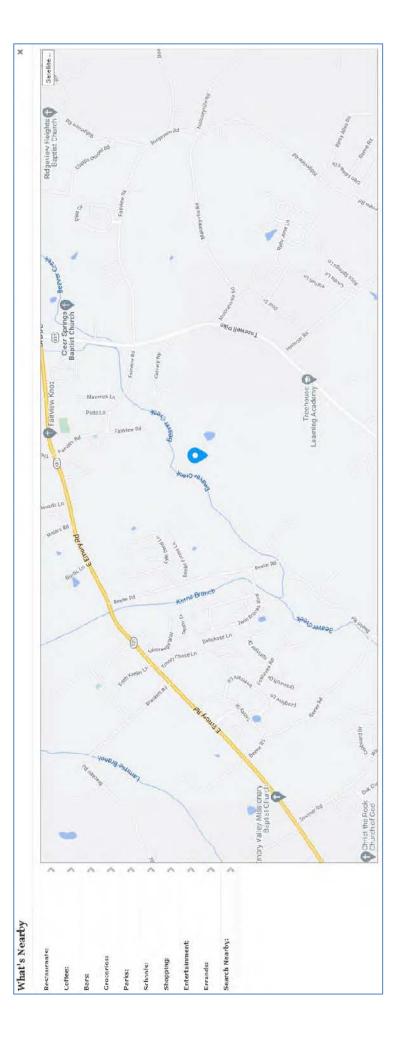
(from walkscore.com)

Scores for 7335 Fairview Road

×

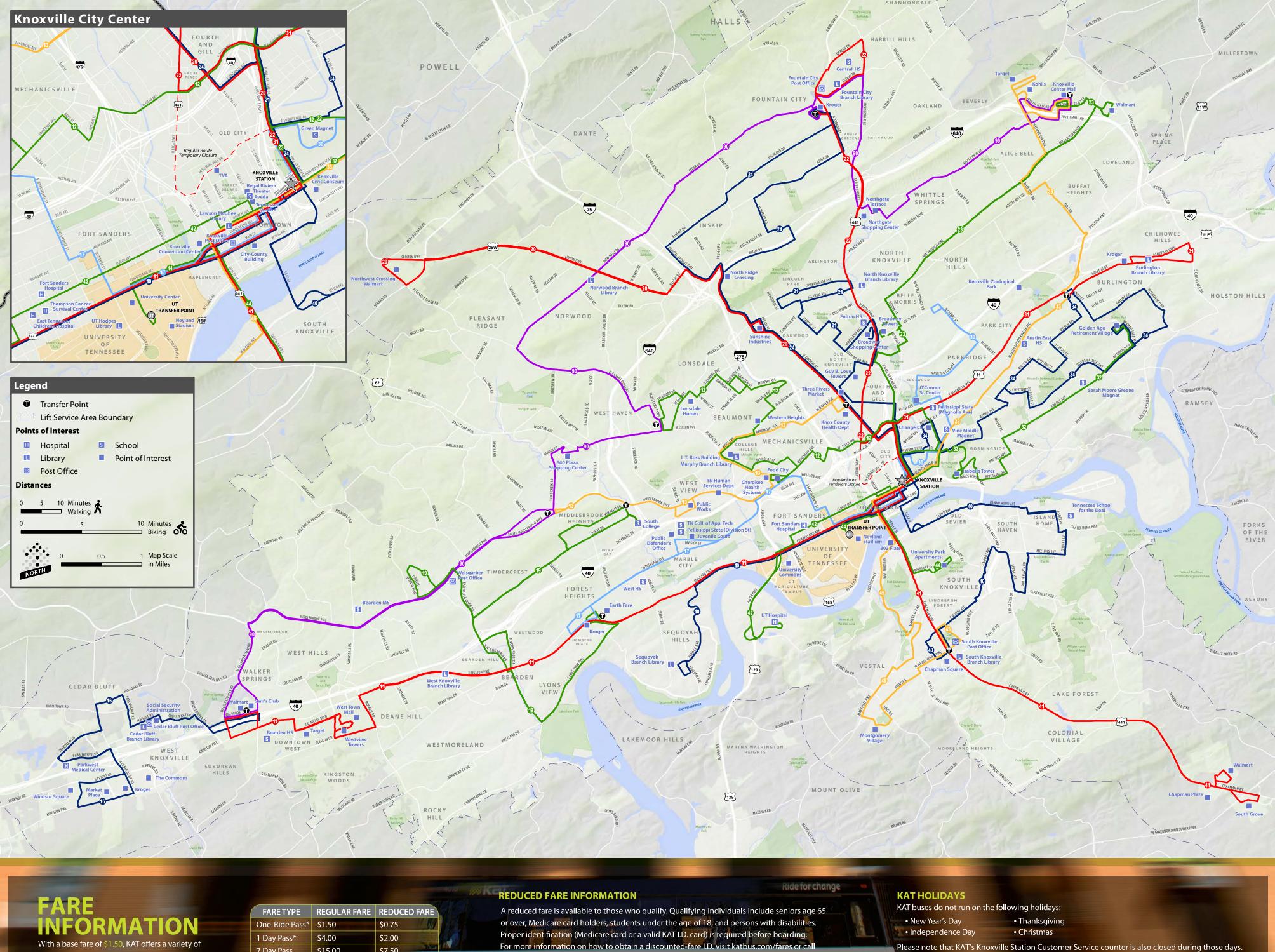
	measures how well a location is serv	The state of the state of the state of
ased on the	distance and type of nearby transit	lines.
90-100	Rider's Paradise	
	World-class public transportation	
70-89	Excellent Transit	
	Transit is convenient for most trips	
50-69	Good Transit	
	Many nearby public transportation o	ptions
25-49	Some Transit	
	A few nearby public transportation o	ptions
0-24	Minimal Transit	
	It is possible to get on a bus	




Walk Score		Transit Score	Bike Score
		ther an area is good for b connectivity, and destina	
90-100	Biker's Para	dise	
	Daily errand	s can be accomplished on	a bike
70-89	Very Bikeab	le	
	Biking is con	venient for most trips	
50-69	Bikeable		
	Some bike in	frastructure	
0-49	Somewhat	Bikeable	
	Minimal bike	infrastructure	

Travel Time Map

Add to your site


Explore how far you can travel by car, bus, bike and foot from 7335 Fairview Road.

	\mathbf{n}	n	תים	. T1	T 1 /	
/		_	Ηľ	NI I	ſΧ	

KNOXVILLE AREA TRANSIT MAP AND INFORMATION

With a base fare of \$1.50, KAT offers a variety of passes. Please note that only the fares marked with an asterisk can be purchased when boarding the bus. Others are available at KAT's Customer Service Counter at Knoxville Station (301 Church Ave.) or by mail via katbus.com.

\$15.00 \$7.50 7 Day Pass 30 Day Pass \$50.00 \$25.00 20 Ride Pass \$25.00 \$12.50 \$0.50 \$0.25 Transfer*

For more information on how to obtain a discounted-fare I.D. visit katbus.com/fares or call 637-3000.

BUS STOPS ONLY!

KAT buses stop ONLY at locations designated by bus stop signs. Generally, bus stops are located at least every ¼ mile along the route.

KAT buses run on a Saturday schedule on the following holidays:

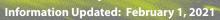
• Martin Luther King, Jr. Day • Day after Thanksgiving

 Memorial Day • Labor Day

Christmas Eve

KAT's administrative offices are closed on all holidays listed above.

BROADWAY (Weekdays and Weekends)


LONG TERM DETOUR

- Broadway Shopping Center Central High School
- **Fountain City**
- **Fountain City Library**
- **Fulton High School**

Knox Road/Kroger Knoxville Station/Downtown

Northgate Shopping Center

North Knoxville Branch Library

Weekday Schedule Route 22: Broadway

G	oing away fr	om Downtow	n	Going toward Downtown			
T ransfer t	o:		Rts. 24 & 90				
Knoxville Station— Platform H	Broadway Shopping Center	Northgate Shopping Center	Fountain City Superstop	Jacksboro at Essary	Northgate Shopping Center	Broadway Shopping Center	Knoxville Station
1	2	3	4	5	6	7	8

			WEE	KDAY SC	HEDULE			
A.M.	_	_	_	_	5:40	5:51	5:56	6:10
	_	_	_	_	5:55	6:06	6:11	6:25
	_	_	_	_	6:10	6:21	6:26	6:40
	_	_	_	_	6:25	6:36	6:41	6:55
	6:00	6:13	6:20	6:35	6:40	6:51	6:56	7:10
	6:15	6:28	6:35	6:50	6:55	7:06	7:11	7:25
	6:30	6:43	6:50	7:05	7:10	7:21	7:26	7:40
	6:45	6:58	7:05	7:20	7:25	7:36	7:41	7:55
	7:00	7:13	7:20	7:35	7:40	7:51	7:56	8:10
	7:15	7:28	7:35	7:50	7:55	8:06	8:11	8:25
	7:30	7:43	7:50	8:05	8:10	8:21	8:26	8:40
	7:45	7:58	8:05	8:20	8:25	8:36	8:41	8:55
	8:00	8:13	8:20	8:35	8:40	8:51	8:56	9:10
	8:15	8:28	8:35	8:50	8:55	9:06	9:11	9:25
	8:30	8:43	8:50	9:05	9:10	9:21	9:26	9:40
								9:55
	8:45	8:58	9:05	9:20	9:25	9:36	9:41	
	9:00	9:13	9:20	9:35	9:40	9:51	9:56	10:10
	9:30	9:43	9:50	10:05	10:10	10:21	10:26	10:40
	10:00	10:13	10:20	10:35	10:40	10:51	10:56	11:10
	10:30	10:43	10:50	11:05	11:10	11:21	11:26	11:40
	11:00	11:13	11:20	11:35	11:40	11:51	11:56	12:10
	11:30	11:43	11:50	12:05	12:10	12:21	12:26	12:40
P.M.	12:00	12:13	12:20	12:35	12:40	12:51	12:56	1:10
	12:30	12:43	12:50	1:05	1:10	1:21	1:26	1:40
	1:00	1:13	1:20	1:35	1:40	1:51	1:56	2:10
	1:30	1:43	1:50	2:05	2:10	2:21	2:26	2:40
	2:00	2:13	2:20	2:35	2:40	2:51	2:56	3:10
	2:30	2:43	2:50	3:05	3:10	3:21	3:26	3:40
	3:00	3:13	3:20	3:35	3:40	3:51	3:56	4:10
	_	_	_	_	3:55	4:06	4:11	4:25
	3:30	3:43	3:50	4:05	4:10	4:21	4:26	4:40
								4:55
	3:45	3:58	4:05	4:20	4:25	4:36	4:41	
	3:45 4:00	4:13	4:20	4:35	4:25 4:40	4:36 4:51	4:41	5:10
	4:00 4:15	4:13 4:28	4:20 4:35		4:40 4:55	4:51 5:06		
	4:00	4:13	4:20	4:35	4:40	4:51	4:56	5:10
	4:00 4:15	4:13 4:28	4:20 4:35	4:35 4:50	4:40 4:55	4:51 5:06	4:56 5:11	5:10 5:25
	4:00 4:15 4:30	4:13 4:28 4:43	4:20 4:35 4:50	4:35 4:50 5:05 5:20 5:35	4:40 4:55 5:10 5:25 5:40	4:51 5:06 5:21	4:56 5:11 5:26	5:10 5:25 5:40
	4:00 4:15 4:30 4:45	4:13 4:28 4:43 4:58	4:20 4:35 4:50 5:05	4:35 4:50 5:05 5:20	4:40 4:55 5:10 5:25	4:51 5:06 5:21 5:36	4:56 5:11 5:26 5:41	5:10 5:25 5:40 5:55
	4:00 4:15 4:30 4:45 5:00	4:13 4:28 4:43 4:58 5:13	4:20 4:35 4:50 5:05 5:20	4:35 4:50 5:05 5:20 5:35	4:40 4:55 5:10 5:25 5:40	4:51 5:06 5:21 5:36 5:51	4:56 5:11 5:26 5:41 5:56	5:10 5:25 5:40 5:55 6:10
	4:00 4:15 4:30 4:45 5:00 5:15	4:13 4:28 4:43 4:58 5:13 5:28	4:20 4:35 4:50 5:05 5:20 5:35	4:35 4:50 5:05 5:20 5:35 5:50	4:40 4:55 5:10 5:25 5:40 5:55	4:51 5:06 5:21 5:36 5:51 6:06	4:56 5:11 5:26 5:41 5:56 6:11	5:10 5:25 5:40 5:55 6:10 6:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30	4:13 4:28 4:43 4:58 5:13 5:28 5:43	4:20 4:35 4:50 5:05 5:20 5:35 5:50	4:35 4:50 5:05 5:20 5:35 5:50 6:05	4:40 4:55 5:10 5:25 5:40 5:55 6:10	4:51 5:06 5:21 5:36 5:51 6:06 6:21	4:56 5:11 5:26 5:41 5:56 6:11 6:26	5:10 5:25 5:40 5:55 6:10 6:25 6:40
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:15	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58 7:28	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:35	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:20	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:55	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36 8:06	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41 8:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40 7:55 8:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:15	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58 7:28	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:35 8:05	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:20 7:50 8:15	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:55 8:25	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36 8:06 8:36	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41 8:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40 7:55 8:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:15 7:45 8:15	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58 7:28 7:58	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:35 8:05 8:35	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:20 7:50 8:15	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:55 8:25	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36 8:06 8:36 9:06	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41 8:11 8:41 9:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40 7:55 8:25 8:55 9:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:15 7:45 8:15	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58 7:28 7:58 8:28	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:35 8:05 8:35	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:20 7:50 8:15 8:50 9:20	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:55 8:25 8:55	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36 8:06 8:36 9:06 9:36	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41 8:11 8:41 9:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40 7:55 8:25 8:55 9:25 9:55 10:25
	4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15 6:30 6:45 7:15 7:45 8:15 8:45	4:13 4:28 4:43 4:58 5:13 5:28 5:43 5:58 6:13 6:28 6:43 6:58 7:28 7:58 8:28	4:20 4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:35 8:05 8:05 9:05	4:35 4:50 5:05 5:20 5:35 5:50 6:05 6:20 6:35 6:50 7:05 7:20 7:50 8:15 8:50 9:20	4:40 4:55 5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:55 8:25 8:55 9:25	4:51 5:06 5:21 5:36 5:51 6:06 6:21 6:36 6:51 7:06 7:21 7:36 8:06 8:36 9:06 9:36 10:06	4:56 5:11 5:26 5:41 5:56 6:11 6:26 6:41 6:56 7:11 7:26 7:41 8:11 8:41 9:11 9:41 10:11	5:10 5:25 5:40 5:55 6:10 6:25 6:40 6:55 7:10 7:25 7:40 7:55 8:25 8:55 9:25

Need help reading this schedule? Need other general information on how to ride? Visit www.katbus.com or call 865-637-3000

BROADWAY (Weekdays and Weekends)

LONG TERM DETOUR

- Broadway Shopping Center Central High School
- **Fountain City**
- **Fountain City Library**
- **Fulton High School**

Knox Road/Kroger Knoxville Station/Downtown

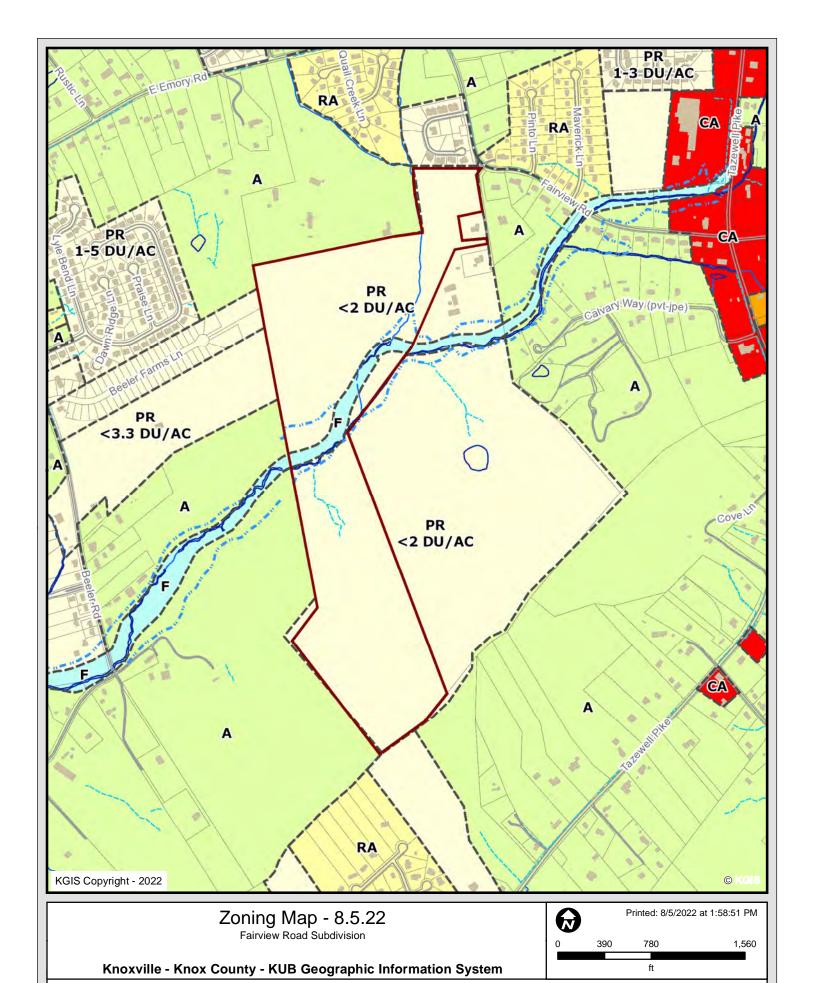
Northgate Shopping Center

North Knoxville Branch Library

Information Updated: February 1, 2021

Saturday-Sunday Schedule Route 22: Broadway

		Going	away from D	Oowntown		Going toward Downtown			
	Transfer to	o:		Rts. 24 & 90					
	Knoxville Station— Platform H	Broadway Shopping Center	Northgate Shopping Center	Fountain City Superstop	Jacksboro at Essary	Northgate Shopping Center	Broadway Shopping Center	Knoxville Station	
	(1)	(2)	(3)	4	(5)	(6)	7	(8)	
			SAT	TURDAY SC	HEDULE				
A.M.	7:00	7:13	7:20	7:35	7:40	7:51	7:56	8:10	
	7:30	7:43	7:50	8:05	8:10	8:21	8:26	8:40	
	8:00	8:13	8:20	8:35	8:40	8:51	8:56	9:10	
	8:30	8:43	8:50	9:05	9:10	9:21	9:26	9:40	
	9:00	9:13	9:20	9:35	9:40	9:51	9:56	10:10	
	9:30	9:43	9:50	10:05	10:10	10:21	10:26	10:40	
	10:00	10:13	10:20	10:35	10:40	10:51	10:56	11:10	
	10:30	10:43	10:50	11:05	11:10	11:21	11:26	11:40	
	11:00	11:13	11:20	11:35	11:40	11:51	11:56	12:10	
	11:30	11:43	11:50	12:05	12:10	12:21	12:26	12:40	
P.M.	12:00	12:13	12:20	12:35	12:40	12:51	12:56	1:10	
	12:30	12:43	12:50	1:05	1:10	1:21	1:26	1:40	
	1:00	1:13	1:20	1:35	1:40	1:51	1:56	2:10	
	1:30	1:43	1:50	2:05	2:10	2:21	2:26	2:40	
	2:00	2:13	2:20	2:35	2:40	2:51	2:56	3:10	
	2:30	2:43	2:50	3:05	3:10	3:21	3:26	3:40	
	3:00	3:13	3:20	3:35	3:40	3:51	3:56	4:10	
	3:30	3:43	3:50	4:05	4:10	4:21	4:26	4:40	
	4:00	4:13	4:20	4:35	4:40	4:51	4:56	5:10	
	4:30	4:43	4:50	5:05	5:10	5:21	5:26	5:40	
	5:00	5:13	5:20	5:35	5:40	5:51	5:56	6:10	
	5:30	5:43	5:50	6:05	6:10	6:21	6:26	6:40	
	6:00	6:13	6:20	6:35	6:40	6:51	6:56	7:10	
	6:30	6:43	6:50	7:05	7:10	7:21	7:26	7:40	
	7:00	7:13	7:20	7:35	7:40	7:51	7:56	8:10	
	7:30	7:43	7:50	8:05	8:10	8:21	8:26	8:40	
	8:00	8:13	8:20	8:35	8:40	8:51	8:56	9:10	
	8:30	8:43	8:50	9:05	9:10	9:21	9:26	9:40	
	9:00	9:13	9:20	9:35	9:40	9:51	9:56	10:10	
	9:30	9:43	9:50	10:05	10:10	10:21	10:26	10:40	
	10:00	10:13	10:20	10:35	10:40	10:51	10:56	11:10	
	10:30	10:43	10:50	11:05	11:10	11:21	11:26		
	11:15	11:28	11:35	11:50	11:55	12:06	12:11	To Garage	
			SL	JNDAY SCH	EDULE				
A.M.	8:15	8:28	8:35	8:44	_	8:48	8:55	9:10	
	9:15	9:28	9:35	9:44	_	9:48	9:55	10:10	
	10:15	10:28	10:35	10:44	_	10:48	10:55	11:10	
	11:15	11:28	11:35	11:44	_	11:48	11:55	12:10	
P.M.	12:15	12:28	12:35	12:44	_	12:48	12:55	1:10	
	1:15	1:28	1:35	1:44	_	1:48	1:55	2:10	
	2:15	2:28	2:35	2:44		2:48	2:55	3:10	
	3:15	3:28	3:35	3:44		3:48	3:55	4:10	
	4:15	4:28	4:35	4:44		4:48	4:55	5:10	
	5:15	5:28	5:35	5:44		5:48	5:55	6:10	
	6:15	6:28	6:35	6:44		6:48	6:55	7:10	
	7:15	7:28	7:35	7:44		7:48	7:55	8:10	
	8:15	8:28	8:35	8:40	To Garage				


Route 22 - Broadway - WEEKDAY schedule

Effective Date: November 9, 2020

1	2	3	4	5	6	7	8
KNOXVILLE	BROADWAY	NORTHGATE	KNOX	JACKSBORO	NORTHGATE	BROADWAY	KNOXVILLE
STATION	SHOPPING CTR	SHOPPING CTR	ROAD	AT ESSARY	SHOPPING CTR	SHOPPING CTR	STATION
Going away from do	owntown			Going toward de	owntown		
			Transfer to				
			24, 90				
				5:55	6:06	6:11	6:25
				6:25	6:36	6:41	6:55
6:00	6:13	6:20	6:35	6:40	6:51	6:56	7:10
6:30	6:43	6:50	7:05	7:10	7:21	7:26	7:40
7:00	7:13	7:20	7:35	7:40	7:51	7:56	8:10
7:15	7:28	7:35	7:50	7:55	8:06	8:11	8:25
7:45	7:58	8:05	8:20	8:25	8:36	8:41	8:55
8:15	8:28	8:35	8:50	8:55	9:06	9:11	9:25
8:30	8:43	8:50	9:05	9:10	9:21	9:26	9:40
9:00	9:13	9:20	9:35	9:40	9:51	9:56	10:10
9:30	9:43	9:50	10:05	10:10	10:21	10:26	10:40
10:00	10:13	10:20	10:35	10:40	10:51	10:56	11:10
10:30	10:43	10:50	11:05	11:10	11:21	11:26	11:40
11:00	11:13	11:20	11:35	11:40	11:51	11:56	12:10
11:30	11:43	11:50	12:05	12:10	12:21	12:26	12:40
12:00	12:13	12:20	12:35	12:40	12:51	12:56	1:10
12:30	12:43	12:50	1:05	1:10	1:21	1:26	1:40
1:00	1:13	1:20	1:35	1:40	1:51	1:56	2:10
1:30	1:43	1:50	2:05	2:10	2:21	2:26	2:40
2:00	2:13	2:20	2:35	2:40	2:51	2:56	3:10
2:30	2:43	2:50	3:05	3:10	3:21	3:26	3:40
3:00	3:13	3:20	3:35	3:40	3:51	3:56	4:10
3:30	3:43	3:50	4:05	4:10	4:21	4:26	4:40
3:45	3:58	4:05	4:20	4:25	4:36	4:41	4:55
4:00	4:13	4:20	4:35	4:40	4:51	4:56	5:10
4:15	4:28	4:35	4:50	4:55	5:06	5:11	5:25
4:45	4:58	5:05	5:20	5:25	5:36	5:41	5:55
5:00	5:13	5:20	5:35	5:40	5:51	5:56	6:10
5:15	5:28	5:35	5:50	5:55	6:06	6:11	6:25
5:30	5:43	5:50	6:05	6:10	6:21	6:26	6:40
6:00	6:13	6:20	6:35	6:40	6:51	6:56	7:10
6:15	6:28	6:35	6:50	6:55	7:06	7:11	7:25
6:30	6:43	6:50	7:05	7:10	7:21	7:26	7:40
6:45	6:58	7:05	7:20	7:25	7:36	7:41	7:55
7:15	7:28	7:35	7:50	7:55	8:06	8:11	8:25
7:45	7:58	8:05	8:15	8:25	8:36	8:41	8:55
8:15	8:28	8:35	8:50	8:55	9:06	9:11	9:25
8:45	8:58	9:05	9:20	9:25	9:36	9:41	9:55
9:15	9:28	9:35	9:50	9:55	10:06	10:11	10:25
9:45	9:58	10:05	10:20	10:25	10:36	10:41	10:55
10:15	10:28	10:35	10:50	10:55	11:06	11:11	
11:15	11:28	11:35	11:40				

APPENDIX D

ZONING MAP

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

APPENDIX E

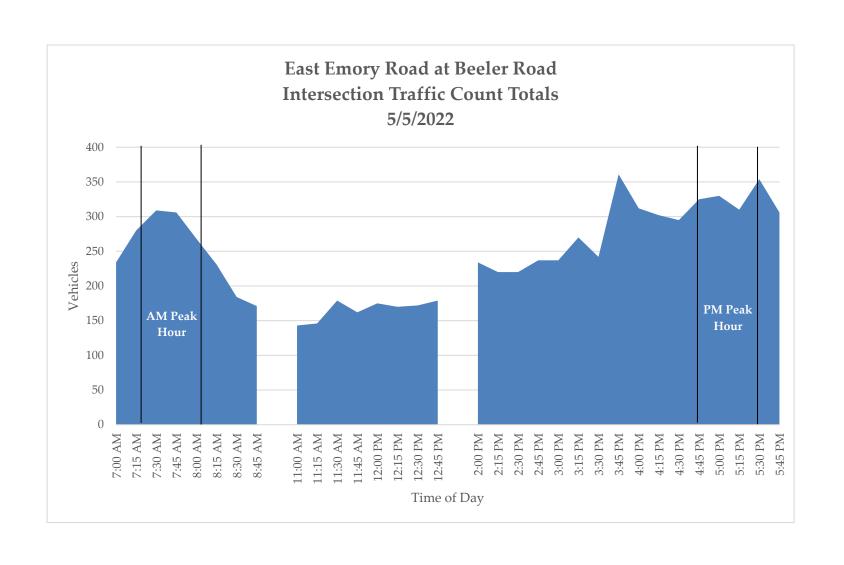
MANUAL TRAFFIC COUNT DATA

TRAFFIC COUNT DATA

Major Street: East Emory Road (WB and EB) Minor Street: Beeler Road (NB)

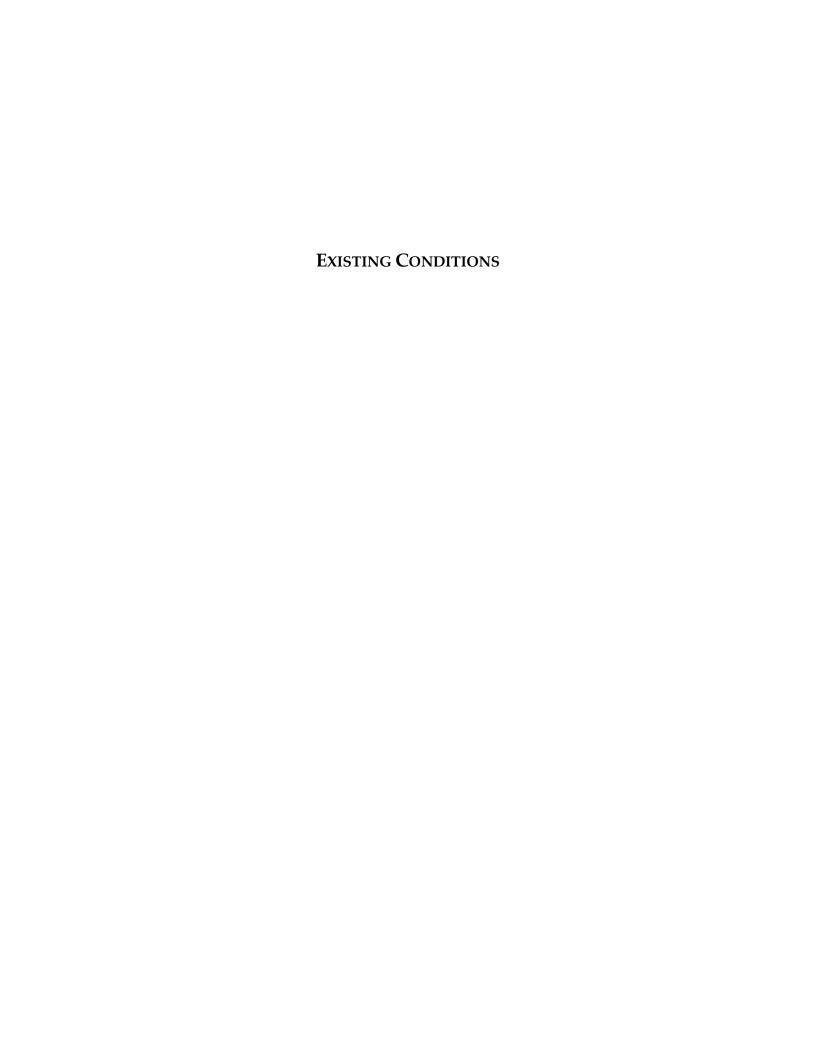
Traffic Control: Stop Sign on Beeler Road

5/5/2022 (Thursday) Warm, Sunny Conducted by: Ajax Engineering


Ī	East Emo	ory Road	Beeler	Road	East Em	ory Road	1	
TIME	WESTE	BOUND	NORTH	BOUND	EASTB	OUND	VEHICLE	PEAK
BEGIN	LT	THRU	LT	RT	THRU	RT	TOTAL	HOUR
7:00 AM	3	108	9	27	82	5	234	
7:15 AM	8	117	9	22	119	5	280	7:15 AM - 8:15 AM
7:30 AM	10	148	8	24	115	4	309	
7:45 AM	9	161	5	16	111	4	306	
8:00 AM	4	124	5	23	104	8	268	
8:15 AM	7	113	11	4	93	3	231	
8:30 AM	4	105	5	13	52	5	184	
8:45 AM	8	86	5	6	55	11	171	
TOTAL	53	962	57	135	731	45	1983	
11:00 AM	1	59	9	7	62	5	143	
11:15 AM	5	62	6	2	68	3	146	
11:30 AM	6	77	8	4	76	8	179	
11:45 AM	5	62	11	8	68	8	162	
12:00 PM	8	64	11	6	73	13	175	12:00 PM - 1:00 PM
12:15 PM	5	66	7	2	84	6	170	
12:30 PM	2	70	10	1	83	6	172	
12:45 PM	5	61	5	10	91	7	179	
TOTAL	37	521	67	40	605	56	1326	
2:00 PM	10	97	4	10	110	3	234	
2:15 PM	7	89	4	7	106	7	220	
2:30 PM	7	78	6	10	113	6	220	
2:45 PM	10	95	4	11	110	7	237	
3:00 PM	11	102	8	15	96	5	237	
3:15 PM	10	109	10	8	123	10	270	
3:30 PM	18	98	6	6	107	7	242	
3:45 PM	21	178	11	5	135	11	361	
4:00 PM	11	129	10	8	144	10	312	
4:15 PM	14	113	7	10	147	11	302	
4:30 PM	11	103	10	9	151	11	295	
4:45 PM	17	120	4	9	164	11	325	4:45 PM - 5:45 PM
5:00 PM	16	109	8	12	173	12	330	
5:15 PM	12	112	11	16	143	16	310	
5:30 PM	11	138	9	10	165	21	354	
5:45 PM	13	115	6	13	150	9	306	
TOTAL	199	1785	118	159	2137	157	4555	

2022 AM Peak Hour 7:15 AM - 8:15 AM

	East Emo	ory Road	Beeler	r Road	East Em	ory Road
TIME	WESTE	OUND	NORTH	BOUND	EASTB	OUND
BEGIN	LT	THRU	LT	RT	THRU	RT
7:15 AM	8	117	9	22	119	5
7:30 AM	10	148	8	24	115	4
7:45 AM	9	161	5	16	111	4
8:00 AM	4	124	5	23	104	8
TOTAL	31	550	27	85	449	21
PHF	0.78	0.85	0.75	0.89	0.94	0.66
Truck %	6.5%	2.0%	0.0%	2.4%	1.6%	9.5%


2022 PM Peak Hour 4:45 PM - 5:45 PM

	Fast Fm	ory Road	Reeler	Road	Fast Fm	ory Road
TIME		OUND		BOUND		OUND
BEGIN	LT	THRU	LT	RT	THRU	RT
4:45 PM	17	120	4	9	164	11
5:00 PM	16	109	8	12	173	12
5:15 PM	12	112	11	16	143	16
5:30 PM	11	138	9	10	165	21
TOTAL	56	479	32	47	645	60
PHF	0.82	0.87	0.73	0.73	0.93	0.71
Truck %	0.0%	1.0%	0.0%	0.0%	2.2%	0.0%

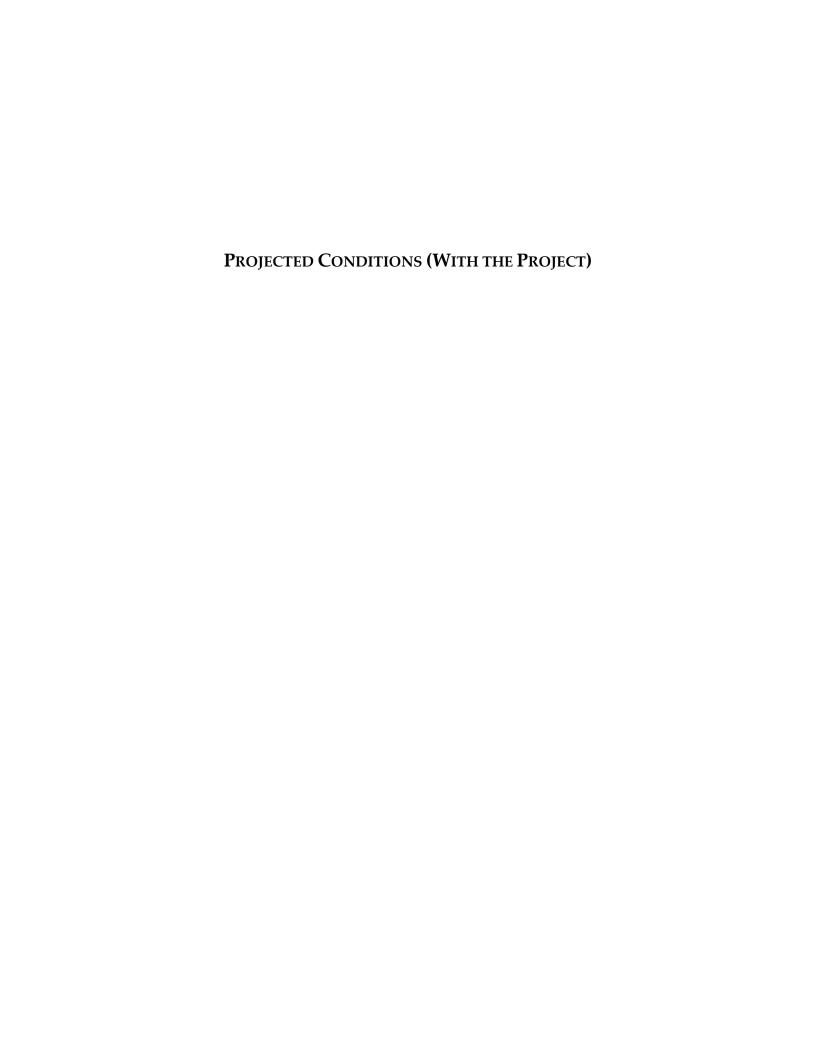
APPENDIX F

CAPACITY ANALYSES – HCM WORKSHEETS (SYNCHRO 11)

Intersection						
Int Delay, s/veh	2.9					
				==		
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	¥	
Traffic Vol, veh/h	449	21	31	550	27	85
Future Vol, veh/h	449	21	31	550	27	85
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	-5	-	-	-5	5	-
Peak Hour Factor	94	66	78	85	75	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	478	32	40	647	36	96
N A = ' = (N A' = -	. ! 4		4-1-0		1	
	ajor1		Major2		Minor1	40.
Conflicting Flow All	0	0	510	0	1221	494
Stage 1	-	-	-	-	494	-
Stage 2	-	-	-	-	727	-
Critical Hdwy	-	-	4.12	-	7.42	6.72
Critical Hdwy Stg 1	-	-	-	-	6.42	-
Critical Hdwy Stg 2	-	-	-	-	6.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1055	-	141	537
Stage 1	-	-	-	-	535	-
Stage 2	-	-	-	-	391	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1055	-	133	537
Mov Cap-2 Maneuver	_	_	1000	_	133	-
Stage 1	_	_	_	_	535	_
Stage 2					368	_
Jiaye Z	-	-	-	-	300	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		26.9	
HCM LOS					D	
Ndinan Lana/Ndalan Nd		JDI 1	EDT	EDD	MDI	MDT
Minor Lane/Major Mvmt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		293	-		1055	-
HCM Lane V/C Ratio		0.449	-	-	0.038	-
HCM Control Delay (s)		26.9	-	-	8.5	0
HCM Lane LOS		D	-	-	Α	Α
HCM 95th %tile Q(veh)		2.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	4.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	¥	
Traffic Vol, veh/h	645	60	56	479	32	47
Future Vol, veh/h	645	60	56	479	32	47
Conflicting Peds, #/hr	0	0	0	0	0	0
•	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-5	_	_	-5	5	_
Peak Hour Factor	93	71	82	87	73	73
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	694	85	68	551	44	64
IVIVIIII I IOVV	074	03	00	JJ 1	44	04
Major/Minor Ma	ajor1	N	Major2	ا	Minor1	
Conflicting Flow All	0	0	779	0	1424	737
Stage 1	-	-	-	-	737	-
Stage 2	-	-	-	-	687	-
Critical Hdwy	-	-	4.12	-	7.42	6.72
Critical Hdwy Stg 1	-	-	-	-	6.42	-
Critical Hdwy Stg 2	-	-	-	-	6.42	-
Follow-up Hdwy	_		2.218	_	3.518	3.318
Pot Cap-1 Maneuver	_	_	838	_	101	378
Stage 1	_	_	-	_	386	-
Stage 2					413	
Platoon blocked, %	_			_	413	_
	-	-	838		89	378
Mov Cap 2 Manager		-		-		
Mov Cap-2 Maneuver	-	-	-	-	89	-
Stage 1	-	-	-	-	386	-
Stage 2	-	-	-	-	365	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		62.4	
HCM LOS	0		1.1		02.4 F	
TOWN EOO					'	
Minor Lane/Major Mvmt	<u> </u>	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		163	-	-	838	-
HCM Lane V/C Ratio		0.664	-	-	0.081	-
HCM Control Delay (s)		62.4	-	-	9.7	0
HCM Lane LOS		F		-	Α	A
HOW LAINE LUS				-	$\overline{}$	\sim

Intersection						
Int Delay, s/veh	8.6					
		ED.	MA	MOT	ND	NICO
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			ર્ન	¥	
Traffic Vol, veh/h	471	30	44	578	43	132
Future Vol, veh/h	471	30	44	578	43	132
Conflicting Peds, #/hr	0	0	0	0	0	0
_ 3	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-5	-	-	-5	5	-
Peak Hour Factor	94	66	78	85	75	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	501	45	56	680	57	148
WWW. Flow	001	10	00	000	01	110
	ajor1	N	Major2	ı	Vinor1	
Conflicting Flow All	0	0	546	0	1316	524
Stage 1	-	-	-	-	524	-
Stage 2	-	-	-	-	792	-
Critical Hdwy	-	-	4.12	-	7.42	6.72
Critical Hdwy Stg 1	-	-	_	_	6.42	-
Critical Hdwy Stg 2	-	-	-	-	6.42	-
Follow-up Hdwy	_	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	_	_	1023	_	121	514
Stage 1	_	_	1025	_	514	- 517
Stage 2	_			-	358	
Platoon blocked, %	_	_		-	330	_
	-	-	1023		110	514
Mov Cap-1 Maneuver	-	-		-		
Mov Cap-2 Maneuver	-	-	-	-	110	-
Stage 1	-	-	-	-	514	-
Stage 2	-	-	-	-	326	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.7		60	
HCM LOS	U		0.7		F	
TIOWI LOO					ı	
Minor Lane/Major Mvmt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		254	-	-	1023	-
HCM Lane V/C Ratio		0.81	-		0.055	-
HCM Control Delay (s)		60	-	-		0
HCM Lane LOS		F	_	_	A	A
HCM 95th %tile Q(veh)		6.3	_		0.2	-
HOW FOUT MILE Q(VEII)		0.5	-	-	0.2	-


Intersection Int Delay, s/veh 2.2 Movement WBL WBR NBT NBR SBL SBT Jane Configurations Image: Configuration of the con
Movement WBL WBR NBT NBR SBL SBT Lane Configurations *** 1 3 3 76 0 11 39 Future Vol, veh/h 0 31 76 0 11 39 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free
Configurations Y 1 3 Fraffic Vol, veh/h 0 31 76 0 11 39 Future Vol, veh/h 0 31 76 0 11 39 Conflicting Peds, #/hr 0
Traffic Vol, veh/h 0 31 76 0 11 39 Future Vol, veh/h 0 31 76 0 11 39 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Gign Control Stop Stop Free Free Free Free Free RT Channelized - None - None - None Storage Length 0 - - - - - Veh in Median Storage, # 0 - 0 - - 0 Grade, % 2 - 8 - - 4 Peak Hour Factor 90 90 90 90 90 90
Future Vol, veh/h 0 31 76 0 11 39 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 Sign Control Stop Stop Free None - <
Conflicting Peds, #/hr 0 7 Pree Free None - None - None - None - None -
Sign Control Stop Stop Free
RT Channelized - None - None - None Storage Length 0 - - - /eh in Median Storage, # 0 - 0 - - 0 Grade, % 2 - 8 - - 4 Peak Hour Factor 90 90 90 90 90 90
Storage Length 0 - - - - - /eh in Median Storage, # 0 - 0 - - 0 Grade, % 2 - 8 - - 4 Peak Hour Factor 90 90 90 90 90 90
/eh in Median Storage, # 0 - 0 - - 0 Grade, % 2 - 8 - - 4 Peak Hour Factor 90 90 90 90 90 90
Grade, % 2 - 8 4 Peak Hour Factor 90 90 90 90 90 90
Peak Hour Factor 90 90 90 90 90 90
Heavy Vehicles. % 0 0 2 0 0 2
1041 101110100 1 0 2 0 2
/vmt Flow 0 34 84 0 12 43
Astrofallian Missed Material Material
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 151 84 0 0 84 0
Stage 1 84
Stage 2 67
Critical Hdwy 6.8 6.4 4.1 -
Critical Hdwy Stg 1 5.8
Critical Hdwy Stg 2 5.8
Follow-up Hdwy 3.5 3.3 2.2 -
Pot Cap-1 Maneuver 831 976 1526 -
Stage 1 936
Stage 2 954
Platoon blocked, %
Nov Cap-1 Maneuver 824 976 1526 -
Nov Cap-2 Maneuver 824
Stage 1 936
Stage 2 946
Siago 2 770
Approach WB NB SB
HCM Control Delay, s 8.8 0 1.6
HCM LOS A
Almont and Marian Marian Marian
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT
Capacity (veh/h) 976 1526 -
10111 1110 5 11
HCM Lane V/C Ratio 0.035 0.008 -
HCM Control Delay (s) 8.8 7.4 0

Intersection						
Int Delay, s/veh	4.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX	1\ B1	ווטוז	JUL	<u>ઝકા</u>
Traffic Vol, veh/h	0	47	29	0	16	23
Future Vol, veh/h	0	47	29	0	16	23
Conflicting Peds, #/hr	0	0	0	0	0	0
				Free	Free	
Sign Control	Stop	Stop	Free			Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-2	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	52	32	0	18	26
Major/Minor M	linor1	ı	/lajor1	N	Major2	
		32		0	32	
Conflicting Flow All	94		0			0
Stage 1	32	-	-	-	-	-
Stage 2	62	-	-	-	-	-
Critical Hdwy	6	6	-	-	4.1	-
Critical Hdwy Stg 1	5	-	-	-	-	-
Critical Hdwy Stg 2	5	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	920	1049	-	-	1593	-
Stage 1	999	-	-	-	-	-
Stage 2	972	-	-	-	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	910	1049	_	_	1593	_
Mov Cap-1 Maneuver	910	1049	_		1373	
	910	-	-	-	-	-
Stage 1		-		-		
Stage 2	961	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		3	
HCM LOS	A					
	, ·					
		NET	NES	MDL 4	0.51	OPT
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	1049	1593	-
HCM Lane V/C Ratio		-	-	0.05	0.011	-
HCM Control Delay (s)		-	-	8.6	7.3	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	0.2	0	-

Intersection								
Int Delay, s/veh	29.3							
		EDD	WDI	MDT	NDI	NDD		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	}	.0/	.00	4	**	71		
Traffic Vol, veh/h	677	96	92	503	49	71		
Future Vol, veh/h	677	96 0	92	503	49	71		
Conflicting Peds, #/hr		Free	0 Free	0 Free	0 Ctop	O Ctop		
Sign Control RT Channelized	Free	None	Free	Free None	Stop	Stop None		
Storage Length	-	None -	-	None -	0	None -		
Veh in Median Storag		-	-	0	0	_		
Grade, %	je,# 0 -5	-	-	-5	5	-		
Peak Hour Factor	93	71	82	-5 87	73	73		
Heavy Vehicles, %	2	2	2	2	2	2		
Mymt Flow	728	135	112	578	67	97		
WWITH LIOW	720	100	112	370	- 07	71		
Major/Minor	Mois-1		Molora		Minari			
Major/Minor	Major1		Major2		Minor1	707		
Conflicting Flow All	0	0	863	0	1598	796		
Stage 1	-	-	-	-	796	-		
Stage 2	-	-	112	-	802	- 4 70		
Critical Hdwy	-	-	4.12	-	7.42 6.42	6.72		
Critical Hdwy Stg 1	-	-	-	-	6.42	-		
Critical Hdwy Stg 2 Follow-up Hdwy	-	-	2.218	-	3.518	2 210		
Pot Cap-1 Maneuver	-	-	779	-	75	3.318		
Stage 1	-		119	-	356	34 <i>1</i> -		
Stage 2	-	-	-	-	353	_		
Platoon blocked, %	-	-	_		555	_		
Mov Cap-1 Maneuver			779	-	~ 59	347		
Mov Cap-1 Maneuver		_	- 117	_	~ 59	J4 <i>1</i>		
Stage 1	_	_	-	-	356	-		
Stage 2	_	_	_	_	278	_		
					_, 5			
Approach	EB		WB		NB			
HCM Control Delay, s			1.7		299			
HCM LOS	5 0		1.7		299 F			
TIGIVI LOS					I			
Minor Lanc/Major Mar	mt I	NIDI 51	EDT	EDD	WDI	WDT		
Minor Lane/Major My	mt I	NBLn1	EBT	EBR	WBL	WBT		
Capacity (veh/h)		116	-	-	779	-		
HCM Control Dolay (1.417	-		0.144	-		
HCM Control Delay (s HCM Lane LOS	5)	299 F	-	-	10.4	0		
HCM 95th %tile Q(vel	h)	11.4	-	-	0.5	А		
	11)	11.4	-	-	0.5	-		
Notes								
~: Volume exceeds ca	apacity	\$: De	elay exc	ceeds 3	00s	+: Com	putation Not Defined	*: All major volume in platoor

Intersection						
Int Delay, s/veh	2.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		₽			4
Traffic Vol, veh/h	0	20	54	0	35	76
Future Vol, veh/h	0	20	54	0	35	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	2	-	8	-	-	4
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	22	60	0	39	84
	linor1		/lajor1		Major2	
Conflicting Flow All	222	60	0	0	60	0
Stage 1	60	-	-	-	-	-
Stage 2	162	-	-	-	-	-
Critical Hdwy	6.8	6.4	-	-	4.1	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	752	1008	-	-	1556	-
Stage 1	961	-	-	-	-	-
Stage 2	856	-	-	-	-	-
Platoon blocked, %			_	-		-
Mov Cap-1 Maneuver	732	1008	-	-	1556	-
Mov Cap-2 Maneuver	732	-	_	_	-	_
Stage 1	961		_	_	_	_
Stage 2	834					
Jiaye Z	034	-	_	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		2.3	
HCM LOS	Α					
Ndinon Long /Ndolon Nd		NDT	NDD	NDI 1	CDI	CDT
Minor Lane/Major Mvmt		NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-		1008	1556	-
HCM Lane V/C Ratio		-	-	0.022		-
						_
HCM Control Delay (s)		-	-	0.,	7.4	0
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		-	-	8.7 A 0.1	7.4 A 0.1	0 A

Intersection						
Int Delay, s/veh	5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDIX		NDIX	JDL	- उठा स्
Traffic Vol, veh/h	T	31	1	0	53	23
Future Vol, veh/h	0	31	23	0	53	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	-2	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	92
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	34	26	0	59	25
IVIVIIIL I IOW	U	34	20	U	37	20
	Minor1		/lajor1	N	Major2	
Conflicting Flow All	169	26	0	0	26	0
Stage 1	26	-	-	-	-	-
Stage 2	143	-	-	-	-	-
Critical Hdwy	6	6	-	-	4.1	-
Critical Hdwy Stg 1	5	-	-	-	-	-
Critical Hdwy Stg 2	5	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	842	1057	-	-	1601	-
Stage 1	1005	-	-	-	-	-
Stage 2	903	-	-	_	-	-
Platoon blocked, %			-	_		-
Mov Cap-1 Maneuver	811	1057	-	-	1601	-
Mov Cap-2 Maneuver	811	-	-	-	-	_
Stage 1	1005	_	_	_	_	_
Stage 2	870	_	_	_	_	_
Jiago Z	370					
	1.4.00		LID		0.5	
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0		5.1	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-		1057	1601	-
HCM Lane V/C Ratio		-		0.033		-
HCM Control Delay (s)		_	-	8.5	7.3	0
HCM Lane LOS		-	-	Α	7.5 A	A
HCM 95th %tile Q(veh)	-	-	0.1	0.1	- A
HOW FOUT MILE Q(VEH)		•	U. I	U. I	-

Intersection						
Int Delay, s/veh	31.2					
		E55	1115	14/5-		NES
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			4	Y	
Traffic Vol, veh/h	471	40	58	578	60	184
Future Vol, veh/h	471	40	58	578	60	184
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-5	-	-	-5	5	-
Peak Hour Factor	94	66	78	85	75	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	501	61	74	680	80	207
		_		_		
	lajor1		Major2		Vinor1	
Conflicting Flow All	0	0	562	0	1360	532
Stage 1	-	-	-	-	532	-
Stage 2	-	-	-	-	828	-
Critical Hdwy	-	-	4.12	-	7.42	6.72
Critical Hdwy Stg 1	-	-	-	-	6.42	-
Critical Hdwy Stg 2	-	-	-	-	6.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1009	-	112	508
Stage 1	-	-	-	-	508	-
Stage 2	-	_	-	-	341	-
Platoon blocked, %	_	_		_	0	
Mov Cap-1 Maneuver	_	_	1009	_	99	508
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	_	_	1007	_	99	-
Stage 1	_				508	_
Stage 2		_			301	_
Slaye 2	-	-	-	-	JU I	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		172	
HCM LOS					F	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		236	-	-	1009	-
HCM Lane V/C Ratio		1.215	-	-	0.074	-
HCM Control Delay (s)		172	-	-	8.9	0
HCM Lane LOS		F	-	-	Α	Α
HCM 95th %tile Q(veh)		14	-	-	0.2	-

Intersection						
Int Delay, s/veh	1.5					
		MED	NET	NDD	001	ODT
	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			4
Traffic Vol, veh/h	0	31	145	0	11	63
Future Vol, veh/h	0	31	145	0	11	63
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	2	-	8	-	-	4
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	34	161	0	12	70
N.A. ' /N.A' N.A			1 1 1		4 1 0	
	inor1		/lajor1		Major2	
Conflicting Flow All	255	161	0	0	161	0
Stage 1	161	-	-	-	-	-
Stage 2	94	-	-	-	-	-
Critical Hdwy	6.8	6.4	-	-	4.1	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	717	881	-	-	1430	-
Stage 1	857	-	-	-	-	-
Stage 2	925	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	711	881	-	-	1430	-
Mov Cap-2 Maneuver	711	-	-	-	-	-
Stage 1	857	-	-	-	-	-
Stage 2	917	_	-	_	_	_
- 1.5g						
A	MID		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	9.3		0		1.1	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		NUT	, VDI(V	881	1430	ODI
HCM Lane V/C Ratio		-	-	0.039		-
HCM Control Delay (s)		-		9.3	7.5	0
HCM Lane LOS			-			
		-	-	Α	A	Α
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	6.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDIX	†	NDIX	JDL	<u>ુગા</u>
Traffic Vol, veh/h	0	116	29	0	40	23
Future Vol, veh/h	0	116	29	0	40	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p -	None	-	None	-	None
Storage Length	0	NOTIC -	_	-	_	-
Veh in Median Storage,		_	0	_	_	0
Grade, %	, π	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
	0	90	2	0	0	2
Heavy Vehicles, % Mvmt Flow	0	129	32	0	44	26
IVIVIIIL FIOW	U	129	32	U	44	20
Major/Minor N	Minor1	N	//ajor1	ı	Major2	
Conflicting Flow All	146	32	0	0	32	0
Stage 1	32	-	-	-	-	-
Stage 2	114	-	-	-	-	-
Critical Hdwy	6	6	_	-	4.1	-
Critical Hdwy Stg 1	5	-	_	_	-	_
Critical Hdwy Stg 2	5	-	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	865	1049	_	_	1593	_
Stage 1	999	-	_	_	- 1070	_
Stage 2	928	_	_		-	_
Platoon blocked, %	720					-
Mov Cap-1 Maneuver	841	1049	-	-	1593	-
Mov Cap-1 Maneuver	841	1049	-	-	1093	_
Stage 1	999		-	-		
9		-			-	-
Stage 2	902	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		4.7	
HCM LOS	Α					
Minar Lana/Maiar Mum		NDT	MDDV	MDI 51	CDI	CDT
Minor Lane/Major Mvm	l .	NBT		WBLn1	SBL	SBT
Capacity (veh/h)		-		1049	1593	-
HCM Lane V/C Ratio		-		0.123		-
HCM Control Delay (s)		-	-	8.9	7.3	0
11/10/11 ama 1/00		_		Λ	Λ	Α
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	A 0.4	A 0.1	-

Intersection								
Int Delay, s/veh	99.9							
		EDD	WDI	WDT	MDI	NDD		
Movement Configurations	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	}	105	111	4	Y	00		
Traffic Vol, veh/h	677	135	132	503	67	99		
Future Vol, veh/h	677	135	132	503	67	99		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	- 4 0	-	-	-	0	-		
Veh in Median Storage		-	-	0	0	-		
Grade, %	-5	- 71	- 00	-5	5	- 70		
Peak Hour Factor	93	71	82	87	73 2	73		
Heavy Vehicles, % Mvmt Flow	728	190	161	2 578	92	136		
VIVIIIL FIOW	128	190	101	5/8	92	130		
	Major1		Major2		Minor1			
Conflicting Flow All	0	0	918	0	1723	823		
Stage 1	-	-	-	-	823	-		
Stage 2	-	-	-	-	900	-		
Critical Hdwy	-	-	4.12	-	7.42	6.72		
Critical Hdwy Stg 1	-	-	-	-	6.42	-		
Critical Hdwy Stg 2	-	-	-	-	6.42	-		
Follow-up Hdwy	-	-	2.218	-	3.518			
Pot Cap-1 Maneuver	-	-	743	-	~ 61	333		
Stage 1	-	-	-	-	343	-		
Stage 2	-	-	-	-	309	-		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver		-	743	-	~ 42	333		
Mov Cap-2 Maneuver	-	-	-	-	~ 42	-		
Stage 1	-	-	-	-	343	-		
Stage 2	-	-	-	-	210	-		
Approach	EB		WB		NB			
HCM Control Delay, s	0		2.4	\$	820.2			
HCM LOS					F			
Minor Lane/Major Mvr	nt I	NBLn1	EBT	EBR	WBL	WBT		
Capacity (veh/h)		88	-	-	743	_		
HCM Lane V/C Ratio		2.584	-	-	0.217	-		
HCM Control Delay (s	.) \$	820.2	-	-	11.2	0		
HCM Lane LOS	,	F	-	-	В	A		
HCM 95th %tile Q(veh	1)	21.4	-	-	0.8	-		
Notes								
	noo!t.	¢. D.	alov, ove	200da 21	200	Core	outation Not Dafined	*. All major valuma in plata an
-: Volume exceeds ca	apacity	\$: D6	elay exc	ceeds 30	JUS	+: Com	putation Not Defined	*: All major volume in platoon

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		₽			4
Traffic Vol, veh/h	0	20	100	0	35	155
Future Vol, veh/h	0	20	100	0	35	155
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # O	-	0	-	-	0
Grade, %	2	-	8	-	-	4
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	22	111	0	39	172
WWW. TOW	O .	22		J	07	172
	Minor1		/lajor1	N	Major2	
Conflicting Flow All	361	111	0	0	111	0
Stage 1	111	-	-	-	-	-
Stage 2	250	-	-	-	-	-
Critical Hdwy	6.8	6.4	-	-	4.1	-
Critical Hdwy Stg 1	5.8	-	_	-	-	-
Critical Hdwy Stg 2	5.8	-	_	-	-	-
Follow-up Hdwy	3.5	3.3	_	-	2.2	_
Pot Cap-1 Maneuver	617	942	-	-	1492	-
Stage 1	907	- 12	_	_	-	_
Stage 2	774	_	_	_	_	_
Platoon blocked, %	- 777					
Mov Cap-1 Maneuver	599	942	-	-	1492	-
	599	942	_	-	1492	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	907	-	-	-	-	-
Stage 2	752	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		1.4	
HCM LOS	Α				11	
HOW LOS						
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	942	1492	
HCM Lane V/C Ratio		-	_	0.024		-
HCM Control Delay (s)		-	-	8.9	7.5	0
HCM Lane LOS		-	_	А	A	A
HCM 95th %tile Q(veh)	-	-	0.1	0.1	-
1.3W 75W 75W 75W 2(VCI)				0.1	0.1	

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	WDIX	1\ B1	ווטוז	JUL	<u> अधा</u>
Traffic Vol, veh/h	0	77	23	0	132	23
Future Vol, veh/h		77	23		132	23
	0			0		
Conflicting Peds, #/hr	O Cton	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	-2	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	92
Heavy Vehicles, %	0	0	2	0	0	2
Mvmt Flow	0	86	26	0	147	25
		_				
	1inor1		/lajor1		Major2	
Conflicting Flow All	345	26	0	0	26	0
Stage 1	26	-	-	-	-	-
Stage 2	319	-	-	-	-	-
Critical Hdwy	6	6	-	-	4.1	-
Critical Hdwy Stg 1	5	-	-	-	-	-
Critical Hdwy Stg 2	5	-	_	_	_	_
Follow-up Hdwy	3.5	3.3	_	_	2.2	_
Pot Cap-1 Maneuver	681	1057	_	_	1601	_
Stage 1	1005	1007	_	_	1001	_
Stage 2	768	-	_			-
	700	-		-	-	
Platoon blocked, %	/10	1057	-	-	1/01	-
Mov Cap-1 Maneuver	618	1057	-	-	1601	-
Mov Cap-2 Maneuver	618	-	-	-	-	-
Stage 1	1005	-	-	-	-	-
Stage 2	697	-		-	-	-
Approach	WB		NB		SB	
	8.7		0		6.4	
HCM Control Delay, s			U		0.4	
HCM LOS	А					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_		1057	1601	
HCM Lane V/C Ratio		_		0.081		-
HCM Control Delay (s)		-	-	8.7	7.5	0
HCM Lane LOS						
		-	-	A	A	Α
HCM 95th %tile Q(veh)		-	-	0.3	0.3	-

PROJECTED CONDITIONS (WITH THE PROJECT) AND EB & NB RIGHT-TURN LANES

Intersection							
Int Delay, s/veh	7.9						
		EDD	WDI	WDT	NDI	NDD	ľ
Movement Configurations	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	171	7	FO	4	<u>ነ</u>	104	
Traffic Vol, veh/h	471	40	58	578	60	184	
Future Vol, veh/h	471	40	58	578	60	184	
Conflicting Peds, #/hr	0	0	0	0	0	0	
_ 3	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	75	-	-	0	100	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	-5	-	-	-5	5	-	
Peak Hour Factor	94	66	78	85	75	89	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	501	61	74	680	80	207	
Major/Minor M	nior1	N	Major?	N	Minor1		ŀ
	ajor1		Major2			Γ01	
Conflicting Flow All	0	0	562	0	1329	501	
Stage 1	-	-	-	-	501	-	
Stage 2	-	-	-	-	828	. 70	
Critical Hdwy	-	-	4.12	-	7.42	6.72	
Critical Hdwy Stg 1	-	-	-	-	6.42	-	
Critical Hdwy Stg 2	-	-	-	-	6.42	-	
Follow-up Hdwy	-	-	2.218	-	3.518		
Pot Cap-1 Maneuver	-	-	1009	-	118	532	
Stage 1	-	-	-	-	530	-	
Stage 2	-	-	-	-	341	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1009	-	104	532	
Mov Cap-2 Maneuver	-	-	-	-	104	-	
Stage 1	-	-	_	-	530	_	
Stage 2	-	_	_	_	301	_	
3.033 L					501		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.9		41.9		
HCM LOS					Ε		
Minor Lang/Major Munt	N	JDI 51 N	UDI 22	EDT	EDD	///DI	
Minor Lane/Major Mvmt	Γ	VBLn1 I		EBT	EBR	WBL	
Capacity (veh/h)		104	532	-		1009	
HCM Lane V/C Ratio		0.769		-		0.074	
HCM Control Delay (s)		108.8	16	-	-	8.9	
HCM Lane LOS		F	С	-	-	Α	
HCM 95th %tile Q(veh)		4.2	1.8	-	-	0.2	

Intersection								
Int Delay, s/veh	32.1							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations		- 7		स्		- 7		
Traffic Vol, veh/h	677	135	132	503	67	99		
Future Vol, veh/h	677	135	132	503	67	99		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	75	-	-	0	100		
Veh in Median Storage	e, # 0	-	-	0	0	-		
Grade, %	-5	-	-	-5	5	-		
Peak Hour Factor	93	71	82	87	73	73		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	728	190	161	578	92	136		
	Major1		Major2		Vinor1			
Conflicting Flow All	0	0	918	0	1628	728		
Stage 1	-	-	-	-	728	-		
Stage 2	-	-	-	-	900	-		
Critical Hdwy	-	-	4.12	-	7.42	6.72		
Critical Hdwy Stg 1	-	-	-	-	6.42	-		
Critical Hdwy Stg 2	-	-	-	-	6.42	-		
Follow-up Hdwy	-	-	2.218	-	3.518	3.318		
Pot Cap-1 Maneuver	-	-	743	-	~ 71	383		
Stage 1	-	-	-	-	390	-		
Stage 2	-	_	-	-	309	_		
Platoon blocked, %	_	_		_				
Mov Cap-1 Maneuver	_	-	743	_	~ 48	383		
Mov Cap-2 Maneuver		_	-	_	~ 48	-		
Stage 1	_	_	-	_	390	_		
Stage 2	_	_	_	_	210	_		
Stage 2					210			
Approach	EB		WB		NB			
HCM Control Delay, s	0		2.4		258.6			
HCM LOS					F			
N 4: 1 (N 4 - ! N 4		NIDL 4 I	VIDI 0	EDT	EDD	MDI	WDT	
Minor Lane/Major Mvn	nt l	NBLn1 I		EBT	EBR	WBL	WBT	
Capacity (veh/h)		48	383	-	-	743	-	
HCM Lane V/C Ratio			0.354	-	-	0.217	-	
HCM Control Delay (s)) \$	611.8	19.5	-	-	—	0	
HCM Lane LOS		F	С	-	-	В	А	
HCM 95th %tile Q(veh	1)	9.2	1.6	-	-	0.8	-	
Notes								
	noo!t.	¢. D.	olov, ove	nondo 2	000	Com	nutation Not Dafined	*. All major volume in platean
~: Volume exceeds ca	ipacity	\$: D6	elay exc	Leeus 3	UUS	+: Com	putation Not Defined	*: All major volume in platoon

PROJECTED CONDITIONS (WITH THE PROJECT) WITH TDOT ROAD WIDENING PROJECT AND NB RIGHT-TURN LANE ON BEELER ROAD

3.1					
	EDD	MDI	MPT	ND	NDD
	FBK				NBR
↑ Ъ	10				7
					184
					184
					0
Free		Free		Stop	Stop
-	None	-	None	-	None
-	-	75	-	0	100
# 0	-	-	0	1	-
-5	-	-	-5	5	-
94	66	78	85	75	89
2	2	2	2	2	2
516	61	74	699	80	207
1-:1		11-10		/!1	
					000
0	0	577	0		289
-	-	-	-		-
-	-	-	-		-
-	-	4.14	-	7.84	7.44
-	-	-	-	6.84	-
-	-	-	-	6.84	-
-	-	2.22	-	3.52	3.32
-	-	993	-	168	680
-	-	-	-	467	-
_	-	-	-		_
_	-				
_	-	993	_	155	680
_	_				-
_		_			_
_	_	•	_		_
-		-	-	404	-
EB		WB		NB	
EB 0		WB 0.9		NB 15.4 C	
				15.4	
0		0.9		15.4 C	
0	NBLn1 N	0.9 NBLn2	EBT	15.4	WBL
0	NBLn1 N 283	0.9 NBLn2 680	EBT -	15.4 C EBR	993
0	NBLn1 N 283 0.283	0.9 NBLn2 680 0.304		15.4 C EBR	993 0.075
0	NBLn1 N 283	0.9 NBLn2 680	-	15.4 C EBR	993
0	NBLn1 N 283 0.283	0.9 NBLn2 680 0.304	-	15.4 C EBR	993 0.075
	# 0 -5 94 2 516	EBT EBR 485 40 485 40 0 0 Free Free - None 94 66 2 2 516 61 alajor1	EBT EBR WBL 485 40 58 485 40 0 Free Free Free - None 75 # 0 - 75 # 0 - 75 94 66 78 2 2 2 516 61 74 Major2 0 0 577 4.14 4.14 2.22 - 993 993 993 993 993 993 993	EBT EBR WBL WBT 485 40 58 594 485 40 58 594 0 0 0 0 0 Free Free Free Free - None - 75 - # 0 - 0 -5 5 94 66 78 85 2 2 2 2 516 61 74 699 Alajor1 Major2 N 0 0 577 0 4.14 2.22 993 993 993 993 993 993	EBT EBR WBL WBT NBL 485 40 58 594 60 485 40 58 594 60 0 0 0 0 0 Free Free Free Stop - None - None - - None - 0 1 None - 0 1

Intersection								
Int Delay, s/veh	4.3							
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
		LDK	VVDL		NDL	NDK		
Lane Configurations Traffic Vol, veh/h	↑1 → 697	135	132	↑↑ 517	67	99		
Future Vol, veh/h	697	135	132	517	67	99		
Conflicting Peds, #/hr		0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	310p	None		
Storage Length	-	NOTIC -	75	-	0	100		
Veh in Median Storag			-	0	0	100		
Grade, %	-5	_	_	-5	5	_		
Peak Hour Factor	93	71	82	87	73	73		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	749	190	161	594	92	136		
WWW.C 10W	7 1 7	170	101	071	, _	100		
Major/Minor	Major1		Maiora		Ninar1			
	Major1		Major2		/linor1	470		
Conflicting Flow All	0	0	939	0	1463	470		
Stage 1	-	-	-	-	844 619	-		
Stage 2	-	-	4.14	-	7.84	7.44		
Critical Hdwy	-	-	4.14	-	6.84	7.44		
Critical Hdwy Stg 1 Critical Hdwy Stg 2	-	-	-	-	6.84	-		
Follow-up Hdwy	-	-	2.22	-	3.52	3.32		
Pot Cap-1 Maneuver	-	-	726	-	~ 79	506		
Stage 1		_	720	-	302	500		
Stage 2	-	-	-	-	421	_		
Platoon blocked, %	-	-	-	-	421	-		
Mov Cap-1 Maneuver		-	726	-	~ 61	506		
Mov Cap-1 Maneuver		_	720	_	171	J00 -		
Stage 1	_	_	_	_	302	-		
Stage 2	_	_	_	_	328	_		
Stage 2					320			
A	ED		WD		ND			
Approach	EB		WB		NB			
HCM Control Delay, s	0		2.4		28.2			
HCM LOS					D			
Minor Lane/Major Mvr	mt I	NBLn1 I		EBT	EBR	WBL	WBT	
Capacity (veh/h)		171	506	-	-	726	-	
HCM Lane V/C Ratio			0.268	-	-	0.222	-	
HCM Control Delay (s	s)	48.1	14.7	-	-	11.4	-	
HCM Lane LOS		Е	В	-	-	В	-	
HCM 95th %tile Q(veh	h)	2.7	1.1	-	-	8.0	-	
Notes								
~: Volume exceeds ca	apacity	\$: De	elav exc	ceeds 30)0s	+: Com	putation Not Defined	*: All major volume in platoon
3	1	,. 5						

APPENDIX G

ITE TRIP GENERATION RATES

Land Use: 210 Single-Family Detached Housing

Description

A single-family detached housing site includes any single-family detached home on an individual lot. A typical site surveyed is a suburban subdivision.

Specialized Land Use

Data have been submitted for several single-family detached housing developments with homes that are commonly referred to as patio homes. A patio home is a detached housing unit that is located on a small lot with little (or no) front or back yard. In some subdivisions, communal maintenance of outside grounds is provided for the patio homes. The three patio home sites total 299 dwelling units with overall weighted average trip generation rates of 5.35 vehicle trips per dwelling unit for weekday, 0.26 for the AM adjacent street peak hour, and 0.47 for the PM adjacent street peak hour. These patio home rates based on a small sample of sites are lower than those for single-family detached housing (Land Use 210), lower than those for single-family attached housing (Land Use 251), and higher than those for senior adult housing -- single-family (Land Use 251). Further analysis of this housing type will be conducted in a future edition of Trip Generation Manual.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

For 30 of the study sites, data on the number of residents and number of household vehicles are available. The overall averages for the 30 sites are 3.6 residents per dwelling unit and 1.5 vehicles per dwelling unit.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Arizona, California, Connecticut, Delaware, Illinois, Indiana, Kentucky, Maryland, Massachusetts, Minnesota, Montana, New Jersey, North Carolina, Ohio, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, Virginia, and West Virginia.

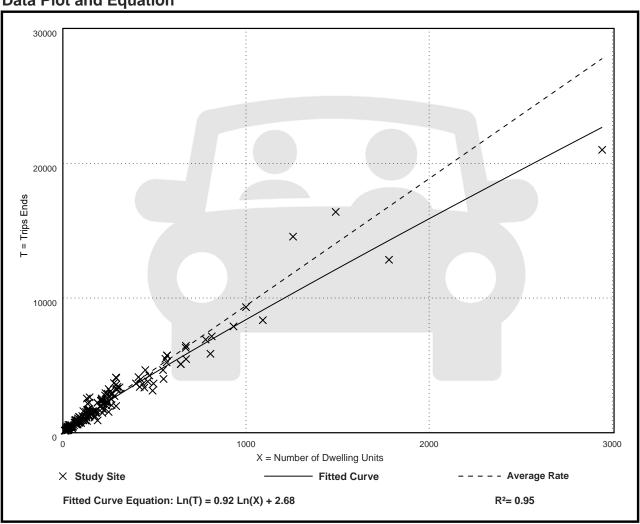
Source Numbers

100, 105, 114, 126, 157, 167, 177, 197, 207, 211, 217, 267, 275, 293, 300, 319, 320, 356, 357, 367, 384, 387, 407, 435, 522, 550, 552, 579, 598, 601, 603, 614, 637, 711, 716, 720, 728, 735, 868, 869, 903, 925, 936, 1005, 1007, 1008, 1010, 1033, 1066, 1077,1078, 1079

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: 174 Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.43	4.45 - 22.61	2.13

Data Plot and Equation

Single-Family Detached Housing (210)

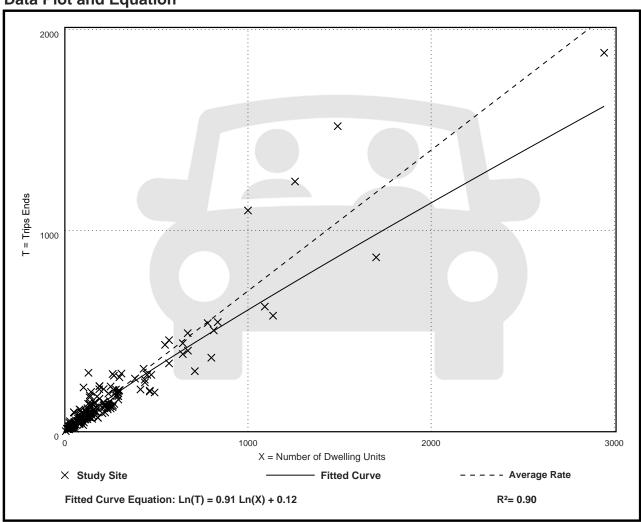
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 192 Avg. Num. of Dwelling Units: 226

Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	0.27 - 2.27	0.24

Data Plot and Equation

Single-Family Detached Housing (210)

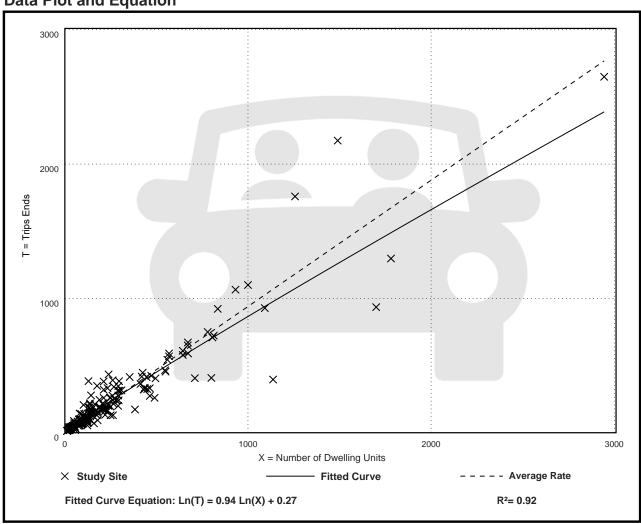
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 208 Avg. Num. of Dwelling Units: 248

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.94	0.35 - 2.98	0.31

Data Plot and Equation

TRIP GENERATION FOR FAIRVIEW ROAD SUBDIVISION

128 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR		PM	ENERATE TRAFFIC PEAK HO	OUR	
	0: 1 5 1			ENTER 26%	74%	TOTAL	ENTER 63%	EXIT 37%	TOTAL
#210	Single-Family Detached Housing	128 Houses	1,267	24	69	93	79	46	125
To	tal New Volume Si	te Trips	1,267	24	69	93	79	46	125

ITE Trip Generation Manual, 11th Edition

TRIP GENERATION FOR FAIRVIEW ROAD SUBDIVISION

128 Single-Family Detached Houses

128 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 4.85 + 2.68$$

Ln(T) = 7.14

T = 1,267 trips

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 5 + 0.12$$

Ln(T) = 4.54

T = 93 trips

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 4.85 + 0.27$$

Ln(T) = 4.83

T = 125 trips

53 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR ENTER EXIT TOTAL		PM	ENERATE TRAFFIC PEAK HC	OUR	
#210	Single-Family Detached Housing	53 Houses	563	26% 11	74% 31	TOTAL 42	63% 35	37% 20	TOTAL 55
Total New Volume Site Trips			563	11	31	42	35	20	55

ITE Trip Generation Manual, 11th Edition

53 Single-Family Detached Houses

53 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 3.97 + 2.68$$

$$Ln(T) = 6.33$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 4 + 0.12$$

Ln(T) = 3.73

T = 42 trips

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 3.97 + 0.27$$

$$Ln(T) = 4.00$$

T = 55 trips

87 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC		GENERATED TRAFFIC AM PEAK HOUR			ENERATE TRAFFIC PEAK HC	
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
'	Single-Family			26%	74%		63%	37%	
#210	Detached Housing	87 Houses	888	17	49	66	55	32	87
To	otal New Volume Si	te Trips	888	17	49	66	55	32	87
									•

ITE Trip Generation Manual, 11th Edition Trips calculated by using Fitted Curve Equation

87 Single-Family Detached Houses

87 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 4.47 + 2.68$$

$$Ln(T) = 6.79$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 4 + 0.12$$

$$Ln(T) = 4.18$$

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 4.47 + 0.27$$

$$Ln(T) = 4.47$$

$$T = 87 \text{ trips}$$

TRIP GENERATION FOR FAIRVIEW ROAD & BEELER ROAD SUBDIVISIONS

215 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			ENERATE TRAFFIC PEAK HC		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
_	Single-Family			26%	74%		63%	37%	
#210	Detached Housing	215 Houses	2,155	41	118	159	134	78	212
To	Total New Volume Site Trips			41	118	159	134	78	212

ITE Trip Generation Manual, 11th Edition

TRIP GENERATION FOR EXISTING HOUSES BETWEEN EAST EMORY ROAD & BEELER FARMS LANE

126 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC		GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR	
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
	Single-Family	126 Houses		26%	74%		63%	37%	
#210	Single-Family Detached Housing		1,249	24	68	92	77	46	123
To	otal New Volume Si	te Trips	1,249	24	68	92	77	46	123

ITE Trip Generation Manual, 11th Edition

TRIP GENERATION FOR EXISTING HOUSES BETWEEN EAST EMORY ROAD & BEELER FARMS LANE

126 Single-Family Detached Houses

126 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 4.84 + 2.68$$

Ln(T) = 7.13

T = 1,249 trips

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 5 + 0.12$$

Ln(T) = 4.52

T = 92 trips

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 4.84 + 0.27$$

Ln(T) = 4.82

T = 123 trips

27 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR		PM	GENERATED TRAFFIC PM PEAK HOUR		
				ENTER		TOTAL		EXIT	TOTAL
	Single-Family			26%	74%		63%	37%	
#210	Single-Family Detached Housing	27 Houses	303	6	17	23	18	11	29
To	Total New Volume Site Trips			6	17	23	18	11	29

ITE Trip Generation Manual, 11th Edition

27 Single-Family Detached Houses

27 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 3.30 + 2.68$$

Ln(T) = 5.71

T = 303 trips

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 3 + 0.12$$

Ln(T) = 3.12

T = 23 trips

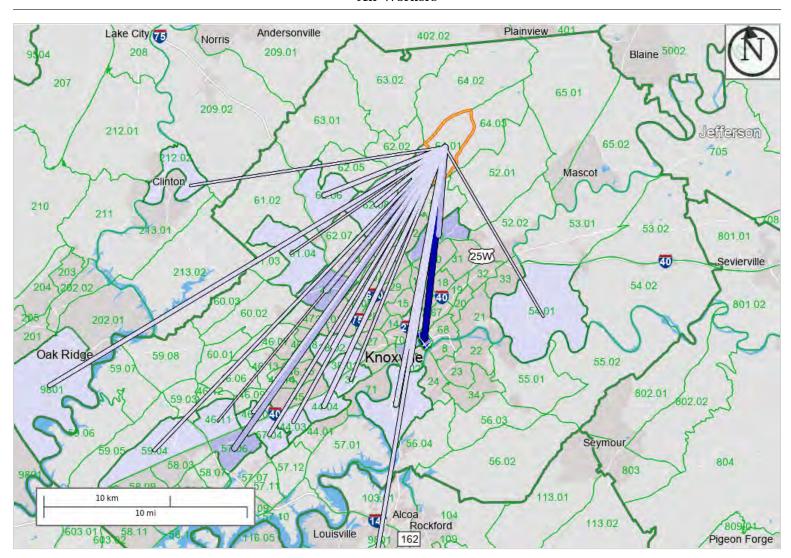
Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 3.30 + 0.27$$

Ln(T) = 3.37

T = 29 trips


APPENDIX H

2019 CENSUS BUREAU DATA

Work Destination Report - Home Selection Area to Work Census Tracts All Jobs for All Workers in 2019

Created by the U.S. Census Bureau's OnTheMap https://onthemap.ces.census.gov on 05/11/2022

Counts of All Jobs from Home Selection Area to Work Census Tracts in 2019 All Workers

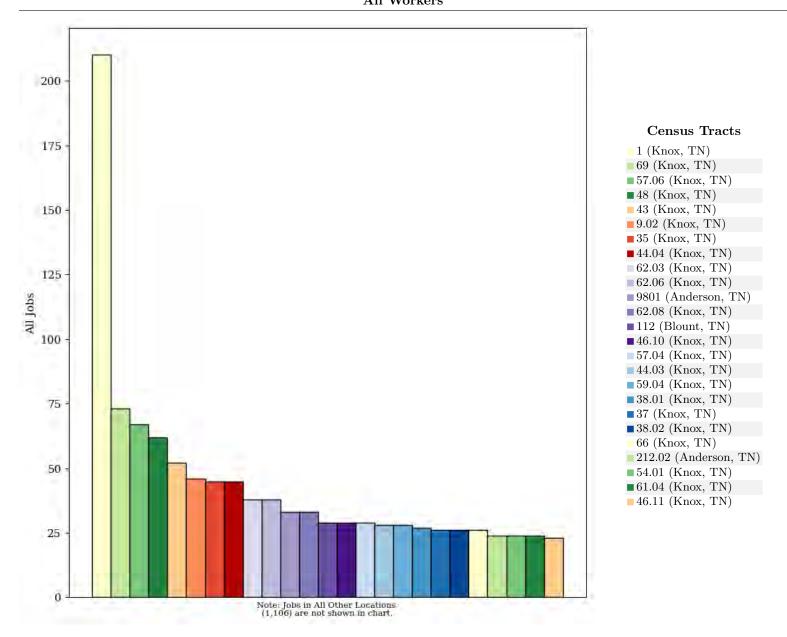
Map Legend

Job Count 184 - 210 157 - 183

- 130 156
- 104 129 77 - 103
- 50 76
- 23 49

Selection Areas

 ★ Analysis Selection


Job Count

- **№** 184 210
- **№** 157 183
- **№** 130 156
- **№** 104 129
- ₹ 77 103
- ₩ 50 76
- ₩ 23 49

All Jobs from Home Selection Area to Work Census Tracts in 2019 ${\rm All\ Workers}$

All Jobs from Home Selection Area to Work Census Tracts in 2019
All Workers

	20	19
Census Tracts as Work Destination Area	Count	Share
All Census Tracts	2,191	100.0
1 (Knox, TN)	210	9.6
69 (Knox, TN)	73	3.3
57.06 (Knox, TN)	67	3.1
48 (Knox, TN)	62	2.8
43 (Knox, TN)	52	2.4
9.02 (Knox, TN)	46	2.1
35 (Knox, TN)	45	2.1
44.04 (Knox, TN)	45	2.1
62.03 (Knox, TN)	38	1.7
62.06 (Knox, TN)	38	1.7

	20	19
Census Tracts as Work Destination Area	Count	Share
0001 (A 1 (DNI)		1 5
9801 (Anderson, TN)	33	1.5
62.08 (Knox, TN)	33	1.5
112 (Blount, TN)	29	1.3
46.10 (Knox, TN)	29	1.3
57.04 (Knox, TN)	29	1.3
44.03 (Knox, TN)	28	1.3
59.04 (Knox, TN)	28	1.3
38.01 (Knox, TN)	27	1.2
37 (Knox, TN)	26	1.2
38.02 (Knox, TN)	26	1.2
66 (Knox, TN)	26	1.2
212.02 (Anderson, TN)	24	1.1
54.01 (Knox, TN)	24	1.1
61.04 (Knox, TN)	24	1.1
46.11 (Knox, TN)	23	1.0
All Other Locations	1,106	50.5

Additional Information

Analysis Settings

Analysis Type	Destination
Destination Type	Census Tracts
Selection area as	Home
Year(s)	2019
Job Type	All Jobs
Selection Area	64.01 (Knox, TN) from Census Tracts
Selected Census Blocks	41
Analysis Generation Date	05/11/2022 11:37 - OnTheMap 6.8.1
Code Revision	f9358819 d46 a60 bb 89052036516 a1c8 fe8 bbbeac
LODES Data Version	20211018_1647

Data Sources

Source: U.S. Census Bureau, OnTheMap Application and LEHD Origin-Destination Employment Statistics (Beginning of Quarter Employment, 2nd Quarter of 2002-2019).

Notes

- 1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
- 2. Educational Attainment is only produced for workers aged 30 and over.
- 3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.

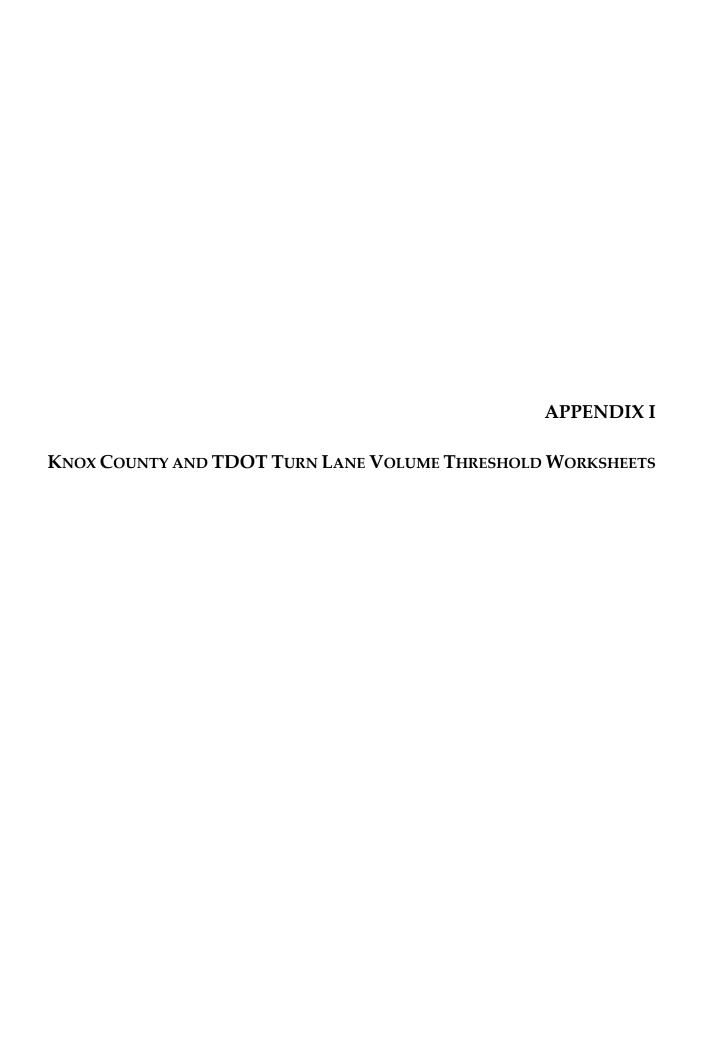


TABLE 4A

OPP	OSING 63	THROU	GH VOLUME	PLUS RIGHT	T-TURN	VOLUMI	. *
VO	LUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
	- 149	300 245	235 200	185 160	145 130	120 110	100 90
1	- 249 - 299	205 175	Beeler Re	*	115 105	100 90	80 70
	- 349 - 399	155 135	2027 Projected A	3	95 85	80 70	65 60
	- 449 - 499	120 105	SB Left Tu	3	75 70	65 60	55 50
	- 549 - 599	95 85	SB Left-Turn Warrar	ited }	65 60	55 50	50 45
	- 649 - 699	75 70	65 60	60 55	55 50	45 40	40 35
	- 749 г More	65 60	55 50	50 45	45 40	35 35	30 30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600		
100 - 149	100	80	70	60	55	50		
150 - 199	90	75	65	55	50	4 5		
200 - 249	80	72	- 460	55	50	45		
250 - 299	70	65	55	50	45	40		
300 - 349	65	60	50	50	45	40		
350 - 399	60	55	50	45	40	40		
400 - 449	55	50	45	45	40	35		
450 - 499	50	45	45	40	35	35		
500 - 549	50	45	40	40	35	35		
550 - 599	45	40	40	35	35	35		
600 - 649	40	35	35	35	35	30		
650 - 699	35	35	35	30	30	30		
700 - 749	30	30	30	30	30	30		
750 or More	30	30	30	30	30	30		

^{*} Or through volume only if a right-turn lane exists.

TABLE 4A

·	OPPOSING	THROU	GH VOLUME I	PLUS RIGHT	TURN Y	VOLUMI	*
	VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
100 + 0 =	100 100 - 149	300	235	185	145	120	100
-	150 - 199	245	200	160	130	110	90
	200 - 249	205	170	140	115	100	80
ì	250 - 299	175	150	125	105	90	70
1	300 - 349	155	Beel	er Road at	95	80	65
Į	350 - 399	135	1 7	Farms Lane	85	70	60
<u> </u>	400 - 449	120	}		75	65	55
i	450 - 499	105		ed PM Peak Hour t Turns = 35	70	60_	50
ſ	500 - 549	95	SB Lei	t Turns – 35	65	55	50
1	550 - 599	85	SB Left-T	urn Lane NOT	\$ 60	50	45
ſ	600 - 649	75	w	arranted	55	45	40
l	650 - 699	70	- Chium	mssuy	50	40	35
-	700 - 749	65	55	50	45	35	30
ĺ	750 or More	60	50	45	40	35	30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600		
100 - 149	100	80	70	60	55	50		
150 - 199	90	75	65	55	50	4 5		
200 - 249	80	72	- 460	55	50	45		
250 - 299	70	65	S5	50	45	40		
300 - 349	65	60	50	50	45	40		
350 - 399	60	55	50	45	40	40		
400 - 449	55	50	45	45	40	35		
450 - 499	50	45	45	40	35	35		
500 - 549	50	45	40	40	35	35		
550 - 599	45	40	40	35	35	35		
600 - 649	40	35	35	35	35	30		
650 - 699	35	35	35	30	30	30		
700 - 749	30	30	30	30	30	30		
750 or More	30	30	30	30	30	30		

^{*} Or through volume only if a right-turn lane exists.

TABLE 4A

OPPOSING	THROU	GH VOLUME	PLUS RIGH	r-turn	VOLUMI	_ *
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
29 + 0 = 29 100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90
200 - 249	205	170	140	115	100	80
250 - 299	175	150	125	105	90	70
300 - 349	155	Beeler Road at Beeler Road Subdivision		95	S0	65
350 - 399	135			85	70	60
400 - 449	120	Entra	3	75	65	55
450 - 499	105	2027 Projected		70	60	50
500 - 549 550 - 599	95 85	SB Left To	SB Left Turns = 40		55 50	50 45
600 - 649	75	SB Left-Turn Lane NOT Warranted		55	45	40
650 - 699	70			50	40	35
700 - 749	65	55	50	45	35	30
750 or More	60	50	45	40	35	30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600		
100 - 149	100	80	70	60	55	50		
150 - 199	90	75	65	55	50	4 5		
200 - 249	80	72	- 460	55	50	45		
250 - 299	70	65	S5	50	45	40		
300 - 349	65	60	50	50	45	40		
350 - 399	60	55	50	45	40	40		
400 - 449	55	50	45	45	40	35		
450 - 499	50	45	45	40	35	35		
500 - 549	50	45	40	40	35	35		
550 - 599	45	40	40	35	35	35		
600 - 649	40	35	35	35	35	30		
650 - 699	35	35	35	30	30	30		
700 - 749	30	30	30	30	30	30		
750 or More	30	30	30	30	30	30		

^{*} Or through volume only if a right-turn lane exists.

TABLE 4A

OPPOSI	NG THROU	GH VOLUME	T-TURN	VOLUMI	C *	
23 + 0 = 23		150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
23 + 0 = 23 23 100 - 149 150 - 199		235 200	185 160	145 130	120 110	100 90
200 - 249 250 - 299		Beeler Ro	*	115 105	100 90	80 70
300 - 349 350 - 399	•	Beeler Road S Entrar)	95 85	80 70	65 60
400 - 44 9 450 - 499		2027 Projected P. SB Left Tur	1	75 70	65 60	55 50
500 - 549 550 - 599		SB Left-Turn Lane NOT Warranted		65 60	55 50	50 45
600 - 649 650 - 699		65 60	55	55 50	45 40	40 35
700 - 749 750 or Mor		55 50	50 45	45 40	35 35	30 30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600		
100 - 149	100	80	70	60	55	50		
150 - 199	90	75	65	55	50	4 5		
200 - 249	80	72	- 460	55	50	45		
250 - 299	70	65	S5	50	45	40		
300 - 349	65	60	50	50	45	40		
350 - 399	60	55	50	45	40	40		
400 - 449	55	50	45	45	40	35		
450 - 499	50	45	45	40	35	35		
500 - 549	50	45	40	40	35	35		
550 - 599	45	40	40	35	35	35		
600 - 649	40	35	35	35	35	30		
650 - 699	35	35	35	30	30	30		
700 - 749	30	30	30	30	30	30		
750 or More	30	30	30	30	30	30		

^{*} Or through volume only if a right-turn lane exists.

TABLE 5A

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 395			
100 - 149	250	180	140	110	80	70			
150 - 199	200	140	105	90	70	60			
200 - 249	160	115	85	75	65	55			
250 - 299	130	100	75	65	60	50			
300 - 349	110	90	70	60	55	45			
350 - 399	100	80	65	55	50	40			
400 - 449	90	70	60	50	45	35			
450 - 499	80	65	55	45	40	30			
500 - 549	70	60	45	35	35	25			
550 - 599	65	55	40	35	30	25			
600 - 649	60	45	35	30	25	25			
650 - 699	55	35	35	30	25	20			
700 - 749	50	35	30	25	20	20			
750 or More	45	35	25	25	20	20			

OPPOSING	THROU	UGH VOLUME	PLUS RIGH	T-TURN	VOLUME	*
VOLUME	330 - 379 400 - 449 430 - 499		500 - 549	550 - 599	=/ > 600	
100 - 149 150 - 199	70 60	East Emory Road at Beeler Road 2022 Existing AM Peak Hour WB Left Turns = 31 Left Turn Lane		45 40	40 35	35 30
200 - 249 250 - 299	55 50			35° 30	30 30	30 30
300 - 349 350 - 399	45 40			30 25	25 25	25 20
9 + 21 = 470	35 30	Warra	nted	25 20	20	20 20
500 - 549 550 - 599	25 25	25 20	20 20	20 20	20 20	15 15
600 - 649 650 - 699	25 20	20 20	20 20	20 20	20 20	15 15
700 - 749 750 or More	20 20	20 20	20 20	15 15	15 15	15 15

^{*} Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399		**	Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 60	
Fewer Than 25 25 - 49 50 - 99		-		Yes	Yes Yes	Yes Yes	
100 - 149 150 - 199		East Emory Road at	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
200 - 249 250 - 299	Yes Yes	Beeler Road	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
300 - 349 350 - 399	Yes Yes	2022 Existing AM Peak F EB Right Turns = 21	-	Yes Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499	Yes Yes	Right Turn Lane NO Warranted	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 ar More	Yes	Yes	Yes	Yes	Yes	Yes	

^{*} Or through volume only if a left-turn lane exists.

TABLE 5A

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN Y	OLUME	*
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 395
100 - 149	250	180	140	110	80	70
150 - 199	200	140	105	90	70	60
200 - 249	160	115	85	75	65	55
250 - 299	130	100	75	65	60	50
300 - 349	110	90	70	60	55	45
350 - 399	100	80	65	55	50	40
400 - 449	90	70	60	50	45	35
450 - 499	80	65	55	45	40	30
500 - 549	70	60	45	35	35	25
550 - 599	, 65	55	40	35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749	50	35	30	25	20	20
750 or More	45	35	25	25	20	20

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600		
100 - 149 150 - 199	70 60			45 40	40 35	35 30		
200 - 249 250 - 299	East	East Emory Road at Beeler Road		35° 30	30 30	30 30		
300 - 349 350 - 399		ting PM Peak Hour	35 30	30 25	25 25	25 20		
400 - 449 450 - 499	E Le	ft Turn Lane	30 25	25 20	20 20	20 20		
500 - 549 550 - 599	25	Warranted	20 20	20 20	20 20	15 15		
600 - 649 650 - 699	25 20			20 20	20 20	15 15		
700 - 749 750 or More	20 20 20		20 20	15 15	15 15	15 15		

^{*} Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399		**	Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	**************************************	Yes	Yes Yes	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RI	GHT-TURN	THE	OUGH VOLUM	E PLUS LEF	T-TURN	VOLUM	E *
	VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
50	Fewer Than 25 25 - 49 50 - 99		*		Yes	Yes Yes	Yes Yes
	100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	200 - 249 250 - 299	Yes Yes		Yes	Yes Yes	Yes Yes	Yes Yes
	300 - 349 350 - 399	Yes Yes	1 /	ory Road at er Road	Yes Yes	Yes Yes	Yes Yes
	400 - 449 450 - 499	Yes Yes		2022 Existing PM Peak Hour EB Right Turns = 60		Yes Yes	Yes Yes
	500 - 549 550 - 599	Yes Yes		Turn Lane ranted	Yes Yes	Yes Yes	Yes Yes
	600 ar More	Yes	Tuyeuu	yer Yes	Yes	Yes	Yes

^{*} Or through volume only if a left-turn lane exists.

TABLE 5A

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN Y	VOLUME	**
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 395
100 - 149	250	180	140	110	80	70
150 - 199	200	140	105	90	70	60
200 - 249	160	115	85	75	65	55
250 - 299	130	100	75	65	60	50
300 - 349	110	90	70	60	55	45
350 - 399	100	80	65	55	50	40
400 - 449	90	70	60	50	45	35
450 - 499	80	65	55	45	40	30
500 - 549	70	60	45	35	35	25
550 - 599	, 65	55	40	35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749	50	35	30	25	20	20
750 or More	45	35	25	25	20	20

OPPOSING	THRO	UGH VOLUME	PLUS RIGH	T-TURN	VOLUME	*
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600
100 - 149 150 - 199	70 60	East Emory Road at Beeler Road 2027 Projected AM Peak Hour WB Left Turns = 58 Left Turn Lane		45 40	40 35	35 30
200 - 249 250 - 299	55 50			35° 30	30 30	30 30
300 - 349 350 - 399	45 40			30 25	25 25	25 20
400 - 449 450 - 499	35 30	Warran		25 20	20	20 20
500 - 549 550 - 599	25 25	25 20	20 20	20 20	20 20	15 15
600 - 649 650 - 699	25 20	20 20	20 20	20 20	20 20	15 15
700 - 749 750 or More	20 20	20 20	20 20	15 15	15 15	15 15

^{*} Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399		**	Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	**************************************	Yes	Yes Yes	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600		
Fewer Than 25 25 - 49 50 - 99			•	Yes	Yes Yes	Yes Yes		
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
200 - 249 250 - 299	Yes Yes		Yes	Yes Yes	Yes Yes	Yes Yes		
300 - 349 350 - 399	Yes Yes	East Emory Beeler		Yes Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499	Yes Yes	2027 Projected AM EB Right Turns = 40		Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes Yes	Right Turn I Warrar)	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Tuyeuu	quyes -	Yes	Yes	Yes		

^{*} Or through volume only if a left-turn lane exists.

TABLE 5A

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN Y	OLUME	, **c
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 395
100 - 149	250	180	140	110	80	70
150 - 199	200	140	105	90	70	60
200 - 249	160	115	85	75	65	55
250 - 299	130	100	75	65	60	50
300 - 349	110	90	70	60	55	45
350 - 399	100	80	65	55	50	40
400 - 449	90	70	60	50	45	35
450 - 499	80	65	55	45	40	30
500 - 549	70	60	45	35	35	25
550 - 599	65	55	40	35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749	50	35	30	25	20	20
750 or More	45	35	25	25	20	20

OPPOSING	THRO	UGH VOLUME	PLUS RIGH	IT-TURN V	VOLUME	*
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600
100 - 149 150 - 199	70 60	60 .55	50 45	45 40	40 35	35 30
200 - 249 250 - 299	55 50	East Emory Road	•	35 30	30 30	30 30
300 - 349 350 - 399	45 40	2027 Projected Pl WB Left Tur	,	30 25	25 25	25 20
400 - 449 450 - 499	35 30	Left Turn		25 20	20 20	20 20
500 - 549 550 - 599	25 25	Warran	4	20 20	20 20	15 15
600 - 649 650 - 699	25 20	20 20	20 20	20 20	20 20	15 15
+ 135 700 - 749 812 750 or More	20 20	20 20	20	15	15 15	15 15

^{*} Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399		**	Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	**************************************	Yes	Yes Yes	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLUM	ME PLUS LE	FT-TURN	VOLUM	677 E *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600
Fewer Than 25 25 - 49 50 - 99				Yes	Yes Yes	Yes Vas
150 - 199	E=10=100 E	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes Yes		Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	East Emor Beeler	•	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	2027 Proje EB Right T	,	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Right Tu Warra	ınted }	Yes Yes	Yes Yes	Yes Yes
600 ar More	Yes	Tuyeuu	y	Yes	Yes	Yes

^{*} Or through volume only if a left-turn lane exists.

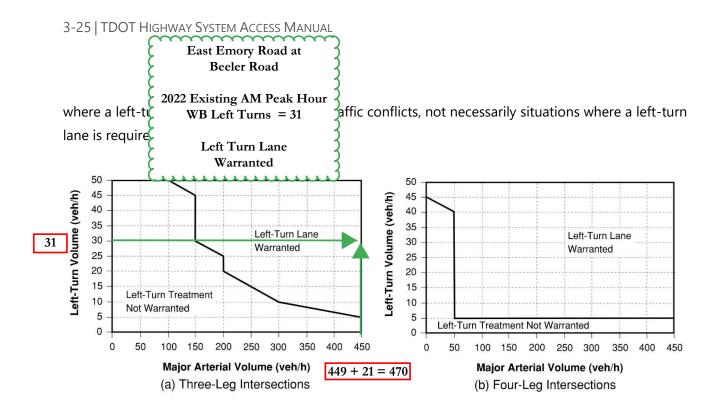


Figure 3-15: Left-Turn Lane Warrant for Urban and Suburban Arterials (Unsignalized)^{20, 21}

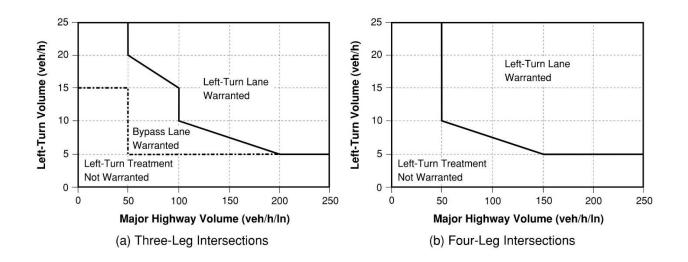


Figure 3-16: Left-Turn Lane Warrant for Two-Lane Rural Roadways (Unsignalized) 20, 21

²⁰ TRB, NCHRP Repot 745, Left-Turn Accommodations at Unsignalized Intersections (2013)

²¹ AASHTO, A Policy on Geometric Design of Highways and Streets 7th Edition (2018)

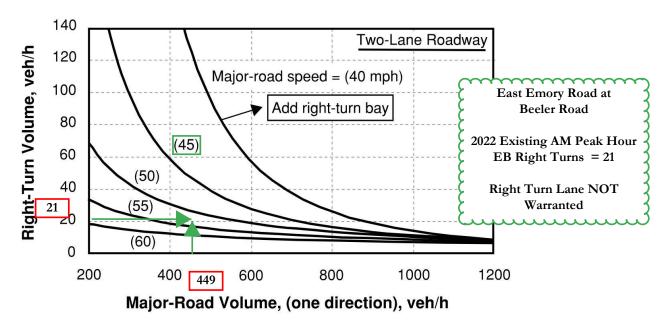


Figure 3-18: Right-Turn Lane Warrant along Two-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control)²⁴

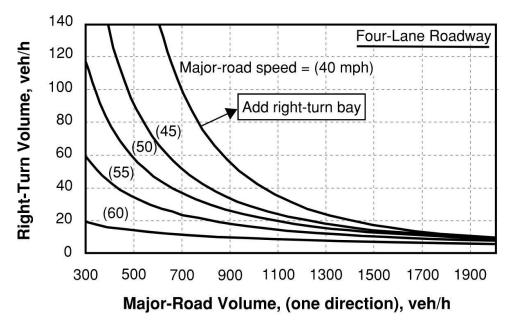


Figure 3-19: Right-Turn Lane Warrant along Four-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control) ²⁵

²⁴ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

²⁵ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

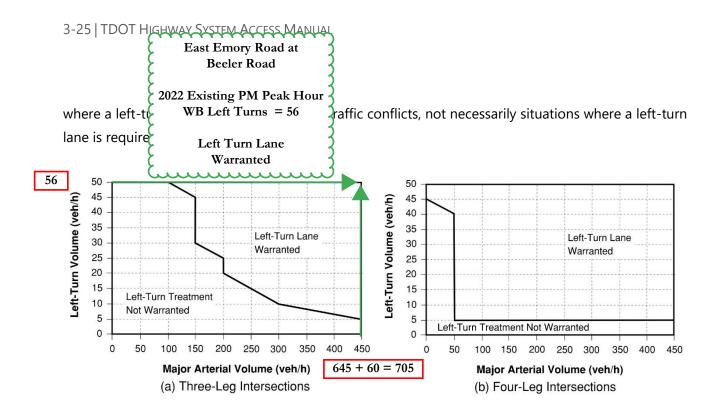


Figure 3-15: Left-Turn Lane Warrant for Urban and Suburban Arterials (Unsignalized)^{20, 21}

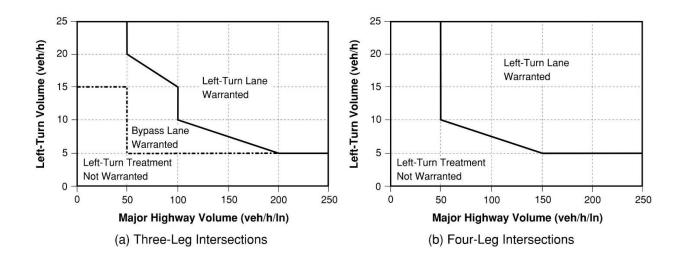


Figure 3-16: Left-Turn Lane Warrant for Two-Lane Rural Roadways (Unsignalized) 20, 21

²⁰ TRB, NCHRP Repot 745, Left-Turn Accommodations at Unsignalized Intersections (2013)

²¹ AASHTO, A Policy on Geometric Design of Highways and Streets 7th Edition (2018)

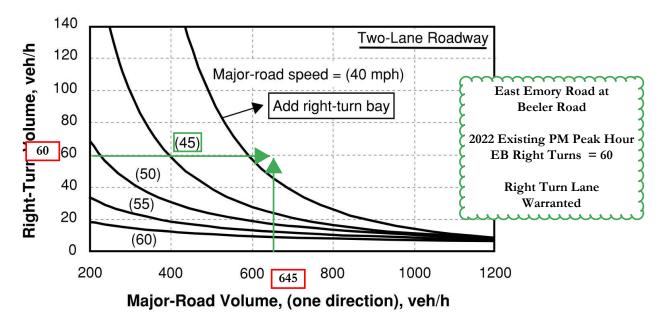


Figure 3-18: Right-Turn Lane Warrant along Two-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control)²⁴

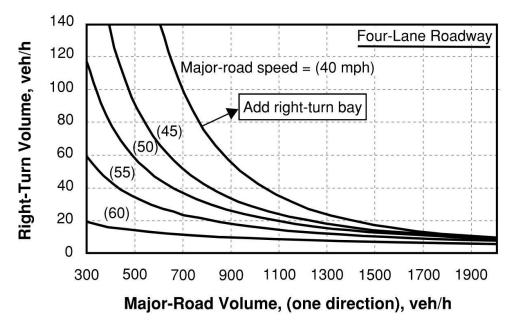


Figure 3-19: Right-Turn Lane Warrant along Four-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control) 25

²⁴ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

²⁵ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

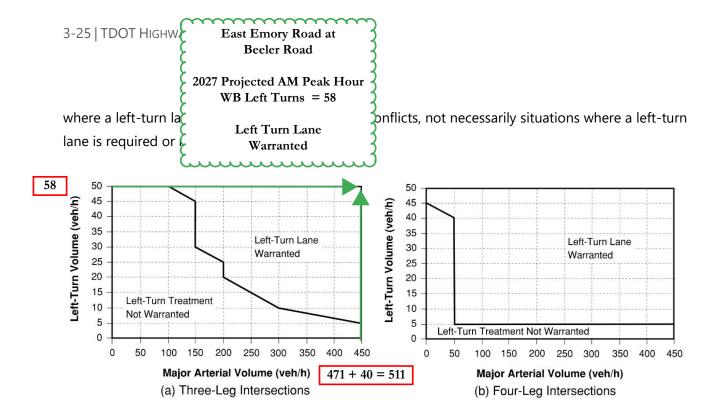


Figure 3-15: Left-Turn Lane Warrant for Urban and Suburban Arterials (Unsignalized)^{20, 21}

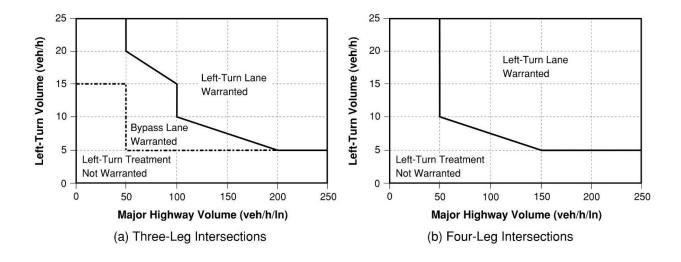


Figure 3-16: Left-Turn Lane Warrant for Two-Lane Rural Roadways (Unsignalized) 20, 21

²⁰ TRB, NCHRP Repot 745, Left-Turn Accommodations at Unsignalized Intersections (2013)

²¹ AASHTO, A Policy on Geometric Design of Highways and Streets 7th Edition (2018)

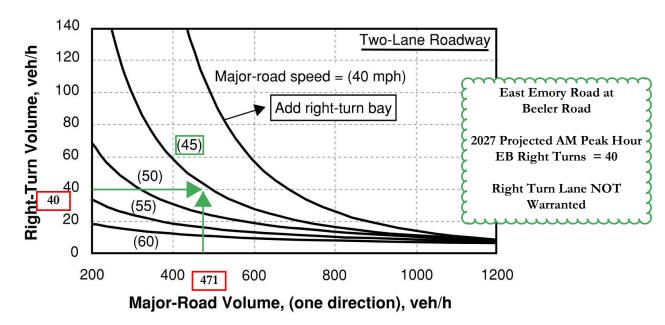


Figure 3-18: Right-Turn Lane Warrant along Two-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control)²⁴

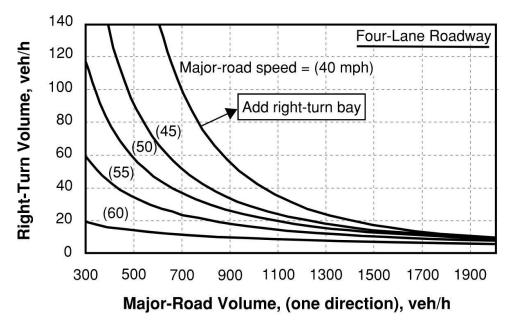


Figure 3-19: Right-Turn Lane Warrant along Four-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control) ²⁵

²⁴ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

²⁵ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

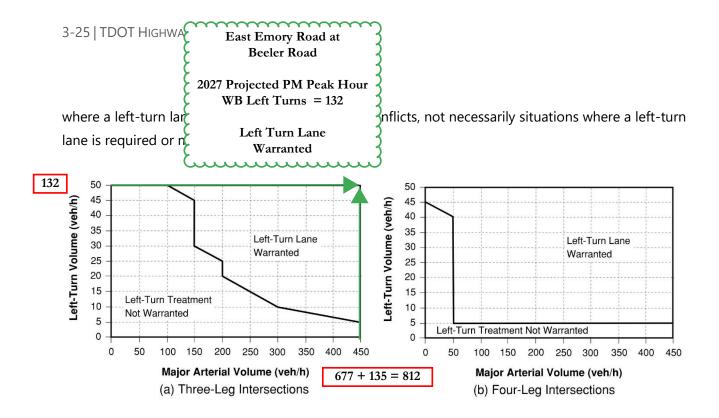


Figure 3-15: Left-Turn Lane Warrant for Urban and Suburban Arterials (Unsignalized)^{20, 21}

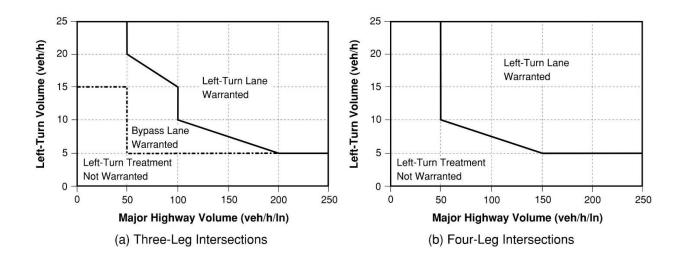


Figure 3-16: Left-Turn Lane Warrant for Two-Lane Rural Roadways (Unsignalized) 20, 21

²⁰ TRB, NCHRP Repot 745, Left-Turn Accommodations at Unsignalized Intersections (2013)

²¹ AASHTO, A Policy on Geometric Design of Highways and Streets 7th Edition (2018)

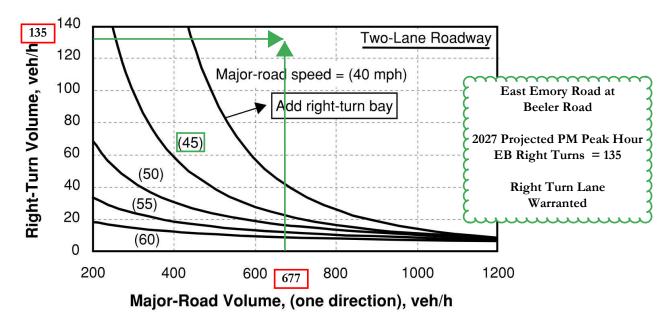


Figure 3-18: Right-Turn Lane Warrant along Two-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control)²⁴

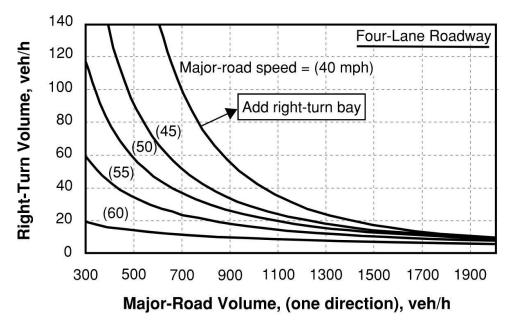


Figure 3-19: Right-Turn Lane Warrant along Four-Lane Roadway (Unsignalized Intersection with Two-Way Stop-Control) ²⁵

²⁴ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

²⁵ TRB, NCHRP 457, Evaluating Intersection Improvements (2001)

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	, 4e
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199			ry Road at	3		
200 - 249 250 - 299		Beeler	Road to 5-Lanes)		Yes	Yes Yes
300 - 349 350 - 399			AM Peak Hour Turns = 40	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	•		Lane NOT	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	1 >	Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLU	ME PLUS LI	EFT-TURN	VOLUM	E *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600
Fewer Than 25 25 - 49 50 - 99				Yes	Yes Yes	Yes Yes
190 - 149 150 - 199	(SEE) - 111 (1	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

^{*} Or through volume only if a left-turn lane exists.

TABLE 5B

RIGHT-TURN	THRO	OUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399		*	Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes · Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

697/2 = 348.5 * 1.05 = 366THROUGH VOLUME PLUS LEFT-TURN VOLUME * RIGHT-TURN VOLUME 350 - 399 400 - 449 450 - 499 +/> 600 500 - 549 550 - 600 Fewer Than 25 25 - 49 Yes Yes 50 - 99 Yes Yes Yes 135 100 - 149 Yes Yes Yes Yes Yes Yes Yes Yes Yes 150 - 199 East Emory Road at 200 - 249 Yes Yes Yes Yes Beeler Road 250 - 299 Yes Yes Yes Yes (Widened to 5-Lanes) 300 - 349 Yes Yes Yes Yes 2030 Projected PM Peak Hour 350 - 399 Yes Yes Yes Yes EB Right Turns = 135 400 - 449 Yes Yes Yes Yes 450 - 499 Yes Yes Yes Yes Right Turn Lane NOT Warranted 500 - 549 Yes Yes Yes Yes A THE 550 - 599 Yes Yes Yes Yes 600 or More Yes Yes Yes Yes Yes Yes

^{*} Or through volume only if a left-turn lane exists.

APPENDIX J

SIMTRAFFIC VEHICLE QUEUE WORKSHEETS

Movement	EB	WB	NB
Directions Served	TR	LT	LR
Maximum Queue (ft)	2	188	189
Average Queue (ft)	0	39	84
95th Queue (ft)	2	114	156
Link Distance (ft)	221	212	215
Upstream Blk Time (%)		0	0
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	NB
Directions Served	TR	LT	LR
Maximum Queue (ft)	36	235	252
Average Queue (ft)	3	125	191
95th Queue (ft)	17	242	298
Link Distance (ft)	221	212	215
Upstream Blk Time (%)		7	60
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	NB	NB
Directions Served	R	LT	L	R
Maximum Queue (ft)	11	162	103	107
Average Queue (ft)	0	35	33	43
95th Queue (ft)	5	105	72	79
Link Distance (ft)		200	202	
Upstream Blk Time (%)		0	0	
Queuing Penalty (veh)		0	0	
Storage Bay Dist (ft)	75			100
Storage Blk Time (%)			0	0
Queuing Penalty (veh)			0	0

Movement	EB	EB	WB	NB	NB
Directions Served	T	R	LT	L	R
Maximum Queue (ft)	9	34	224	171	112
Average Queue (ft)	0	4	104	62	41
95th Queue (ft)	5	20	216	145	99
Link Distance (ft)	221		200	202	
Upstream Blk Time (%)			3	1	
Queuing Penalty (veh)			0	0	
Storage Bay Dist (ft)		75			100
Storage Blk Time (%)				9	0
Queuing Penalty (veh)				8	0

Movement	EB	WB	NB	NB
Directions Served	TR	L	L	R
Maximum Queue (ft)	6	54	81	82
Average Queue (ft)	0	18	35	41
95th Queue (ft)	5	45	66	66
Link Distance (ft)	275		197	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		75		100
Storage Blk Time (%)		0	0	0
Queuing Penalty (veh)		0	0	0

Movement	EB	EB	WB	WB	NB	NB
Directions Served	T	TR	L	T	L	R
Maximum Queue (ft)	6	29	85	10	121	110
Average Queue (ft)	0	3	40	0	47	37
95th Queue (ft)	4	17	71	10	100	76
Link Distance (ft)	275	275		340	197	
Upstream Blk Time (%)					0	
Queuing Penalty (veh)					0	
Storage Bay Dist (ft)			75			100
Storage Blk Time (%)			1		3	0
Queuing Penalty (veh)			3		3	0

APPENDIX K

TRAFFIC SIGNAL WARRANT WORKSHEETS

PROJECTED FUTURE VOLUMES IN 2030 WITH TRAFFIC GROWTH AND GENERATED TRAFFIC East Emory Road at Beeler Road

	East Em	ory Road	Beeler	r Road	East Em	ory Road
TIME	WESTI	BOUND	NORTH	BOUND	EASTB	OUND
BEGIN	LT	THRU	LT	RT	THRU	RT
7:00 AM	3	108	9	27	82	5
7:15 AM	8	117	9	22	119	5
7:30 AM	10	148	8	24	115	4
7:45 AM	9	161	5	16	111	4
Sum	30	534	31	89	427	18
Growth from Beeler Farms Sub.	4	0	5	15	0	3
Growth from Beeler Road Sub.	11	0	16	47	0	7
General Growth	0	42.72	0	0	34.16	0
Trips Generated 7-8 am	18	0	21	63	0	12
2030	63	577	73	215	461	40
8:00 AM	4	124	5	23	104	8
8:15 AM	7	113	11	4	93	3
8:30 AM	4	105	5	13	52	5
8:45 AM	8	86	5	6	55	11
Sum	23	428	26	46	304	27
Growth from Beeler Farms Sub.	3	0	4	11	0	2
Growth from Beeler Road Sub.	8	0	12	35	0	5
General Growth	0	34.24	0	0	24.32	0
Trips Generated 8-9 am	13	0	16	48	0	9
2030	48	462	57	140	328	43
11:00 AM	1	59	9	7	62	5
11:15 AM	5	62	6	2	68	3
11:30 AM	6	77	8	4	76	8
11:45 AM	5	62	11	8	68	8
Sum	17	260	34	21	274	24
Growth from Beeler Farms Sub.	2	0	3	8	0	1
Growth from Beeler Road Sub.	5	0	8	24	0	4
General Growth	0	20.8	0	0	21.92	0
Trips Generated 11am-12 pm	9	0	11	33	0	6
2030	34	281	56	86	296	35
12:00 PM	8	64	11	6	73	13
12:15 PM	5	66	7	2	84	6
12:30 PM	2	70	10	1	83	6
12:45 PM	5	61	5	10	91	7
Sum	20	261	33	19	331	32
Growth from Beeler Farms Sub.	2	0	3	9	0	2
Growth from Beeler Road Sub.	6	0	9	27	0	4
General Growth	0	20.88	0	0	26.48	0
Trips Generated 12-1 pm	10	0	12	36	0	7
2030	39	282	57	91	357	44
2:00 PM	10	97	4	10	110	3
2:15 PM	7	89	4	7	106	7
2:30 PM	7	78	6	10	113	6
2:45 PM	10	95	4	11	110	7
Sum	34	359	18	38	439	23
Growth from Beeler Farms Sub.	3	0	4	11	0	2
Growth from Beeler Road Sub.	7	0	11	33	0	5
General Growth	0	28.72	0	0	35.12	0
Trips Generated 2-3 pm	13	0	15	45	0	8
2030	57	388	47	126	474	38
3:00 PM	11	102	8	15	96	5
3:15 PM	10	109	10	8	123	10
3:30 PM	18	98	6	6	107	7
3:45 PM	21	178	11	5	135	11
Sum	60	487	35	34	461	33
Growth from Beeler Farms Sub.	4	0	4	13	0	2
Growth from Beeler Road Sub.	9	0	14	41	0	6
General Growth	0	38.96	0	0	36.88	0
Trips Generated 3-4 pm	15	0	18	55	0	10
2030	88	526	71	143	498	52
4:00 PM	11	129	10	8	144	10
4:15 PM	14	113	7	10	147	11
4:30 PM	11	103	10	9	151	11
4:30 PM 4:45 PM	17	120	4	9	164	11
4.43 FW	53	465	31	36	606	43
Growth from Beeler Farms Sub.	4	0	5	15	006	3
Growth from Beeler Road Sub.	10	0	15	46	0	7
Growth from Beeler Road Sub. General Growth	0	37.2	0	0	48.48	0
Trips General Growth	17	0	21	62	48.48	12
1 rips Generated 4-5 pm 2030	85	502	72	158	654	64
		109				12
5:00 PM	16 12		8	12	173	
5:15 PM		112	11	16	143	16
5:30 PM 5:45 PM	11	138	9	10 13	165	21
5:45 PM	13	115	6		150	9
Sum	52	474	34	51	631	58
Growth from Beeler Farms Sub.	5	0	5	16	0	3
Growth from Beeler Road Sub.	11	0	17	50	0	8
General Growth	0	37.92	0	0	50.48	0
Trips Generated 5-6 pm	19	0	23	68	0	13
2030	87	512	79	185	681	81

Existing Volumes Existing Volumes Existing Volumes Existing Volumes Sum Growth from Beeler Farms Subdivision Growth from Beeler Road Subdivision
Growth Rate of 1.0% for 8 years
Trips Generated by Beeler Road Subdivision Total Sum

Assumed Average Growth Rate (%)=	1.0%	0% Increase due to Covid
Number of years =	5	
Horizon Year =	2027	# of Horizon Years = 5

Note 1: The entering and exiting traffic volumes are estimated based on trip generation of the entire development, based on assumed amounts of entering and exiting traffic, assumed percentages of directional traffic, and the assumed percentage of trips based on time of day (from TDOT Table 4.2 in Traffic Design Manual)

Note 2: It is assumed that the construction of homes is linear growth

	TOD	T Widening Project =	8	years	20	030			
Daily Trips Generated by									
Entire Development:	1,267	D	aily Trips Generated	d from Subdivision/Year	r	253	=	1,267 / 5	
100% of trips						1267	trips by	2027	

	AM	PM
Traffic Movement Assumed Distribution:	25% to west East Emory, 75% to east East Emory	40% to west East Emory, 60% to east East Emory
	40% from west East Emory, 60% from east East Emory	50% from west East Emory, 50% from east East Emory

:S	townhouses	Assume all
----	------------	------------

Entering and Exiting %'s (from ITE trip rate):	Directional Distribution Assumption	ons:
26% Enter AM Hours	25% to west East	Emory Road
74% Exit	75% to east East I	Emory Road
	40% from west Ea	last Emory Road
	60% from east Ea	ast Emory Road
50% Enter Mid-Day Hours	25% to west East	Emory Road
50% Exit	75% to east East I	Emory Road Assume same DD for AM Peak Hour
	40% from west Ea	last Emory Road
	60% from east Ea	ast Emory Road
63% Enter PM Hours	40% to west East	Emory Road
37% Exit	60% to east East I	Emory Road
	50% from west Ea	last Emory Road
	50% from east Ea	ast Emory Road

Population Tier = A	(Knoxville)			
	erage for Arterial Facilities (Two-	Lane)		
		· · · · · · · · · · · · · · · · · · ·		
Time of Day Perce	ntage of Trips			
7-8 am	9.03%			
8-9 am	6.78%			
11 am-Noon	4.68%			
Noon-1 pm	5.17%			
2-3 pm	6.34%			
3-4 pm	7.83%			
1-5 pm	8.79%			
5-6 pm	9.64%			
	58.26%			

PROJECTED FUTURE VOLUMES FROM GENERATED TRAFFIC FROM REMAINING HOMES IN BEELER FARMS SUBDIVISION East Emory Road at Beeler Road

	East Er	nory Road		r Road	East Emo	ory Road
TIME		BOUND	NORTH	BOUND	EASTBO	
BEGIN	LT	THRU	LT	RT	THRU	RT
7:00 AM						
7:15 AM						
7:30 AM						
7:45 AM						
Trips Generated 7-8 am	4	0	5	15	0	3
3370 331111111 7 3 4111					·	
8:00 AM						
8:15 AM						
8:30 AM						
8:45 AM						
Trips Generated 8-9 am	3	0	4	11	0	2
,						
11:00 AM						
11:15 AM						
11:30 AM			-			
11:45 AM						
	•					
					↓	
Teigs Consented 11 12	2	0	2	0	0	1
Trips Generated 11am-12 pm	2	0	3	8	0	1
12:00 PM						
12:15 PM					1	
12:30 PM					1	
12:45 PM					1	
					1	
Trips Generated 12-1 pm	2	0	3	9	0	2
2:00 PM						
2:15 PM						
2:30 PM						
2:45 PM						
					↓	
		-			├	
T. C. 102	2	0	4	44	0	2
Trips Generated 2-3 pm	3	0	4	11	0	2
3:00 PM						
3:15 PM		+			1	
3:30 PM					1	
3:45 PM					1	
Trips Generated 3-4 pm	4	0	4	13	0	2
4.00 70 5						
4:00 PM 4:15 PM		+			1	
4:15 PM 4:30 PM		+			+	
4:45 PM					1	
11.00 4.404						
Trips Generated 4-5 pm	4	0	5	15	0	3
5:00 PM						
5:15 PM						
5:30 PM						
5:45 PM					<u> </u>	
J.TJ 1 1V1				Ì	Ī	
J.TJ 1 M					├ ────┤	
J.TJ IM						
Trips Generated 5-6 pm	5	0	5	16	0	3

Growth from Beeler Farms Subdivision

Remaining Daily
Trips Generated by
Beeler Farms Subdivision: 303

	AM	PM
Traffic Movement Assumed Distribution:	25% to west East Emory, 75% to east East Emory	40% to west East Emory, 60% to east East Emory
	40% from west East Emory, 60% from east East Emory	50% from west East Emory, 50% from east East Emory
ownhouses		
d Exiting %'s (from ITE trip rate):	Directional Distribution Assumptions:	

Assume all	townhouses				
Entering an	nd Exiting %'s	(from ITE trip rate):	Directional Distributi	on Assumptions:	
26%	Enter	AM Hours	25%	to west East Emory Road	
74%	Exit		75%	to east East Emory Road	
			40%	from west East Emory Road	
			60%	from east East Emory Road	<u></u>
50%	Enter	Mid-Day Hours	25%	to west East Emory Road	_
50%	Exit		75%	to east East Emory Road	Assume same DD for AM Peak Hour
			40%	from west East Emory Road	
			60%	from east East Emory Road	_
63%	Enter	PM Hours	40%	to west East Emory Road	
37%	Exit		60%	to east East Emory Road	
			50%	from west East Emory Road	
			50%	from east East Emory Road	<u></u>

	Engineering Office - Table 4.2 - TDOT Trafficer = A (Knoxville)	Design Manual	
1	1 Average for Arterial Facilities (Two-Lane)		
0			
Time of Day	Percentage of Trips		
7-8 am	9.03%		
8-9 am	6.78%		
11 am-Noon	4.68%		
Noon-1 pm	5.17%		
2-3 pm	6.34%		
3-4 pm	7.83%		
4-5 pm	8.79%		
5-6 pm	9.64%		
	58.26%		

PROJECTED FUTURE VOLUMES FROM GENERATED TRAFFIC FROM BEELER ROAD SUBDIVISION East Emory Road at Beeler Road

	East Emory Road		Beeler Road		East Emory Road	
TIME		BOUND		IBOUND		OUND
BEGIN	LT	THRU	LT	RT	THRU	RT
7:00 AM						
7:15 AM 7:30 AM						
7:45 AM						
Trips Generated 7-8 am	11	0	16	47	0	7
8:00 AM						
8:15 AM						
8:30 AM 8:45 AM						
0.137111						
Trips Generated 8-9 am	8	0	12	35	0	5
11:00 AM						
11:15 AM		1			-	
11:30 AM		+		<u> </u>	1	
11:45 AM		1	<u> </u>	<u> </u>	<u> </u>	
		+	1	1	1	
Trips Generated 11am-12 pm	5	0	8	24	0	4
12:00 PM						
12:15 PM						
12:30 PM						
12:45 PM						
Trips Generated 12-1 pm	6	0	9	27	0	4
Trips Generated 12-1 pin	0	0	,	21	0	4
2:00 PM						
2:15 PM						
2:30 PM						
2:45 PM						
m: C 122		^	44	22	0	-
Trips Generated 2-3 pm	7	0	11	33	0	5
3:00 PM						
3:15 PM						
3:30 PM						
3:45 PM						
Trips Generated 3-4 pm	9	0	14	41	0	6
4:00 PM						
4:15 PM 4:30 PM		1	<u> </u>	1	-	
4:30 PM 4:45 PM		+		1		
1. 1.5 1 1/1		1	<u> </u>		1	
		1				
Trips Generated 4-5 pm	10	0	15	46	0	7
5:00 PM						
5:15 PM						
5:30 PM						
5:45 PM		1	<u> </u>	<u> </u>		
		:10		i	Ī	
Trips Generated 5-6 pm	11	0	17	50	0	8

Growth from Beeler Road Subdivision

Trips Generated by
Beeler Road Subdivision: 888

	AM	PM
Traffic Movement Assumed Distribution:	25% to west East Emory, 75% to east East Emory	40% to west East Emory, 60% to east East Emory
	40% from west East Emory, 60% from east East Emory	50% from west East Emory, 50% from east East Emory

Assume all	town	houses

2135thic air townhouses			
Entering and Exiting %'s (from local trip rate):	s (from local trip rate): Directional Distribution Assumptions:		
22% Enter AM Hours	25% to west East Emory Road		
78% Exit	75% to east East Emory Road		
	40% from west East Emory Road		
	60% from east East Emory Road		
50% Enter Mid-Day Hours	25% to west East Emory Road		
50% Exit	75% to east East Emory Road	Assume same DD for AM Peak Hour	
	40% from west East Emory Road		
	60% from east East Emory Road		
55% Enter PM Hours	40% to west East Emory Road		
45% Exit	60% to east East Emory Road		
	50% from west East Emory Road		
	50% from east East Emory Road		

TDOT Traffic Engineering Office - Table 4.2 - TDOT Traffic Design Manual Population Tier = A (Knoxville)
TDOT Region 1 Average for Arterial Facilities (Two-Lane)

Time of Day	Percentage of Trips	
7-8 am	9.03%	
8-9 am	6.78%	
11 am-Noon	4.68%	
Noon-1 pm	5.17%	
2-3 pm	6.34%	
3-4 pm	7.83%	
4-5 pm	8.79%	
4-5 pm 5-6 pm	9.64%	
	58.26%	

Traffic Signal Warrant Analysis

Project Name	Fairview Road Subdivision
Project/File #	#2223
Scenario	2030 - Projected Traffic Volumes (With TDOT Widening)

Intersection Information			
Major Street Name	East Emory Road		
North/South or East/West	E/W		
Speed Limit > 40 mph	Yes		
# of Approach Lanes	2 or more		
% of Right Turn Traffic to Include	0%		
Minor Street Name	Beeler Road		
# of Approach Lanes	1		
% of Right Turn Traffic to Include	0%		
Isolated Community < 10,000 pop	No		

Additional Warrants to Consider			
Warrant 3, Peak Hour (A - Volume and Delay)	No		
All-Way Stop Warrant	No		

Traffic Signal Warrant Analysis

East Emory Road (Major Street) Volume

Eastbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM		461	40	
8 - 9 AM		328	43	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM		296	35	
12 - 1 PM		357	44	
1 - 2 PM				
2 - 3 PM		474	38	
3 - 4 PM		498	52	
4 - 5 PM		654	64	
5 - 6 PM		681	81	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	4,146	0

Westbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	63	577		
8 - 9 AM	48	462		
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	34	281		
12 - 1 PM	39	282		
1 - 2 PM				
2 - 3 PM	57	388		
3 - 4 PM	88	526		
4 - 5 PM	85	502		
5 - 6 PM	87	512		
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 4,031				0

Beeler Road (Minor Street) Volume

Northbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	73		215	
8 - 9 AM	57		140	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	56		86	
12 - 1 PM	57		91	
1 - 2 PM				
2 - 3 PM	47		126	
3 - 4 PM	71		143	
4 - 5 PM	72		158	
5 - 6 PM	79		185	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 1,656			0	

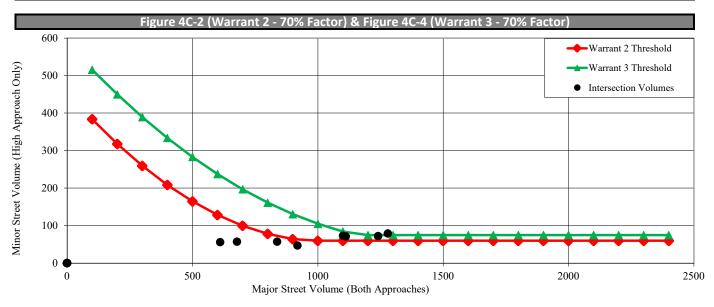
	Southbound Volume by Hour			
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM				
8 - 9 AM				
9 - 10 AM				
10 - 11 AM				
11 - 12 PM				
12 - 1 PM				
1 - 2 PM				
2 - 3 PM				
3 - 4 PM				
4 - 5 PM				
5 - 6 PM				
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 0			0	

Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name	Fairview Road Subdivision		
Project/File #	#2223		
Scenario	2030 - Projected Traffic Volumes (With TDOT Widening		

Intersection Information				
Major Street (E/W Road)	East Emory Road	Minor Street (N/S Road)	Beeler Road	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	8177 vehicles	Total Approach Volume	1656 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	1 percent applied	Right turn reduction of	1 percent applied	


Reduction applied to warrant thresholds due to high speed on East Emory Road

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not satisfied	Not satisfied	Not satisfied	
Required values reached for	0 hours	6 hours	0 (Cond. A) & 8 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

^{*} Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume			
Condition Satisfied?	Satisfied		
Required values reached for	4 hours		
Criteria	See Figure Below		

Warrant 3, Peak Hour Vehicular Volume				
	Condition A	Condition B		
Condition Satisfied?	Not Examined	Satisfied		
Required values reached for		1 hour		
Criteria - Total Approach Volume (veh in one hour)				
Criteria - Minor Street High Side Volume (veh in one hour)		See Figure Below		
Criteria - Minor Street High Side Delay (veh-hrs)				

APPENDIX L

RESPONSE LETTER TO ADDRESS COMMENTS

11812 Black Road Knoxville, Tennessee 37932 Phone (865) 556-0042 ajaxengineering@gmail.com

December 22, 2022

PROJECT NAME: Fairview Road Subdivision

TO: Knoxville-Knox County Planning

SUBJECT: Response Document for Fairview Road Subdivision TIS Review Comments

Knoxville-Knox County Planning and Knox County Engineering Staff:

The following response document addresses comments in an email from Mike Conger, PE, dated December 9, 2022. This letter is added to the end of the revised report in Appendix L.

1. Please include text/reference on the title page that this TIS incorporates the development formerly known as "Beeler Road Subdivision" since this essentially functions as one overall development.

Response: This requested change was made to the title page and denoted on Page 1

in the Beginning Commentary.

2. On page 3, the 4th bullet discusses proposed eastbound right-turn lane on E. Emory Road at Beeler Road, but the last word in 4th line says westbound. Please clarify.

Response: On Page 3, in the 4th bullet point, the last word in the 4th line was corrected and changed from "westbound" to "eastbound".

3. On page 5 a boulevard section is recommended to Road B in the Beeler Road subdivision as a means of addressing the typical requirement for multiple access points with subdivisions greater than 150 lots. The intent of a boulevard section in this type of scenario typically involves constructing one to an internal intersection that provides substantial alternate travel paths. In this situation that would mean it should extend to the first connection to Fairview Road subdivision, i.e. "Road B" in the Fairview Road Subdivision plans. That being said, this requirement and appropriate mitigation is evaluated on a case-by-case basis with each development and may require further discussions at subsequent stages of the design plan process. Additionally, there has

been mention by the developer of multiple stub road connections being provided which may serve to satisfy the multiple access requirement in this instance. Please rephrase this recommendation to note the typical requirement for an additional access point and the potential options as I've noted and stating that the final decision for the most appropriate way to address it will be up to Knox County Engineering & Public Works.

<u>Response</u>: The discussion regarding the boulevard typical section was updated on

Pages 5 and 72.

4. On page 25 "Development Density"- the 2nd line cites "One-hundred twenty-six" but should be "One-hundred twenty-eight".

Response: On Page 25, in "Development Density", the 2nd line was corrected and changed from "One-Hundred twenty-six" to "One-Hundred twenty-

eight".

5. In the "Trip Generation" section of the TIS please include either a separate table or an additional row in Table 7 that shows the final result of combining the trip generation for both the Beeler Road Subdivision and the Fairview Road Subdivision since these two are sharing the same access point.

Response: A table has been added to address this comment. This additional table is

"Table 7.1 – Trip Generation for Fairview Road & Beeler Road Subdivisions". This revision was also included in Appendix G, where the

trip generation calculations are presented.

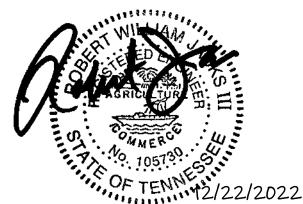
6. It is the understanding of Knox County that the proposed layouts of Fairview Road subdivision and Beeler Road subdivision have been changed so that the internal street discussions are no longer valid. Most of this can be dealt with at later points of the design plan development process, but please work with the site engineer to incorporate the most current layouts following this Concept Plan review and revisions stage so that the TIS matches the site plan at this stage.

Response: The layout plan for Fairview Road Subdivision has not changed. The

layout plan for Beeler Road Subdivision barely changed. The only change to this subdivision has been a boulevard typical section for a short length at the entrance at Beeler Road. Nonetheless, the layout plan for Beeler

Road Subdivision has been updated in the report figures.

In addition to the revisions listed above, other changes in the report include the following:


- Updated Title Page
- Updated Table of Contents
- Updated Page Footers
- A few minor grammatical updates
- Updated and/or deleted discussion of internal sidewalks on Pages 4-5, 21, 24, & 71

- Added a discussion regarding a potential stub-out road in Fairview Road Subdivision on Page 21
- Added Appendix L to include this response letter

If you have any questions or further comments, please feel free to contact me. I look forward to your review and approval.

Sincerely,

Ajax Engineering, LLC Robert W. Jacks, P.E.

Ajax Engineering, LLC 11812 Black Road Knoxville, TN 37932 ajaxengineering@gmail.com © 2022 Ajax Engineering, LLC

IVIL ENGINEERING / TRAFFIC ENGINEERING