

Transportation Impact Study Carter Ridge Phases VI - VIII Knox County, Tennessee

Revised December 2022

Prepared for: Oakland, LLC Attn: Pete McClain 2724 Hawk Haven Lane Knoxville, TN 37931

1-SH-23-C / 1-G-23-DP TIS Version 2 12/12/2022

TABLE OF CONTENTS

SECTION	PAGE
EXECUTIVE SUMMARY	1
DESCRIPTION OF EXISTING CONDITIONS	
Study Area	
Existing Roadways	
Рното Ехнівіту	
EXISTING TRANSPORTATION VOLUMES PER MODE	14
On-Street Parking	
PEDESTRIAN AND BICYCLE FACILITIES	15
WALK SCORE	17
Transit Services	17
PROJECT DESCRIPTION	
LOCATION AND SITE PLAN	
Proposed Uses and Zoning Requirements	
DEVELOPMENT DENSITY	21
ON-SITE CIRCULATION	21
SERVICE AND DELIVERY VEHICLE ACCESS AND CIRCULATION	21
ANALYSIS OF EXISTING AND PROJECTED CONDITIONS	
Existing Traffic Conditions	
Projected Traffic Conditions (Without the Project)	
Trip Generation	
TRIP DISTRIBUTION AND ASSIGNMENT	
Projected Traffic Conditions (With the Project)	
POTENTIAL TRANSPORTATION SAFETY ISSUES	49
C	
CONCLUSIONS & RECOMMENDATIONS	
CARTER MILL DRIVE AT CARTER RIDGE DRIVE / CARTER VIEW LANE	
CARTER MILL DRIVE AT OGLETHROPE ROAD	
CARTER MILL DRIVE AT FUTURE MADISON OAKS ROAD ENTRANCE	
CARTER RIDGE PHASES VI - VIII INTERNAL ROADS	56

APPENDIX

APPENDIX

APPENDIX A - HISTORICAL TRAFFIC COUNT DATA

APPENDIX B - WALK SCORE

APPENDIX C - KNOXVILLE AREA TRANSIT MAP AND INFORMATION

APPENDIX D - ZONING MAP

APPENDIX E - MANUAL TRAFFIC COUNT DATA

APPENDIX F - CAPACITY ANALYSES – HCM WORKSHEETS (SYNCHRO 11)

APPENDIX G - ITE TRIP GENERATION RATES

APPENDIX H - 2019 CENSUS BUREAU DATA

APPENDIX I - KNOX COUNTY TURN LANE VOLUME THRESHOLD WORKSHEETS

APPENDIX J - RESPONSE LETTER TO ADDRESS COMMENTS

LIST OF FIGURES

FIG	URE
1A.	LOCATION MAP
1в.	MASTER PLAN – CARTER RIDGE AND CARTER MILL SUBDIVISIONS
2.	TRAFFIC COUNT LOCATION, TRAFFIC SIGNAGE & EXISTING LANE CONFIGURATIONS9
3.	PROPOSED PLAN LAYOUT – CARTER RIDGE PHASES VI - VIII
4.	2022 PEAK HOUR TRAFFIC VOLUMES – EXISTING TRAFFIC CONDITIONS
5A.	2025 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)
5в.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)
5C.	2028 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)
6A.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASES IV & V
6B.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASES VI & VII
6C.	DIRECTIONAL DISTRIBUTION OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASE VIII
7A.	TRAFFIC ASSIGNMENT OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASES IV & V
7в.	TRAFFIC ASSIGNMENT OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASES VI & VII
7c.	TRAFFIC ASSIGNMENT OF GENERATED TRAFFIC DURING AM AND PM PEAK HOUR FOR PHASE VIII
8A.	2025 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

LIST OF FIGURES (continued)

FIG	URE	PAGE
8B.	2027 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)	45
8C.	2028 PEAK HOUR TRAFFIC VOLUMES – PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)	46

LIST OF TABLES

TAE	BLE	PAGE
1.	STUDY CORRIDOR CHARACTERISTICS	7
2.	LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS	26
3.	2022 Intersection Capacity Analysis Results – Existing Traffic Conditions	27
4A.	2025 Intersection Capacity Analysis Results – Projected Traffic Conditions (Without the Project)	29
4B.	2027 Intersection Capacity Analysis Results – Projected Traffic Conditions (Without the Project)	29
4C.	2028 Intersection Capacity Analysis Results – Projected Traffic Conditions (Without the Project)	29
5.	TRIP GENERATION FOR CARTER RIDGE PHASES IV - VIII	33
6A.	2025 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project)	47
6в.	2027 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project)	47
6C.	2028 Intersection Capacity Analysis Results – Projected Traffic Conditions (With the Project)	48

EXECUTIVE SUMMARY

Preface:

Oakland, LLC proposes additional phases in a residential subdivision off Carter Mill Drive in East Knox County, TN. The subdivision is Carter Ridge, and the additional phases will include Phases VI through VIII. These phases will see the construction of 128 single-family detached houses on 51.1 +/- acres, which will be developed over several stages, and are estimated to be fully built and occupied by 2028. Carter Ridge Subdivision already has one entrance on Carter Mill Drive, has just built a second entrance, and will provide a third entrance once Phase VIII is completed. Construction has recently begun for Carter Ridge Phase IV, including the second entrance. The previous Transportation Impact Study (TIS) for Carter Ridge Subdivision in 2017 only included Phase IV. This study includes Phases IV and V to consolidate the analyses. It includes Phase IV under construction, Phase V, and the proposed future phases of Phases VI – VIII for a total of 202 single-family detached houses in Phases IV - VIII.

This study's primary purpose is to determine and evaluate the potential impacts of the development on the adjacent transportation system. The study includes a review of the primary access roads and intersections and is a Level 1 study established by Knoxville/Knox County Planning. Recommendations and mitigation measures are offered if transportation operations are projected to be below recognized engineering standards.

Study Results:

The significant findings of this study include the following:

- The combined total of Carter Ridge Phases IV VIII with 202 single-family detached houses is estimated to generate 2,097 trips at full build-out and occupancy on an average weekday. Of these daily trips, 156 are estimated to occur during the AM peak hour and 205 in the PM peak hour in 2028.
- The existing intersection of Carter Mill Drive at Carter Ridge Drive / Carter View
 Lane will not be significantly impacted by the construction of the remaining
 houses in the Carter Ridge Subdivision. Low vehicle delays at this intersection
 have been calculated in the existing and projected 2028 conditions.
- The two other subdivision entrance intersections for Carter Ridge Subdivision on Carter Mill Drive, including Oglethrope Road and Madison Oaks Road, are expected to operate with very low vehicle delays in the projected 2028 AM and PM peak hours and will operate well with respect to vehicle capacity.

 The projected 2028 traffic volumes do not warrant the construction of separate entering left and right-turn lanes on Carter Mill Drive at any of the three subdivision entrances.

Recommendations:

The following recommendations are offered based on the study analyses to minimize the impacts of the proposed development on the adjacent transportation system while attempting to achieve an acceptable traffic flow and improved safety. More details regarding the recommendations are discussed at the end of the report.

- A 24" white stop bar is recommended to be applied to the recently constructed Oglethrope Road approach at Carter Mill Drive. The stop bar should be applied a minimum of 4 feet away from the edge of Carter Mill Drive and placed at the desired stopping point that maximizes the sight distance. A Stop Sign (R1-1) has already been installed on the Oglethrope Road approach at Carter Mill Drive.
- Sight distance looking to the east at Oglethrope Road at Carter Mill Drive is impacted by an existing sign posted by the developer announcing houses for sale. This sign interferes with sight distance to the east and should be moved further away (to the south) from Carter Mill Drive. Furthermore, vegetation control on the slope south of Carter Mill Drive and east of Oglethrope Road will be crucial since the visually measured sight distance is estimated to be only 350 feet.
- It is recommended that a Stop Sign (R1-1) be installed, and a 24" white stop bar be applied to the Madison Oaks Road approach at Carter Mill Drive when constructed. The stop bar should be applied a minimum of 4 feet away from the edge of Carter Mill Drive and placed at the desired stopping point that maximizes the sight distance.
- Sight distances at the Madison Oaks Road approach at Carter Mill Drive must not be impacted by future landscaping, signage, or existing vegetation. Based on an assumed speed limit of 30-mph on Carter Mill Drive, the required intersection sight distance is 300 feet looking in each direction at the entrance. The stopping sight distance is 185 feet to the east and 195 feet to the west at the Madison Oaks Road approach at Carter Mill Drive. A visual inspection determined that the intersection and stopping sight distances are available at this future entrance location. The site designer must ensure that these sight distances are accounted for and provided in the design plans.

- A 25-mph Speed Limit Sign (R2-1) is recommended to be posted near the beginning of the future Madison Oaks Road entrance off Carter Mill Drive. 25-mph Speed Limit Signs (R2-1) are already posted on the Oglethrope Road and Carter Ridge Drive entrances in Carter Ridge Subdivision.
- As shown in the report, Stop Signs (R1-1) and 24" white stop bars are recommended on the new internal roadways in Carter Ridge Phases VI VIII.
- Sight distance at the new internal road intersections must not be impacted by signage, parked cars, or future landscaping. With a proposed speed limit of 25-mph in the development, the internal intersection sight distance is 250 feet. The required stopping sight distance is 155 feet for a level road grade. The site designer should ensure that internal sight distance lengths are met and account for different proposed road grades.
- The extension of Carter Ridge Drive and the new Road "H" in Carter Ridge Phases VI and VII have long, straight road segments with steeper road grades. Straight road segments with steeper grades encourage higher vehicle speeds. It is recommended that the site designer consider traffic calming measures on these internal roads.
- All drainage grates and covers for the residential development must be pedestrian and bicycle safe.
- Internal sidewalks are proposed along Madison Oaks Road and a portion of Carter Ridge Drive in Carter Ridge Phase VI. Sidewalks should have appropriate ADA-compliant ramps at intersection corners, and the internal sidewalks are recommended to be 5 feet minimum in width to meet Knox County regulations. White crosswalks should be marked on the road pavement internally where pedestrians are expected to cross.
- If directed by the local post office, the site designer should include a parking area within the development for a centralized mail delivery center. The site plan does not currently show a general location in the development, and a specific plan with a parking area should be designed and provided if required.
- All road grade and intersection elements should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

DESCRIPTION OF EXISTING CONDITIONS

• STUDY AREA:

The proposed location of Carter Ridge Phases VI - VIII is shown on a map in Figure 1a. The proposed additional phases for the subdivision will be located off Carter Mill Drive, east of the existing Phase III houses in East Knox County, TN. Carter Ridge Subdivision is just over a mile southeast of the Andrew Johnson Highway (US 11E / SR 34) and Asheville Highway (US 11E / US 70 / US 25W / SR 9) interchange. Phases I and II were constructed and developed several years ago and are located between Strawberry Plains Pike to the north and Carter Mill Drive on the south side. Phases I and II are designated as "Carter Mill Subdivision" and are fully built out. Carter Ridge Subdivision comprises Phases III – IX (future), and all these phases will be on the south side of Carter Mill Drive. Carter Ridge Subdivision has recently completed the construction of Phase III and is fully built out with 98 single-family detached houses. Phase IV has recently begun and included the construction of the Oglethrope Road subdivision entrance at Carter Mill Drive, along with nine houses in various stages of completion. Figure 1b shows the various phases and the overall master plan of the Carter Ridge and Carter Ridge Subdivisions.

As Knoxville/Knox County Planning requested, transportation impacts associated with the proposed additional phases of Carter Ridge Subdivision were analyzed at the following intersections: the existing intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane, the recently constructed subdivision entrance of Oglethrope Road at Carter Mill Drive, and the future entrance of Madison Oaks Road at Carter Mill Drive that will be constructed in Phase VIII.

The proposed development property is in a rural area that is sparsely occupied outside the Carter Mill and Carter Ridge Subdivisions. In the immediate vicinity, the land uses include residential, agricultural, and undeveloped properties. Paschal Carter Memorial Park is adjacent to Carter Ridge Subdivision on the east end of Carter Mill Drive. The development property for Phases VI – VIII is currently undeveloped and completely forested.

The recent Carter Ridge Phase IV construction included site clearing, earthwork grading, road construction, and the initial stages of house building. The road construction consisted of the Oglethrope Road entrance at Carter Mill Drive, an additional portion of Madison Oaks Road, and Kirkhaven Lane.

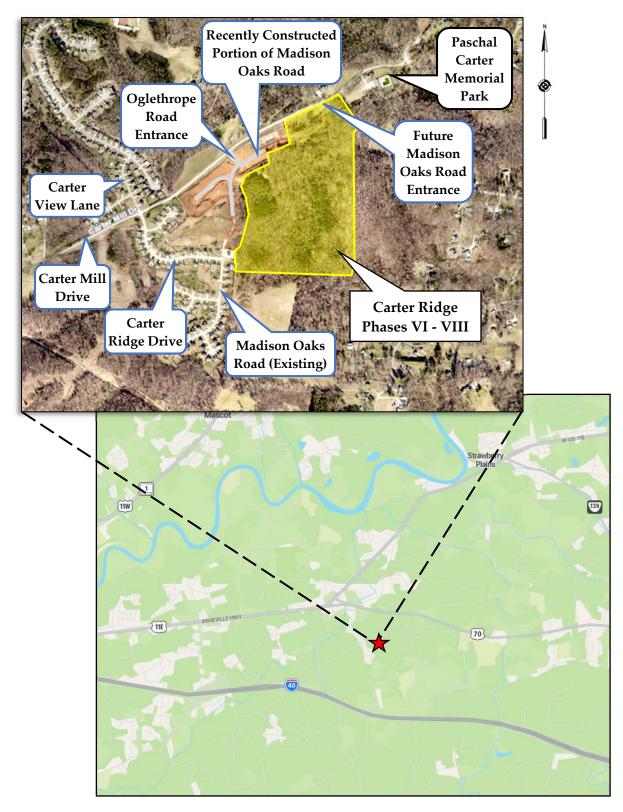


Figure 1a Location Map

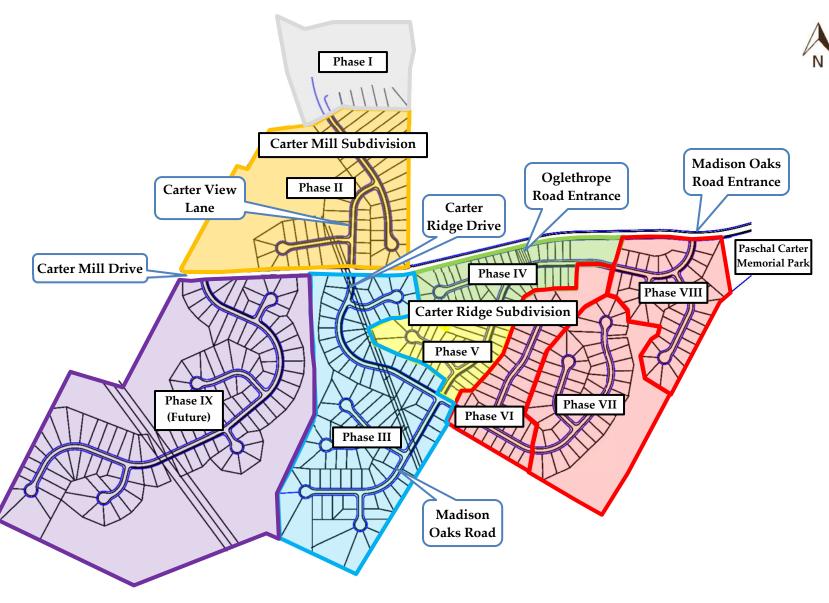


Figure 1b Master Plan Carter Ridge and Carter Mill Subdivisions

Not to Scale

EXISTING ROADWAYS:

Table 1 lists the characteristics of the existing primary access roadways adjacent to the development property and included in the study:

TABLE 1 STUDY CORRIDOR CHARACTERISTICS

NAME	CLASSIFICATION 1	SPEED LIMIT	LANES	ROAD WIDTH ²	TRANSIT 3	PEDESTRIAN FACILITIES	BICYCLE FACILITIES
Carter Mill Drive	Minor Collector	Not Posted	2 undivided	20 feet	None	Sidewalk on south side of road alongside limits of Phase III	No bike lanes
Carter Ridge Drive	Local Street	25 mph	2 undivided	26 feet	None	Sidewalk on portions of east side of road	No bike lanes
Carter View Lane	Local Street	25 mph	2 undivided	26 feet	None	None	No bike lanes
Oglethrope Road	Local Street	25 mph	2 divided	44 feet	None	None	No bike lanes

¹ 2018 Major Road Plan by Knoxville/Knox County Planning

<u>Carter Mill Drive</u> is classified as a Minor Collector from McCubbins Road from the southwest to South Carter School Road to the northeast, with a total length of 1.6 miles. Adjacent to the project study area, the roadway has some mild roadway horizontal and vertical curvature. Several hundred feet to the west of the intersection with Carter Ridge Drive / Carter View Lane, Carter Mill Drive narrows to a total pavement width of approximately 16 feet to McCubbins Road, and the double yellow center line and white edge lines are dropped. The narrower western portion of Carter Mill Drive provides access to several residences and farms on large properties. The majority of Carter Mill Drive in the center and eastern portions o the road was widened for the previous residential phases of Carter Ridge and Carter Mill Subdivisions. To the east of Carter Ridge Subdivision, Carter Mill Drive provides access to Paschal Carter Memorial Park. Carter Mill Drive has no posted speed limit in either direction.

Carter Mill Drive adjacent to the Carter Ridge and Carter Mill Subdivisions currently consists of a 2-lane pavement section with a total pavement width of 20 feet. The roadway is striped with faded white edge lines and a faded double yellow center line. Outside the white edge lines, the pavement edge extends only a few inches on each side. The speed limit on Carter Mill Drive is

² From edges of pavement or face of curbs

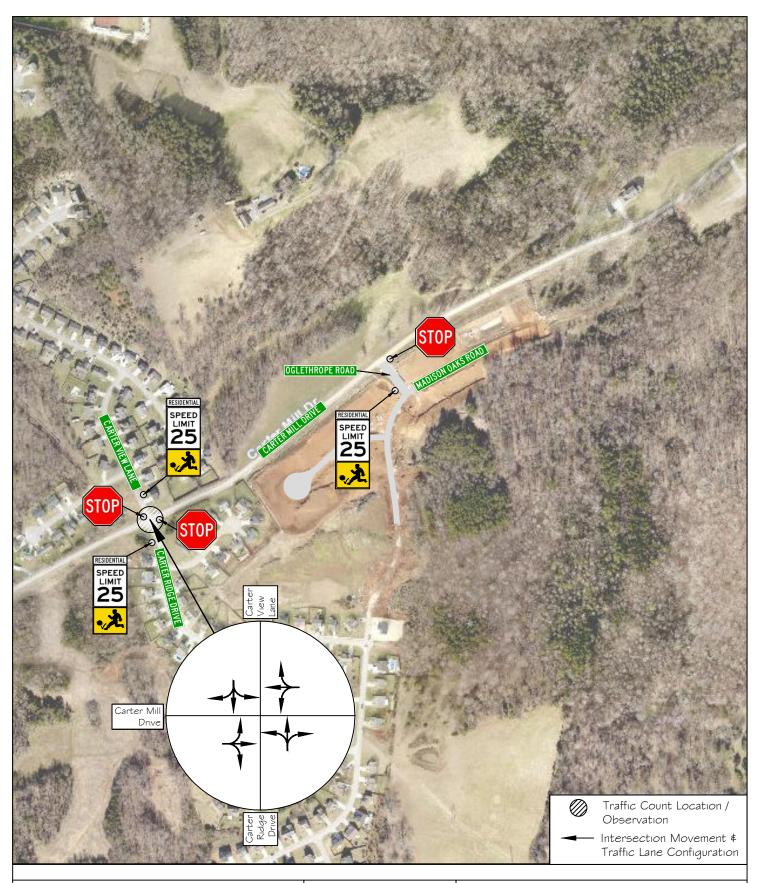
³ According to Knoxville Area Transit (KAT) System Map

not posted and is assumed to be 30-mph. There are no utility streetlights on Carter Mill Drive for roadway illumination.

At the unsignalized four-way intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane, each approach has a single lane. A 4foot sidewalk is provided on Carter Mill Drive for a short distance to the east and west of the intersection. The Carter Ridge Drive and Carter View Lane approaches are controlled by Stop

Carter Ridge Drive / Carter View Lane

Signs (R1-1), and vehicles on Carter Mill Drive operate freely.


Carter Ridge Drive is classified as a Local Street and traverses from Carter Mill Drive on the north side to Madison Oaks Road in the interior of Carter Ridge Subdivision with a total length of 0.3 miles. Carter Ridge Drive currently provides the sole access to Phase III of the Carter Ridge Subdivision to and from Carter Mill Drive and traverses in a generally northwest-southeast direction. Carter Ridge Drive consists of 2 – 13 foot vehicular lanes with concrete curbing. Roadway lighting is not present on Carter Ridge Drive. A 4-foot sidewalk is provided on the east side of Carter Ridge Drive on portions of Carter Mill Drive.

Carter View Lane is classified as a Local Street and traverses from Carter Mill Drive on the south side to Drakewood Road to the north in the interior of the Carter Mill Subdivision with a total length of 0.1 miles. Carter View Lane generally traverses in a north-south direction. Carter View Lane consists of 2 – 13 foot vehicular lanes with concrete curbing. Roadway lighting is not present on Carter View Lane, and no sidewalks are provided.

Oglethrope Road is classified as a Local Street and traverses a short distance between Carter Mill Drive and Madison Oaks Road in Carter Ridge Phase IV. This road was recently constructed and has a boulevard typical section with a total width of 44 feet.

Figure 2 shows the existing lane configurations of the intersection and location where the traffic count was conducted for the study and the current traffic road signage in the study area. The road signage shown in Figure 2 only includes warning and regulatory signage near the development site. The pages following Figure 2 give a further overview of the site study area with photographs.

I 1812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com NOT TO SCALE

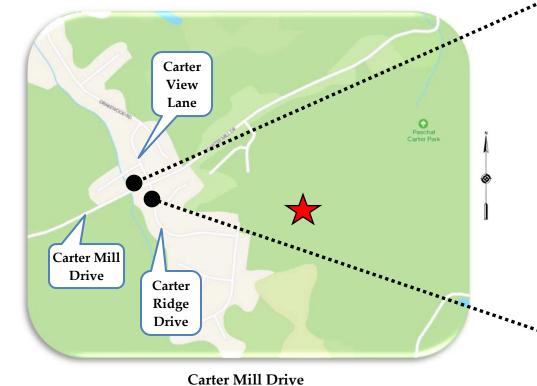
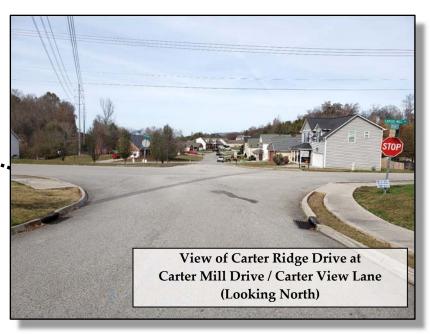
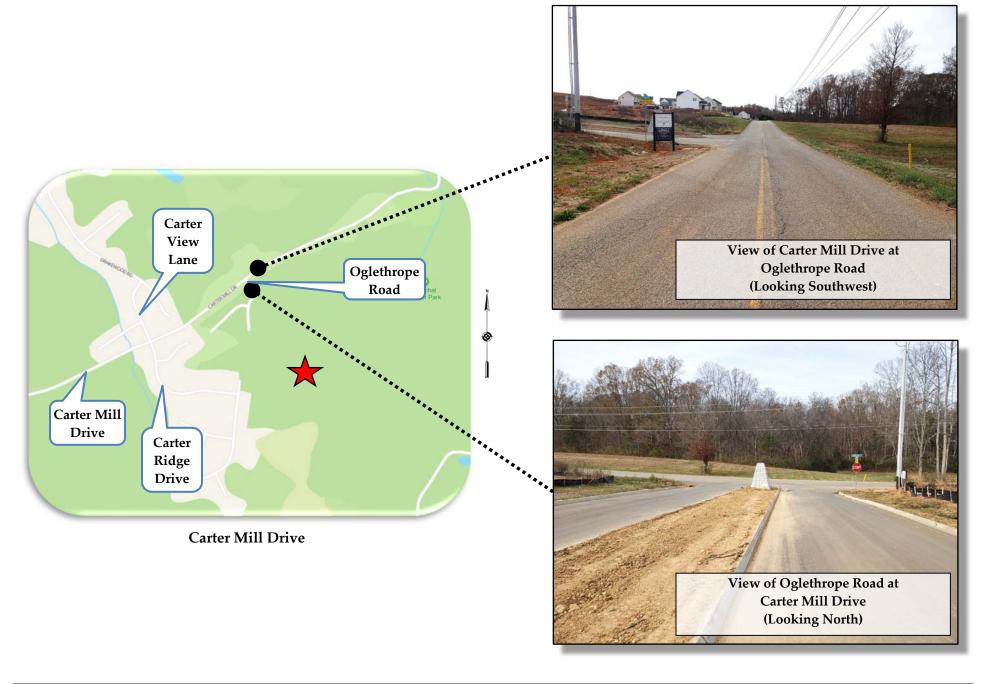


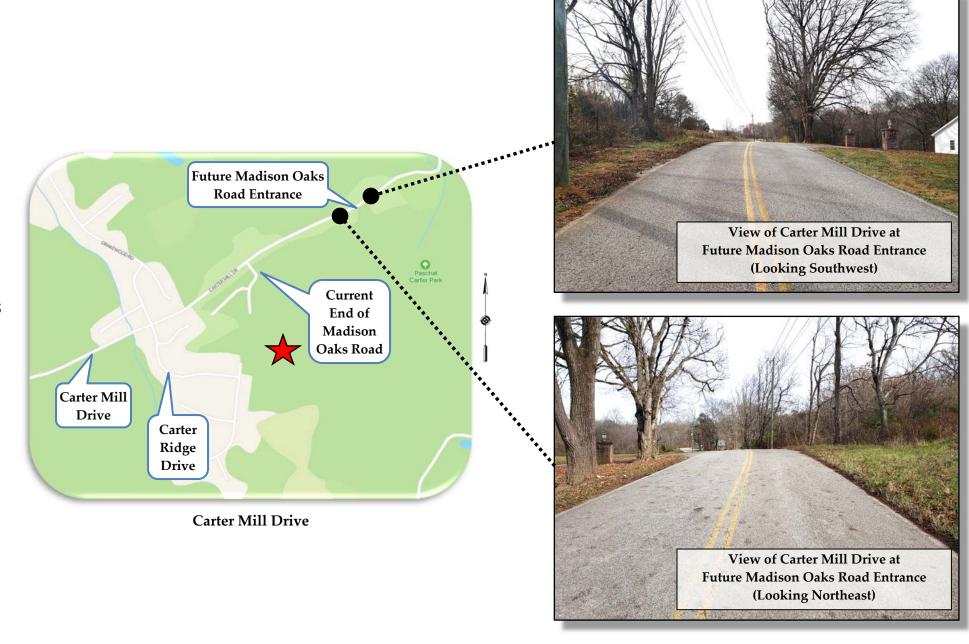
FIGURE 2

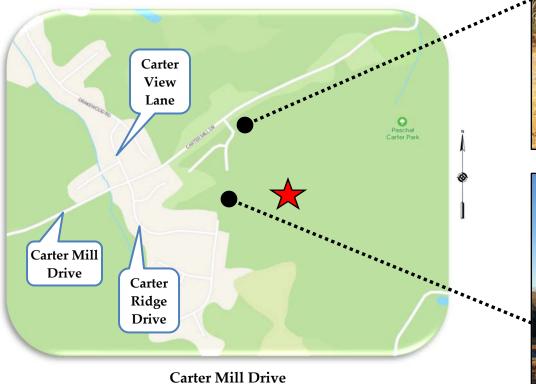

Carter Ridge Phases VI - VIII

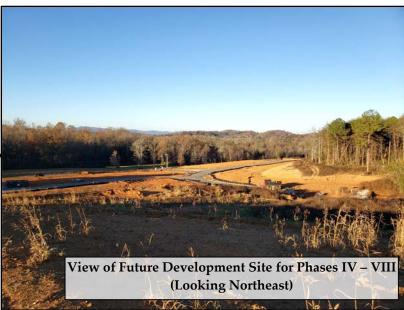
Traffic Count Location, Traffic Signage \$ Existing Lane Configurations

PHOTO EXHIBITS









EXISTING TRANSPORTATION VOLUMES PER MODE:

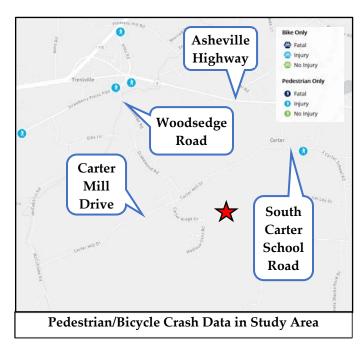
There are no annual vehicular traffic count locations along Carter Mill Drive or close to the project site. The closest traffic count locations are conducted by the Tennessee Department of Transportation (TDOT). The TDOT data is the following and can be viewed with further details in Appendix A:

- o Existing vehicular roadway traffic:
 - TDOT reported an Average Daily Traffic (ADT) on Asheville Highway (US 25E) north and east of the project site, at 4,971 vehicles per day in 2021. From 2011 to 2021, this count station has indicated a +0.2% average annual traffic growth rate.
 - TDOT reported an Average Daily Traffic (ADT) on Strawberry Plains Pike, north and west of the development site, at 6,249 vehicles per day in 2021. From 2011 to 2021, this count station has indicated a +0.5% average annual traffic growth rate.
 - TDOT reported an Average Daily Traffic (ADT) on South Carter School Road, south and east of the development site, at 1,237 vehicles per day in 2021. From 2011 to 2021, this count station has indicated a 0% average annual traffic growth rate.
- Existing bicycle and pedestrian volumes:

The average daily pedestrian and bicycle traffic is unknown along the studied roadways. Due to the lack of nearby amenities and sporadic sidewalks, there is assumed minimal pedestrian and bicyclist activity on these roads in the study area. However, during the traffic counts for this project, about two dozen pedestrians were observed over 6 hours at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane. One bicyclist was observed crossing Carter Mill Drive. All these pedestrian activities were exercise-related except for several handfuls of school-age children entering and exiting school buses on Carter Mill Drive.

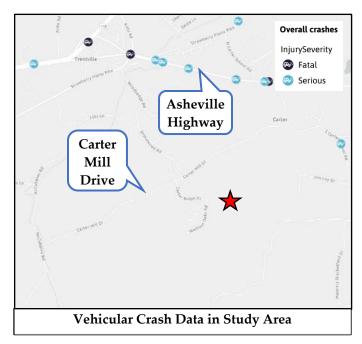
An online website, <u>strava.com</u>, provides "heat" maps detailing exercise routes taken by pedestrians, joggers, and bicyclists. The provided heat maps show the last two years of data, are updated monthly, and are gathered from individuals allowing their smart devices to track and compile their routes (millions of users). The activities in the maps are shown on the roads with color intensities with lighter colors signifying higher activity. The Strava heat maps show some bicycle and pedestrian activity in the study

area. Higher pedestrian activity is shown in Carter Mill Subdivision, Carter Ridge Subdivision, and the nearby Paschal Carter Memorial Park. No bicycle traffic is shown in the heat maps in the residential subdivisions, but some are shown on Carter Mill Drive.



ON-STREET PARKING:

On-street parking was not observed during the site review and is not allowed on Carter Mill Drive adjacent to the subdivision. However, on-street parking was observed on Carter Ridge Drive and Carter View Lane and is associated with the residents in the subdivisions.


■ PEDESTRIAN AND BICYCLE FACILITIES:

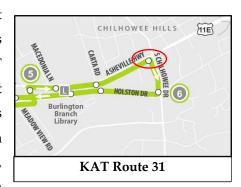
Bicycle facilities (lanes) are not currently available on any of the studied roadways within the project site study area. A 4-foot wide concrete sidewalk is provided on the south side and along Carter Mill Drive in front of Phase III of Carter Ridge Subdivision, with a total length of 525 feet. The sidewalk begins just west of the 4-way unsignalized intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane and ends 375 feet to the east of the intersection. Carter Ridge Drive in Phase III of Carter Ridge Subdivision has sporadic sections of sidewalk on its east side, and there are no sidewalks on Carter View Lane in Carter Mill Subdivision.

The Knoxville Transportation Planning Organization (TPO) provided a 2020 update to bicycle and pedestrian crash data for Knox County and other surrounding counties. The data shows none of these incidents occurred near the development site. The closest incidents occurred on Strawberry Plains Pike near Woodsedge Road, and the two crashes involved pedestrians. Details regarding the cause of these crashes were not provided other than that injuries occurred. Another incident occurred east of the development site on South Carter School

Road and involved a pedestrian. According to the data, a pedestrian was injured on October 14th, 2015, while walking along South Carter School Road. One of the attributed causes of this incident was the lack of sidewalks.

The Knoxville TPO also provides data related to "Life-Altering Traffic Crashes". This data lists "the location of 2,326 traffic crashes in the Knoxville region that resulted in a fatality or serious injury between January 2016 and June 2019." According to the data, none of these incidents occurred near the development site in those years. However, three fatal crashes occurred to the north along Asheville Highway and Andrew Johnson Highway. Of these incidents, all three are listed as single-vehicle crashes, with one involving a motorcycle.

WALK SCORE:


A private company offers an online website at <u>walkscore.com</u> that grades and gives scores to locations within the United States based on "walkability", "bikeability", and transit availability based on a patented system. According to the website, the numerical values assigned for the Walk Score and the Bike Score are based on the distance to the closest amenity in various relevant categories (businesses, schools, parks, etc.) and are graded from 0 to 100.

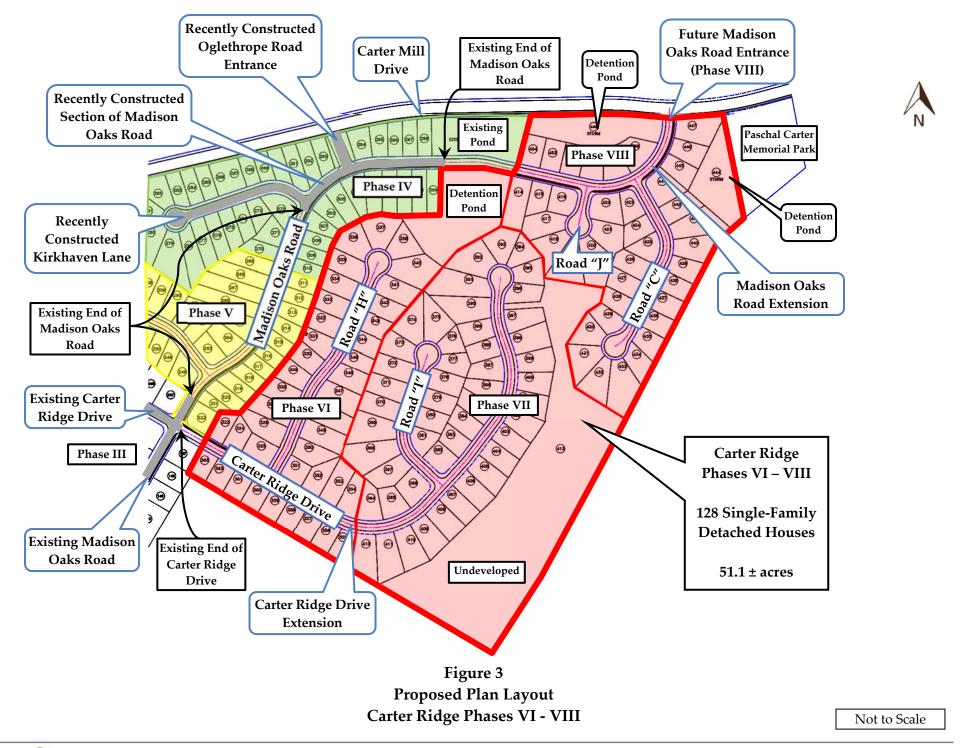
Appendix B shows maps and other information for the Walk Score, Bike Score, and Transit Score at the development property at 9124 Carter Mill Drive (development property address). The project site location is graded with a Walk Score of 3. This Walk Score indicates that the site is car-dependent and that almost all errands currently require a vehicle for travel to and from the development property. The site is graded with a Bike Score of 1, which means there is minimal bike infrastructure. The site is not given a Transit Score since public transportation is unavailable near the development site.

TRANSIT SERVICES:

The City of Knoxville has a network of public transit opportunities offered by Knoxville Area Transit (KAT). Bus service is not available in the study area. The overall KAT bus system map is provided in Appendix C. The closest public transit bus stop to the development site is 8.6 miles away to the west by roadway. This bus stop is located on Asheville Highway near Chilhowee Drive on Route 31, "Magnolia". It operates on weekdays and weekends; this

route map is included in Appendix C. KAT had to reduce its service schedule due to workforce shortages. These changes took place on August 29th, 2022, and the reduced schedule for Route 31 is also included in Appendix C. Other transit services in the area include the East Tennessee Human Resource Agency (ETHRA) and the Community Action Committee (CAC), which provides transportation services when requested.

PROJECT DESCRIPTION


■ LOCATION AND SITE PLAN:

The proposed plan layout for Phases VI – VIII with 128 single-family detached houses on 51.1 +/-acres is designed by Ideal Engineering Solutions, Inc. and is shown in Figure 3. The design for these phases shows four new streets and the extension of two existing internal roads. The road extensions will be constructed for Carter Ridge Drive and Madison Oaks Road. Carter Ridge Drive currently ends at Madison Oaks Road in Phase III. Carter Mill Drive will be extended in Phases VI and VII just over 2,000 feet before terminating at a cul-de-sac. Madison Oaks Road currently exists in the rear of Carter Ridge Phase III, ends at Carter Ridge Drive, and then starts again inside Phase IV between the recently constructed streets of Kirkhaven Lane and Oglethrope Road. Madison Oaks Road will be extended to provide further access in Phases V and VIII. After all the Carter Ridge Subdivision phases are constructed, Madison Oaks Road will traverse throughout the development to Carter Mill Drive on the northeast side of the development and provide a third entrance. Other proposed roads in Phases VI – VIII include Road C, H, I, and J, and all will terminate at cul-de-sacs.

Phases VI – VIII will include three large areas for stormwater controls on the northern side of the subdivision. A large undeveloped area of 8.6 acres will remain on the southeast side of Phases VI – VIII. The proposed house lot sizes in Phases VI – VIII will vary from around 7,250 square feet (0.16 acre) to 19,000 square feet (0.44 acre). Each housing unit will be two stories with an attached garage and driveway. Internal sidewalks are proposed along Madison Oaks Road and a portion of the Carter Ridge Drive extension in Phase VI.

The schedule for the completion of this new residential development is dependent on economic factors and construction timelines. This project is also contingent on permitting, design, and other regulatory approvals. In the past couple of years, the real estate market in the area has been experiencing large amounts of activity and growth. However, the market has slowed down from its peak due to rising interest rates and other factors. For this study, the total construction build-out of the development and full occupancy for the phases was assumed and analyzed for several horizon years. Phases IV and V (currently under construction) are assumed to reach full build-out and occupancy in 2025, Phases VI and VII in 2027, and Phase VIII will occur by 2028. The developer will not be constructing the Madison Oaks Road entrance at Carter Mill Drive until the other phases are constructed and Phase VIII is commenced.

■ Proposed Uses and Zoning Requirements:

The parcel comprising Carter Ridge Phases VI – VIII is zoned as Planned Residential (PR) with a density of up to 2.5 units per acre. Uses permitted in the Planned Residential (PR) zone include single-family dwellings, duplexes, and multi-dwelling structures and developments. The most recently published online KGIS zoning map is provided in Appendix D. The existing adjacent surrounding zoning and land uses are the following:

- Several large parcels to the north and northwest of the development site and across Carter Mill Drive are zoned as Planned Residential (PR) with a density of up to 2 units per acre. These parcels have immediate, adjacent road access to Carter Mill Drive to the south. These parcels are currently unoccupied, with some of the land used for agricultural purposes and the others containing woodlands.
- One small parcel to the northeast is zoned as Planned Residential (PR), undeveloped with woodlands and an open field. This parcel is owned and maintained by the Paschal Carter Memorial Park. This property has immediate, adjacent road access to Carter Mill Drive to the north.
- To the east, one large parcel is zoned as Agricultural (A), consisting of woodlands and a large open area in Paschal Carter Memorial Park. Paschal Carter Memorial Park is 44 acres in size and consists of hiking trails, a playground, a swimming pool, a picnic area, and a shelter. This Park is privately maintained and not by Knox County. The Park has two road access points on Carter Mill Drive.
- o To the southeast, one parcel is zoned Agricultural (A) and is occupied by a single-family detached house with road access to Cooper Road to the south.
- One very large parcel exists to the south, is zoned Agricultural (A), is used for agricultural purposes with a few barns and woodlands, and has road access to Cooper Road.
- All the parcels to the west of Phases VI VIII are located in Phases III, IV, and V of Carter Ridge Subdivision. These parcels are zoned as Planned Residential (PR) with the same density limits. Most of the property west of Phases VI VIII will comprise the proposed single-family detached houses in Carter Ridge Phases IV and V.

DEVELOPMENT DENSITY:

Carter Ridge Phases VI – VIII's proposed density is based on 128 dwelling units on 51.1 acres. One hundred twenty-eight dwelling units on 51.1 acres compute to 2.5 dwelling units per acre, equal to the allowed density for this property in the Planned Residential (PR) zone.

• ON-SITE CIRCULATION:

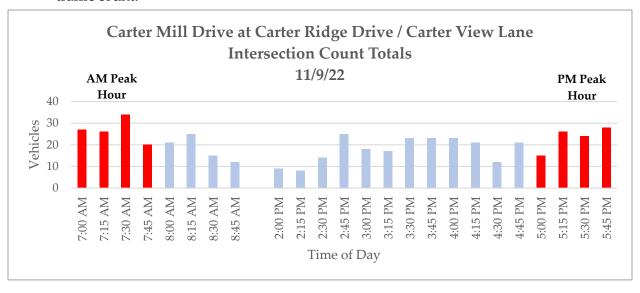
The total length of the new streets and road extensions within Carter Ridge Phases VI - VIII will be 5,580.1 feet (1.06 miles), designed and constructed to Knox County, TN specifications. Phases VI - VIII will have asphalt paved internal roadways and extruded concrete curbs. The lane widths internally will be 13 feet each for a total 26-foot pavement width. The public right-of-way within Phases VI - VIII will be 50 feet. Internal sidewalks are proposed along Madison Oaks Road and a portion of the Carter Ridge Drive extension in Phase VI. Knox County will maintain the streets in the development after construction, and these will be dedicated public roads.

SERVICE AND DELIVERY VEHICLE ACCESS AND CIRCULATION:

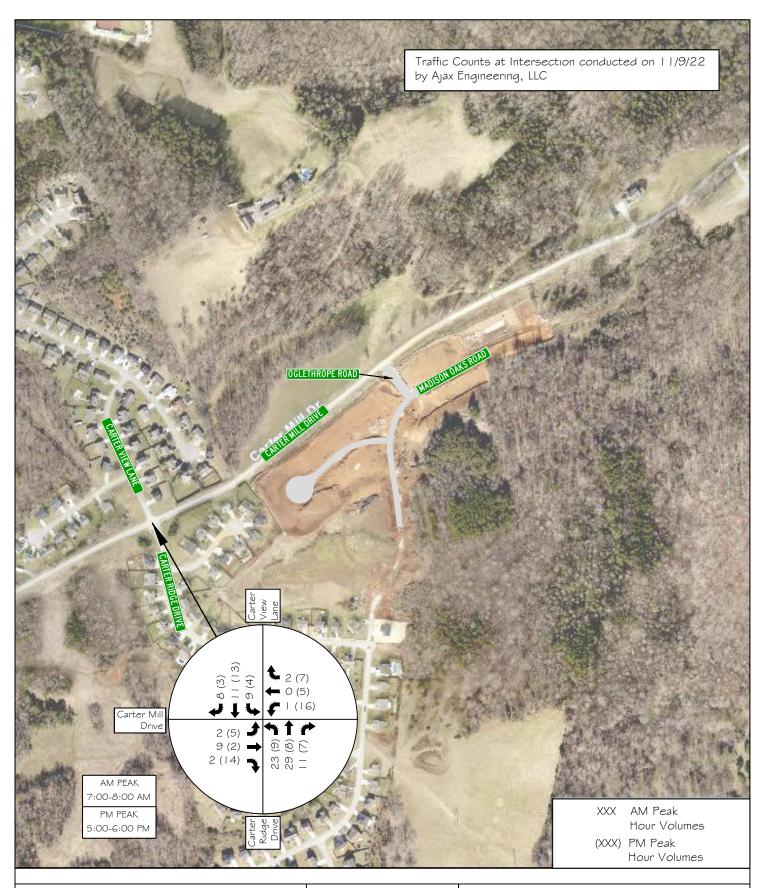
Besides residential passenger vehicles, the internal roadways in Carter Ridge Phases VI – VIII will provide access to service, delivery, maintenance, and fire protection/rescue vehicles. None of these vehicle types will impact roadway operations other than when they occasionally enter and exit the development. It is expected that curbside private garbage collection services will be available for this residential subdivision, as currently observed for Phase III of Carter Ridge Subdivision. Also, as currently occurring in Phase III, public school buses for the school-age

children in Carter Ridge Phases VI - VIII will likely be served by bus stops on Carter Mill Drive at the entrances.

The new public streets will be designed and constructed to Knox County specifications and are expected to be adequate for fire protection and rescue vehicles, trash collection trucks, and single-unit delivery trucks. The development's internal drives will accommodate the larger vehicle types and residents' standard passenger vehicles.


ANALYSIS OF EXISTING AND PROJECTED CONDITIONS

EXISTING TRAFFIC CONDITIONS:


This study conducted a 6-hour traffic count at the unsignalized four-way intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane on Wednesday, November 9^{th} , 2022. The count was conducted while schools were in session. The manual traffic counts were conducted to tabulate the morning and afternoon peak period volumes and travel directions near the proposed development site. Based on the traffic volumes collected at the intersection, the AM and PM peak hours were observed at 7:00 - 8:00 am and 5:00 - 6:00 pm.

The manual tabulated traffic counts can be reviewed in Figure 4 and Appendix E, and some observations from the count are listed below.

- About two dozen pedestrians were observed at the intersection during the counts, with all these movements appearing to be exercise-related. Nearly all the pedestrians were observed in the afternoon hours. During the traffic count, about a dozen school-age children were observed entering and exiting school buses at the intersection. During the traffic count, school buses stopped on Carter Mill Drive at the intersection three times to load and unload students. These buses did not enter the subdivision streets. One bicyclist was observed crossing Carter Mill Drive from Carter Ridge Drive to Carter View Lane.
- Most of the observed traffic was passenger vehicles. However, the traffic stream on Carter Mill Drive, Carter Ridge Drive, and Carter View Lane also included school buses, delivery trucks, and trash collection trucks. No semi-tractor trailers were observed during the traffic count.

11812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com NOT TO SCALE

FIGURE 4

Carter Ridge Phases VI - VIII

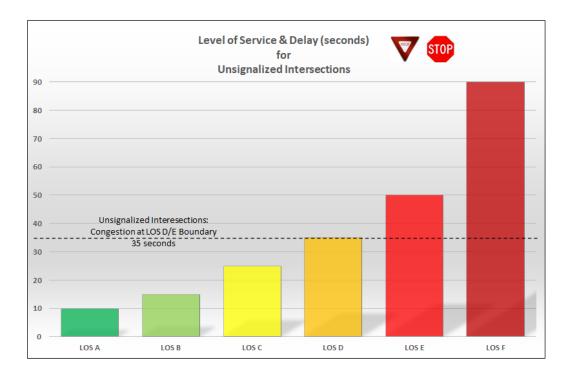
2022 Peak Hour Traffic Volumes - EXISTING TRAFFIC CONDITIONS

Capacity analyses were undertaken to determine the Level of Service (LOS) for the existing 2022 traffic volumes shown in Figure 4 at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane. The capacity analyses were calculated following the Highway Capacity Manual (HCM) methods and Synchro Traffic Software (Version 11).

<u>Methodology</u>:

LOS is a qualitative measurement developed by the transportation profession to express how well an intersection or roadway performs based on a driver's perception. LOS designations include LOS A through LOS F. The designation of LOS A signifies a roadway or intersection operating at best, while LOS F signifies road operations at worst. This grading system provides a reliable, straightforward means to communicate road operations to the public. The HCM lists level of service criteria for unsignalized intersections and signalized intersections.

LOS is defined by delay per vehicle (seconds), and roadway facilities are also characterized by the volume-to-capacity ratio (v/c). LOS designations, which are based on delay, are reported differently for unsignalized and signalized intersections. For example, a delay of 20 seconds at an unsignalized intersection would indicate LOS C, and this delay would represent the additional delay a motorist would experience traveling through the intersection. Also, for example, a v/c ratio of 0.75 for an approach at an unsignalized intersection would indicate that it is operating at 75% of its available capacity. This difference is primarily due to motorists' different expectations between the two road facilities. Generally, for most instances, the LOS D / LOS E boundary is considered the upper limit of acceptable delay during peak periods in urban and suburban areas.


For unsignalized intersections, LOS is measured in terms of delay (in seconds). This measure is an attempt to quantify delay that includes travel time, driver discomfort, and fuel consumption. For unsignalized intersections, the analysis assumes that the mainline thru and right-turn traffic does not stop and is not affected by the traffic on the minor side streets. Thus, the LOS for a two-way stop (or yield) controlled intersection is defined by

the delay for each minor approach and major street left-turn movements. Table 2 lists the level of service criteria for unsignalized intersections. The analysis results of unsignalized intersections using the HCM methodologies are conservative due to the more significant vehicle gap parameters used in the method. More often, in normal road conditions, drivers are more willing to accept smaller gaps in traffic than what is modeled using the HCM methodology. The unsignalized intersection methodology also does not account for more significant gaps sometimes produced by nearby upstream and downstream signalized intersections. For unsignalized intersections, in most instances, the upper limit of acceptable delay during peak hours is the LOS D/E boundary at 35 seconds.

TABLE 2
LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS \$10P

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY (seconds/vehicle)
A	Little or no delay	0 - 10
В	Short Traffic Delays	>10 -15
С	Average Traffic Delays	>15 - 25
D	Long Traffic Delays	>25 - 35
E	Very Long Traffic Delays	>35 - 50
F	Extreme Traffic Delays	>50

Source: Highway Capacity Manual, 6th Edition

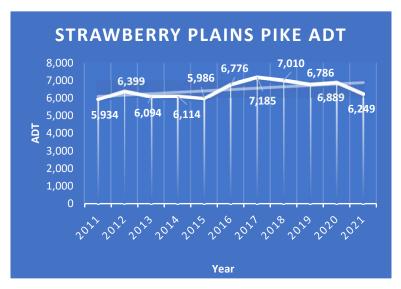
Intersection capacity results from the existing 2022 peak hour traffic are shown in Table 3. The intersection in the table is shown with a LOS designation, delay (in seconds), and v/c ratio (volume/capacity) for the AM and PM peak hours. Appendix F includes the worksheets for the existing 2022 peak hour capacity analyses.

As shown in Table 3, the existing peak hour levels of service are shown to operate at an excellent level during the AM and PM peak hours for vehicular traffic at the intersection.

TABLE 3 2022 INTERSECTION CAPACITY ANALYSIS RESULTS -EXISTING TRAFFIC CONDITIONS

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	STOP usignaliz	Northbound Left/Thru/Right	A	9.5	0.114	A	9.2	0.044
Carter Ridge Drive (NB) / Carter View Lane (SB)		Eastbound Left	A	7.7	0.003	A	7.3	0.007
		Westbound Left	A	7.2	0.002	A	7.3	0.015
		Southbound Left/Thru/Right	A	9.4	0.068	A	9.8	0.041

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology



^a Level of Service , ^b Average Delay (sec/vehicle) , ^c Volume-to-Capacity Ratio

PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT):

Horizon year traffic conditions represent the projected traffic volumes in the study area without the proposed project being developed (no-build option). The total build-out and full occupancy for Phases VI - VIII is assumed to occur by 2028 but will occur in several stages.

Vehicular traffic in the surrounding area has shown low to flat growth over the past ten years, according to the TDOT count stations. As shown in Appendix A, Strawberry Plains Pike has experienced annual growth of +0.5% over the past ten years, Asheville Highway has seen a 0.2% growth rate, and South Carter School Road has seen 0% growth.

Annual growth rates were assumed and applied to the existing 2022 volumes obtained at the intersection to calculate the future volumes in the horizon years without the potential development traffic. The horizon years were assumed to be 2025 for Phases IV (currently under construction) and V, 2027 for Phases VI and VII, and 2028 for Phase VIII. Phases IV and V were included in this study to simplify and consolidate the analysis. The traffic count obtained at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane likely included some vehicles associated with the nine houses currently under construction in Phase IV. These vehicles were not removed from the counts, which will result in a conservative analysis.

A traffic growth rate of 2% was used and assumed for this study. A higher rate than experienced at the surrounding traffic count locations was used to provide a conservative analysis and consider the possibility of increased growth due to the construction of other developments in the vicinity.

Capacity analyses were undertaken to determine the projected LOS in the horizon years of 2025, 2027, and 2028 without the project at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane. The results are shown in Tables 4a - 4c, and Appendix F includes the capacity analysis worksheets. The results in these tables are similar to the existing 2022 results shown in

Table 3, with excellent LOS and minimal vehicle delays. Figures 5a – 5c show the projected horizon traffic volumes in 2025, 2027, and 2028 without the project at the intersection during the AM and PM peak hours. The volumes shown at the intersection in the figures only include the assumed 2% growth and assume that none of the subsequent subdivision phases are ever constructed, including Phases IV and V.

TABLE 4a 2025 INTERSECTION CAPACITY ANALYSIS RESULTS -PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	zed	Northbound Left/Thru/Right	A	9.5	0.122	A	9.2	0.046
Carter Ridge Drive (NB) / Carter View Lane (SB)	STOP E	Eastbound Left	A	7.7	0.003	A	7.3	0.007
		Westbound Left	A	7.3	0.002	A	7.3	0.016
	F 5	Southbound Left/Thru/Right	A	9.4	0.074	A	9.8	0.043

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

TABLE 4b 2027 INTERSECTION CAPACITY ANALYSIS RESULTS -PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	zed	Northbound Left/Thru/Right	A	9.6	0.126	A	9.3	0.050
Carter Ridge Drive (NB) / Carter View Lane (SB)	nsism	Eastbound Left	A	7.7	0.003	A	7.3	0.009
		Westbound Left	A	7.3	0.002	A	7.3	0.017
		Southbound Left/Thru/Right	A	9.4	0.076	A	9.9	0.044

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

TABLE 4c 2028 INTERSECTION CAPACITY ANALYSIS RESULTS - PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK			
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °	
				(seconds)			(seconds)		
Carter Mill Drive (EB & WB) at Carter Ridge Drive (NB) / Carter View Lane (SB)	þəz	Northbound Left/Thru/Right	A	9.6	0.128	A	9.3	0.051	
	STOP signalization	Eastbound Left	A	7.7	0.003	A	7.3	0.009	
		Westbound Left	A	7.3	0.002	A	7.3	0.017	
	L L	Southbound Left/Thru/Right	A	9.4	0.076	A	10.0	0.046	

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

^a Level of Service , ^b Average Delay (sec/vehicle) , ^c Volume-to-Capacity Ratio

 $^{^{\}rm a}$ Level of Service , $^{\rm b}$ Average Delay (sec/vehicle) , $^{\rm c}$ Volume-to-Capacity Ratio

^a Level of Service , ^b Average Delay (sec/vehicle) , ^c Volume-to-Capacity Ratio

11812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com NOT TO SCALE

FIGURE 5a

Carter Ridge Phases VI - VIII

2025 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

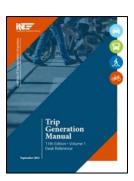
NOT TO SCALE

FIGURE 5b

Carter Ridge Phases VI - VIII

2027 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

NOT TO SCALE


FIGURE 5c

Carter Ridge Phases VI - VIII

2028 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

■ TRIP GENERATION:

A generated trip is a single or one-direction vehicle movement entering or exiting the study site. The estimated amount of traffic that the 202 single-family detached houses in Phases IV – VIII will generate was calculated based on rates and equations provided by the <u>Trip Generation Manual, 11th Edition</u>, a publication of the Institute of Transportation Engineers (ITE). The <u>Trip Generation Manual</u> is the traditional and most popular resource for determining trip generation rates when transportation impact studies are produced.

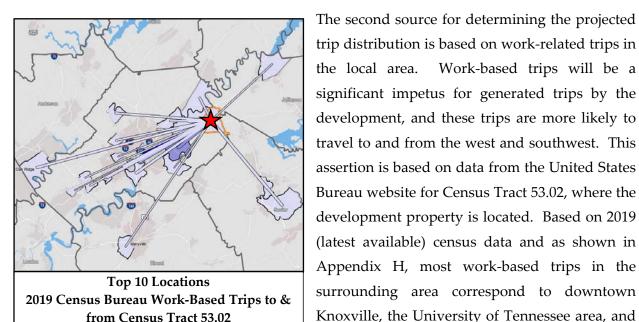
The data and calculations from ITE for Carter Ridge Phases IV - VIII are shown in Appendix G. As stated previously, Phase IV is currently under construction and was included in this study along with Phase V. A summary of this information is presented in the following table:

TABLE 5
TRIP GENERATION FOR CARTER RIDGE PHASES IV - VIII
202 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR		GENERATED TRAFFIC PM PEAK HOUR			
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
	Single-Family	Phase IV & V		26%	74%		63%	37%	
#210	Detached Housing	74 Houses	765	15	42	57	47	28	75
	Single-Family	Phase VI & VII	_	26%	74%		63%	37%	
#210	Detached Housing	89 Houses	907	17	50	67	56	33	89
	Single-Family	Phase VIII	425	26%	74%		63%	37%	
#210	Detached Housing	39 Houses		8	24	32	26	15	41
Total New Volume Site Trips		202 Houses	2,097	40	116	156	129	76	205

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

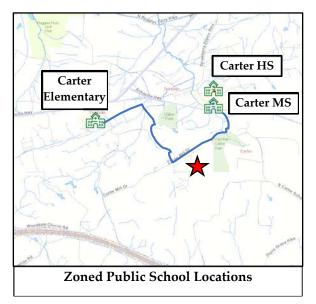

For the combination of Phases IV - VIII, it is estimated that 40 vehicles will enter and 116 will exit, for a total of 156 generated trips during the AM peak hour. Similarly, it is estimated that 129 vehicles will enter and 76 will exit, for a total of 205 generated trips during the PM peak hour. The calculated trips generated for an average weekday are estimated to be 2,097 vehicles for Carter Ridge Phases IV - VIII. No vehicle trip reductions were included in the calculations or analysis.

TRIP DISTRIBUTION AND ASSIGNMENT:

The projected trip distribution and assignment for Carter Ridge Phases VI - VIII (and Phases IV -V) are based on several sources and engineering judgments. The first source is based on the existing traffic count volumes and the observed travel directions collected at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane.

The volumes and splits tabulated during the traffic count on November 9th, 2022, at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane closely matched the traffic count volumes and distributions obtained by Ajax Engineering, LLC on August 23rd, 2017, for the TIS conducted for Carter Ridge Phase IV.

trip distribution is based on work-related trips in the local area. Work-based trips will be a significant impetus for generated trips by the development, and these trips are more likely to travel to and from the west and southwest. This assertion is based on data from the United States Bureau website for Census Tract 53.02, where the development property is located. Based on 2019 (latest available) census data and as shown in Appendix H, most work-based trips in the surrounding area correspond to downtown Knoxville, the University of Tennessee area, and areas of West Knoxville. Other, but fewer


occurring, work-based locations in the Census Tract area include travel to and from Jefferson City, Oak Ridge, Maryville, and Sevier County, TN.

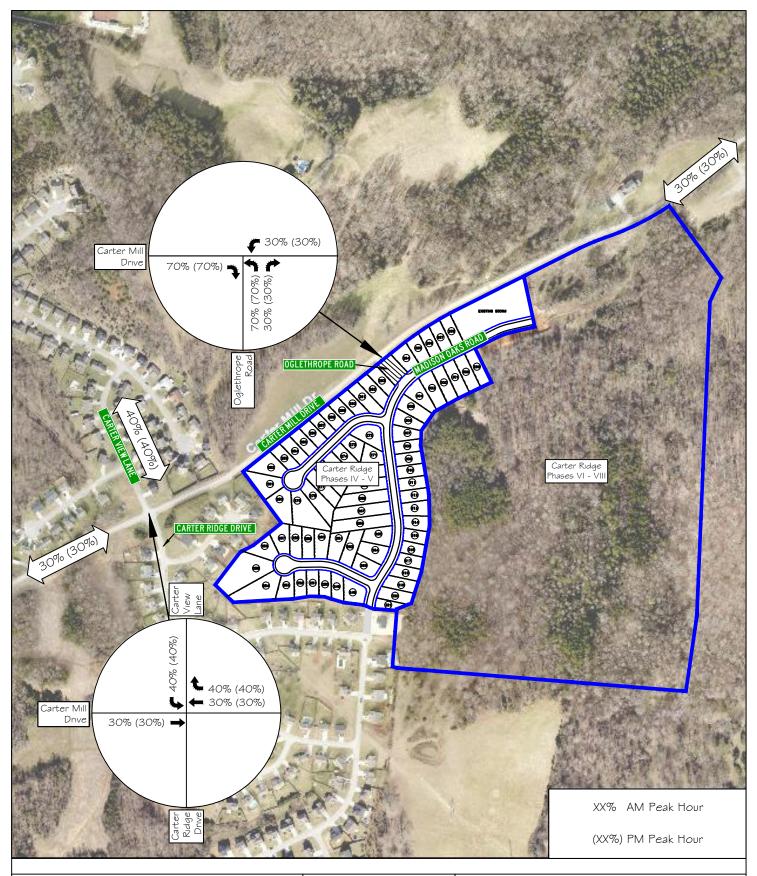
In addition to employment centers, some generated traffic will travel to and from public and private schools. Schools will be another impetus for external trip-making. The development property is currently zoned for Carter Elementary, Middle, and High School.

Carter Middle and High School are both just over one mile away by roadway north and east of the subdivision. The quickest route (via routing by Google Maps) to these schools from the subdivision will be east on Carter Mill Drive, north on South Carter School Road, west on

Asheville Highway for a short distance, and then north on North Carter School Road. Carter Elementary is located 1.8 miles away by roadway on Strawberry Plains Pike, northwest of the subdivision. The quickest route to Carter Elementary from the subdivision will be via the Carter Mill Subdivision north of the Carter Ridge Subdivision. This route will include taking Carter View Lane to the north, north on Drakewood Road, north on Woodsedge Road, and then west on Strawberry Plains Pike.

The Knox County Schools Transportation Department has developed Parental Responsibility Zones (PRZ) to determine whether students are offered transportation services to and from school. The PRZ is defined as being 1.5 miles for grades 6 – 12 and 1.0 miles for grades K – 5 from where the students' parcel is accessed to the point where the buses unload at the school. Some of the houses in the new phases in Carter Ridge Subdivision will likely be within the PRZ and will require private transportation to and from school. For the houses outside the PRZ, all school-age children attending public schools in the development will be able to utilize this service if desired.

Figures 6a – 6c show the projected distribution of traffic entering and exiting the development for Carter Ridge Subdivision for the years 2025 (Phases IV and V), 2027 (Phases VI and VII), and 2028 (Phase VIII). The percentages shown in the figure only pertain to the trips generated by the proposed dwellings in the development calculated from the ITE trip rates. Ultimately, the projected trip distribution was heavily based on the observed traffic at the intersection of Carter Mill Drive at Carter Ridge Drive / Carter View Lane during the recent traffic count and also followed the original assumed distribution used in the TIS for Carter Ridge Phase IV in 2017. Overall, the assumed splits were 30% to and from the east on Carter Mill Drive, 30% to and from the west on Carter Mill Drive, and 40% to and from the north on Carter Ridge Lane (to and from Strawberry Plains Pike via Carter Mill Subdivision).


As seen in Figures 6a – 6c, the trip distributions were based on the internal road layout, the quickest routes, and the location of the entrances for Carter Ridge Subdivision. Phases IV and V are assumed to enter and exit exclusively at the Oglethrope Road entrance on Carter Mill Drive. Phases VI and VII are split between the Oglethrope Road entrance and the Carter Ridge Drive

entrance at Carter Mill Drive / Carter View Lane. The split between the entrances for Phases VI and VII is based on whether the trips are heading east, west, or north and follows the same convention of 30% east, 30% west, and 40% north. Trips in Phase VIII are assumed will enter and exit exclusively at the Madison Oaks Road entrance on Carter Mill Drive. The Oglethrope Road entrance on Carter Mill Drive was recently constructed, and the Madison Oaks Road entrance will be constructed in Phase VIII.

Figures 7a - 7c show the traffic assignment of the computed trips generated by the phases of the development and are based on the assumed distribution of trips shown in Figures 6a - 6c.

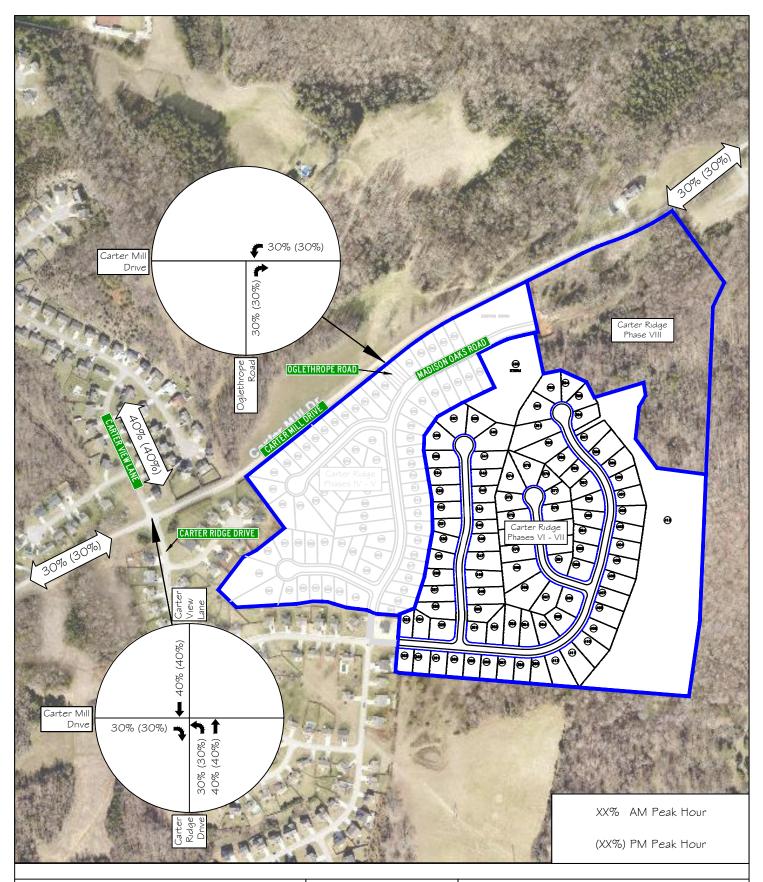

NOT TO SCALE

FIGURE 6a

Carter Ridge Phases VI - VIII

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Phases IV & V

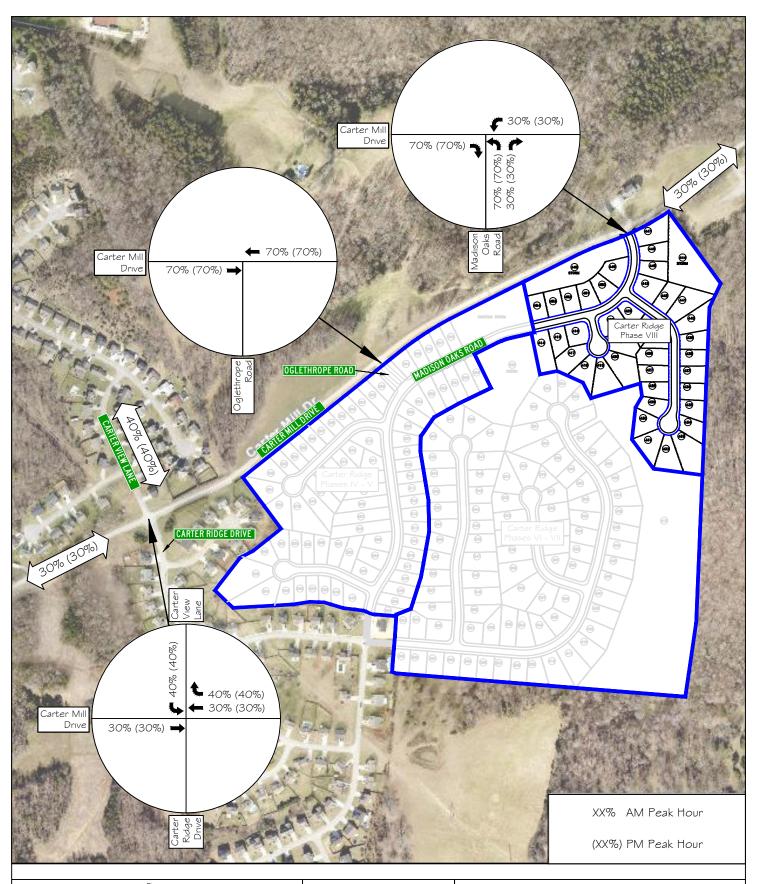

NOT TO SCALE

FIGURE 6b

Carter Ridge Phases VI - VIII

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Phases VI & VII

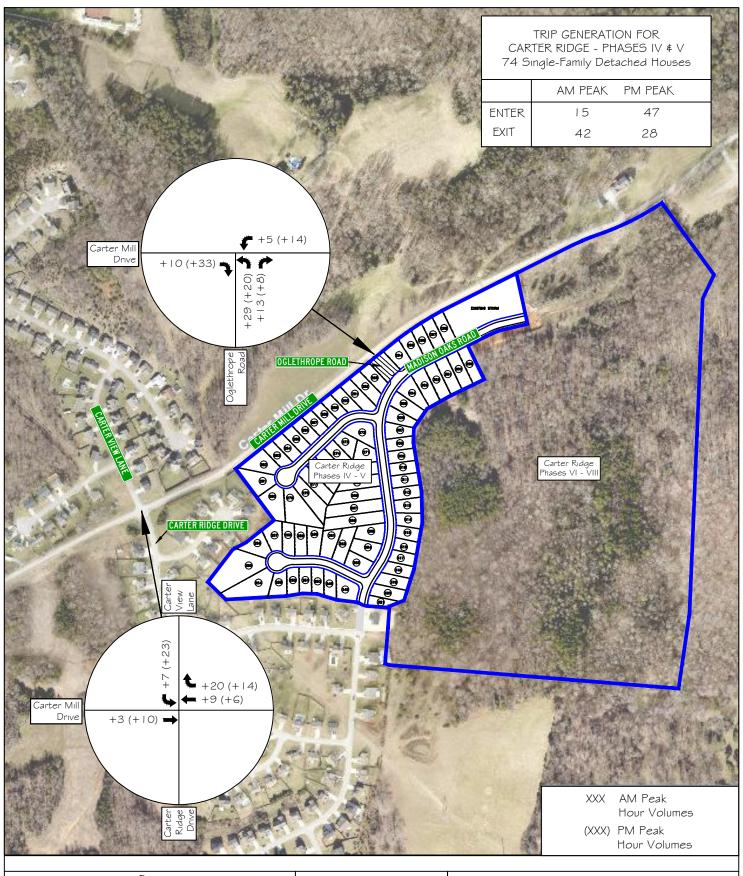

NOT TO SCALE

FIGURE 6c

Carter Ridge Phases VI - VIII

Directional Distribution of Generated Traffic during AM and PM Peak Hour for Phase VIII

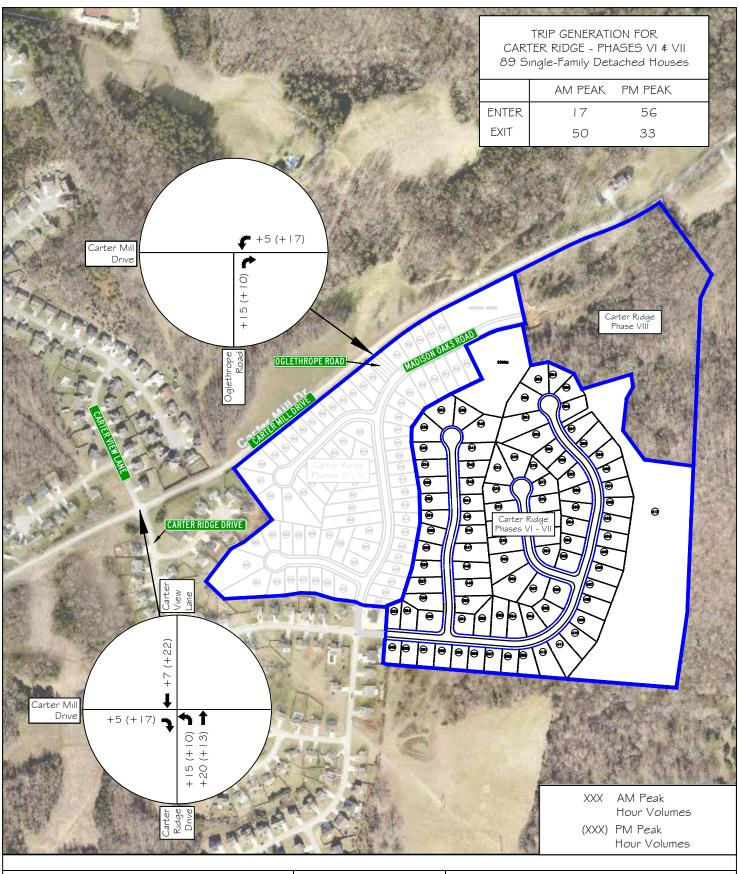

NOT TO SCALE

FIGURE 7a

Carter Ridge Phases VI - VIII

Traffic Assignment of Generated Traffic during AM and PM Peak Hour for Phases IV & V

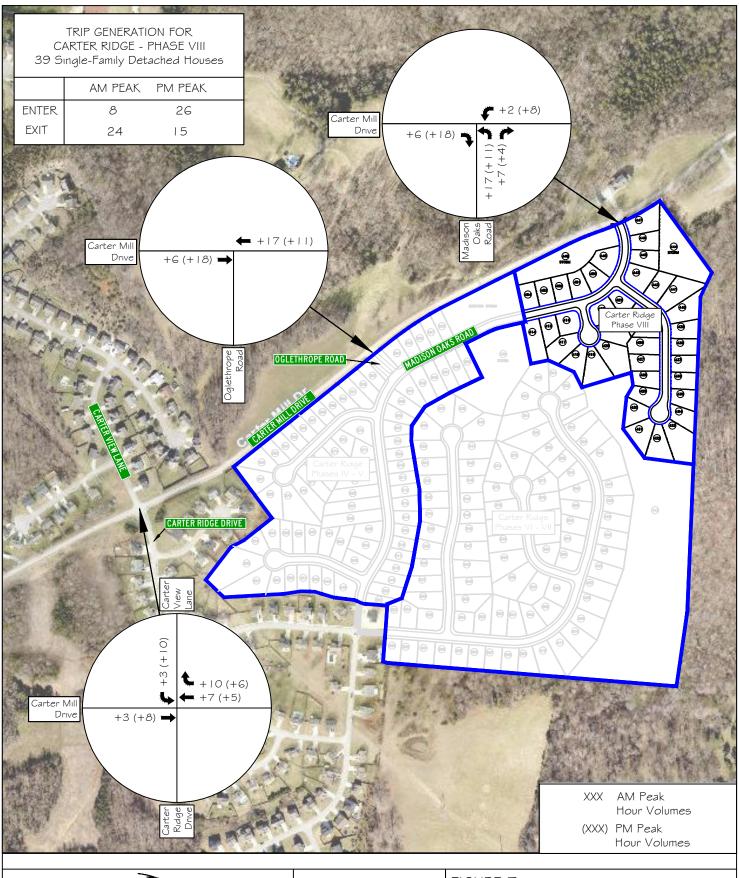
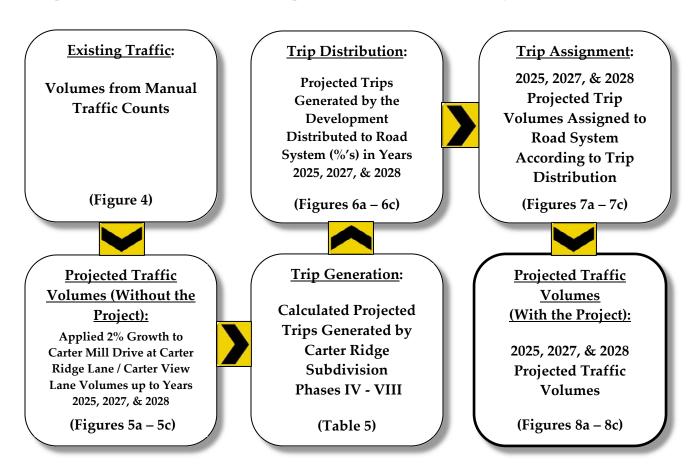

NOT TO SCALE

FIGURE 7b

Carter Ridge Phases VI - VIII

Traffic Assignment of Generated Traffic during AM and PM Peak Hour for Phases VI & VII

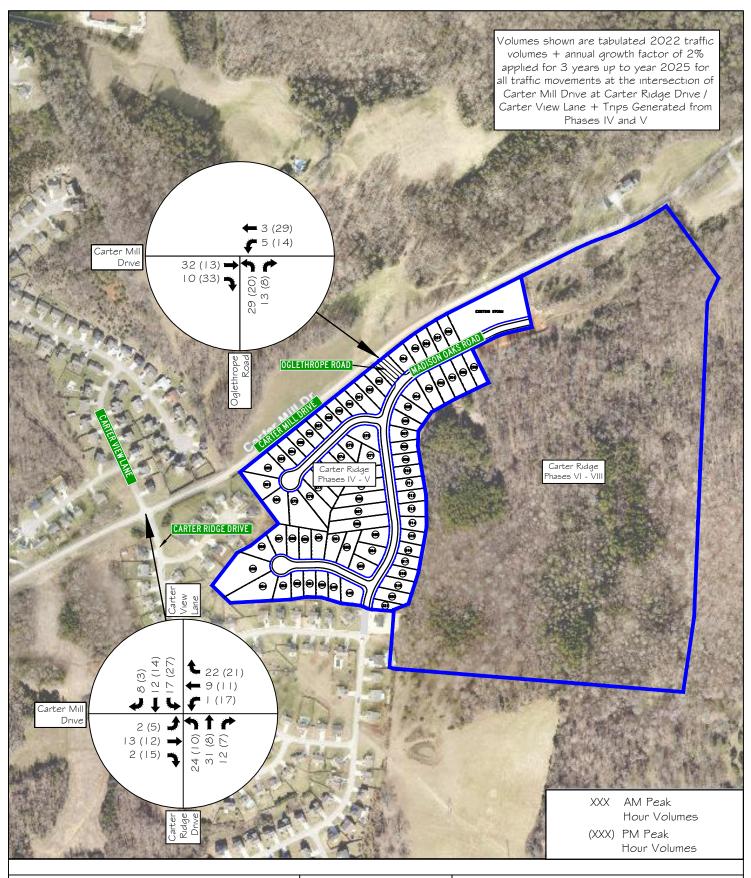
NOT TO SCALE


FIGURE 7c

Carter Ridge Phases VI - VIII

Traffic Assignment of Generated Traffic during AM and PM Peak Hour for Phase VIII

■ PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT):


Overall, several additive steps were taken to estimate the <u>total</u> projected traffic volumes at the entrances on Carter Mill Drive when the Carter Ridge Subdivision phases are constructed and occupied in 2025, 2027, and 2028. The steps are illustrated below for clarity and review:

The calculated peak hour traffic (Table 5) generated by the phases of Carter Ridge Subdivision was added to the 2025, 2027, and 2028 horizon year traffic (Figures 5a - 5c) by following the predicted trip distributions and assignments (Figures 6a - 6c and 7a - 7c). This procedure was completed to obtain the <u>total</u> projected traffic volumes when the proposed development is fully built out and occupied in 2025, 2027, and 2028. Figures 8a - 8c show the projected 2025, 2027, and 2028 AM and PM peak hours with the generated development traffic at the studied intersections.

Note: The volumes shown in Figure 8a included the trips generated by Phases IV and V in 2025. The volumes shown in Figure 8b include the trips generated by Phases IV, V, VI, and VII in 2027. The volumes shown in Figure 8c include all trips generated by Phases IV – VIII.

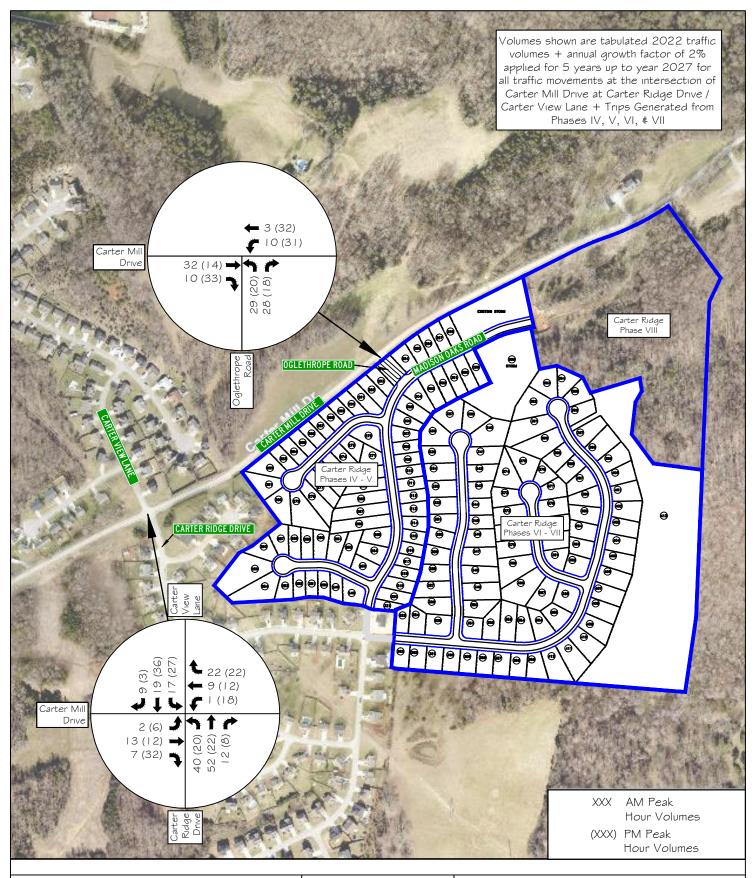

NOT TO SCALE

FIGURE 8a

Carter Ridge Phases VI - VIII

2025 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

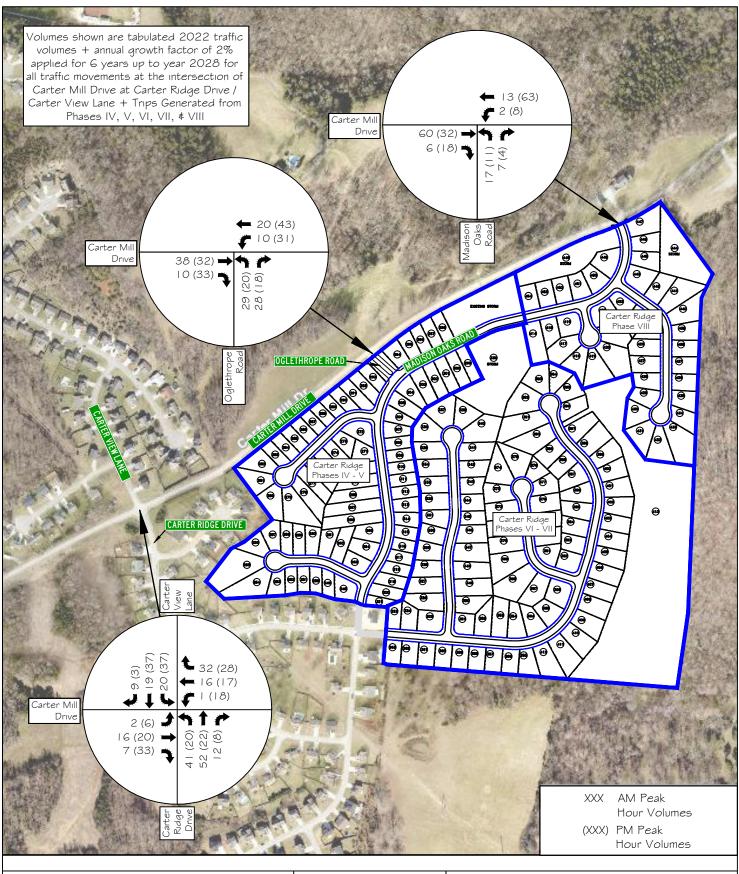

NOT TO SCALE

FIGURE 8b

Carter Ridge Phases VI - VIII

2027 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

NOT TO SCALE

FIGURE 8c

Carter Ridge Phases VI - VIII

2028 Peak Hour Traffic Volumes - PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

Capacity analyses were conducted to determine the projected LOS at the studied intersections with the development traffic in 2025, 2027, and 2028. Appendix F includes the worksheets for these capacity analyses. The projected peak hour calculations with the project in all the horizon years resulted in good LOS with low vehicle delays for the entrances on Carter Mill Drive, as shown in Tables 6a – 6c.

TABLE 6a 2025 INTERSECTION CAPACITY ANALYSIS RESULTS -PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Thru/Right	A	9.8	0.128	A	9.4	0.048
Carter Ridge Drive (NB) / Carter View Lane (SB)	STOP graffi	Eastbound Left	A	7.8	0.003	A	7.3	0.008
	Sign	Westbound Left	A	7.3	0.003	A	7.3	0.016
Ľi Li		Southbound Left/Thru/Right	A	9.9	0.094	В	10.6	0.109
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Right	A	8.8	0.047	A	8.9	0.033
Oglethrope Road (NB)	STOP E	Westbound Left	A	7.3	0.004	A	7.3	0.010
	nsign							
	Ü							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

TABLE 6b 2027 INTERSECTION CAPACITY ANALYSIS RESULTS -PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Thru/Right	В	10.5	0.207	В	10.2	0.101
Carter Ridge Drive (NB) / Carter View Lane (SB)	STOP Starting	Eastbound Left	A	7.8	0.003	A	7.3	0.009
	Sign	Westbound Left	A	7.3	0.003	A	7.4	0.017
	Un	Southbound Left/Thru/Right	В	10.2	0.123	В	11.5	0.171
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Right	A	8.9	0.064	A	9.0	0.045
Oglethrope Road (NB)	STOP E	Westbound Left	A	7.3	0.007	A	7.4	0.022
	Unsign							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

^a Level of Service , ^b Average Delay (sec/vehicle) , ^c Volume-to-Capacity Ratio

^a Level of Service , ^b Average Delay (sec/vehicle) , ^c Volume-to-Capacity Ratio

TABLE 6c 2028 INTERSECTION CAPACITY ANALYSIS RESULTS - PROJECTED TRAFFIC CONDITIONS (WITH THE PROJECT)

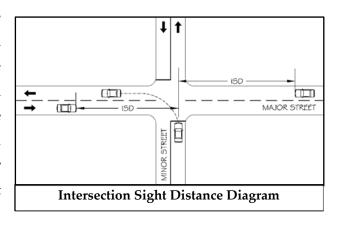
	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS a	DELAY b	v/c °	LOS a	DELAY b	v/c °
				(seconds)			(seconds)	
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Thru/Right	В	10.7	0.217	В	10.4	0.105
Carter Ridge Drive (NB) / Carter View Lane (SB)	STUP E	Eastbound Left	A	7.9	0.003	A	7.4	0.009
		Westbound Left	A	7.3	0.003	A	7.4	0.018
	Un	Southbound Left/Thru/Right	В	10.5	0.136	В	12.3	0.215
Carter Mill Drive (EB & WB) at	pəz	Northbound Left/Right	A	8.9	0.065	A	9.1	0.046
Oglethrope Road (NB)	STOP E	Westbound Left	A	7.3	0.007	A	7.4	0.022
	Unsign							
Carter Mill Drive (EB & WB) at	zed	Northbound Left/Right	A	8.9	0.028	A	9.0	0.018
Madison Oaks Road (NB)	STOP STOP	Westbound Left	A	7.3	0.001	A	7.3	0.006
	Unsign							

Note: All analyses were calculated in Synchro 11 software and reported using HCM 2010 intersection methodology

 $^{^{\}rm a}$ Level of Service , $^{\rm b}$ Average Delay (sec/vehicle) , $^{\rm c}$ Volume-to-Capacity Ratio

POTENTIAL TRANSPORTATION SAFETY ISSUES:

The study area was investigated for potential existing and future safety issues when the development is constructed. These adjacent transportation system features are discussed in the following pages.


EVALUATION OF SIGHT DISTANCE

For intersections, sight distance evaluations have two categories: Stopping Sight Distance (SSD) and Intersection Sight Distance (ISD).

Methodology:

SSD is the distance required for a motorist on a major street to perceive, react, and the vehicle to come to a complete stop before colliding with an object on the road. For evaluating intersections, this object would be another vehicle entering the intersection from a minor street. SSD can be considered the <u>minimum</u> visibility distance standard for evaluating the safety of an intersection.

ISD is the <u>required</u> visibility distance standard for evaluating the safety of an intersection per section 3.04.J.5 in the Knoxville-Knox County Subdivision Regulations. ISD is based on the time required to perceive, react, and complete the desired traffic maneuver once a motorist on a minor street decides to perform a traffic maneuver.

Three traffic maneuvers are available for vehicles stopped on a minor street at a 4-way intersection: (1) left-turn, (2) right-turn, (3) or a crossing maneuver across the major street. For turns from the minor street, ISD is needed to allow a stopped motorist to turn onto a major street without being overtaken by an approaching vehicle. The most critical ISD is for left turns from the minor street. The ISD for this maneuver includes the time to turn left and clear half of the intersection without conflicting with the oncoming traffic from the left and accelerating to the road's operating speed without causing the approaching vehicles from the right to reduce their speed substantially.

With an assumed speed limit of 30-mph on Carter Mill Drive at the subdivision entrances, the ISD is 300 feet based on Knox County's requirement of providing 1 foot of sight distance per 1 mph of vehicle speed.

Carter Mill Drive has a 0.5% road grade downhill from the east to the west at Carter Ridge Drive / Carter View Lane. Based on the assumed speed limit of 30-mph on Carter Mill Drive and the existing road grade, the SSD is calculated to be 200 feet to the east and 200 feet to the west.

On the west side of Carter Mill Drive at Oglethrope Road, Carter Mill Drive has a 6% road grade downhill from the west to the east. On the east side of Carter Mill Drive at Oglethrope Road, Carter Mill Drive has a 3% road grade downhill from the west to the east. Based on the assumed speed limit of 30-mph on Carter Mill Drive and the existing road grades, the SSD is calculated to be 190 feet to the east and 215 feet to the west.

The future Madison Oaks Road entrance on Carter Mill Drive is proposed at a vertical crest curve on Carter Mill Drive. On the west side of Carter Mill Drive at the future Madison Oaks Road entrance, Carter Mill Drive has a 3% road grade downhill from the east to the west. On the east side of Carter Mill Drive at the future Madison Oaks Road entrance, Carter Mill Drive has a 7% road grade downhill from the west to the east. Based on the assumed speed limit of 30-mph on Carter Mill Drive and the existing road grades, the SSD is calculated to be 185 feet to the east and 195 feet to the west.

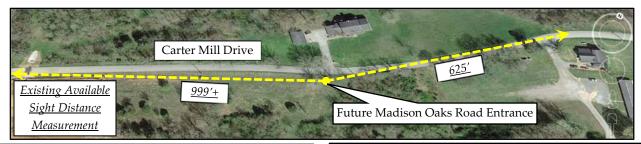
Visual observations of the sight distances at the existing entrances and the future entrance location were undertaken. Using a Nikon Laser Rangefinder on Carter Ridge Drive at Carter Mill Drive, the available sight distance was visually estimated to be 400 feet to the east and 800 feet to the west. On Oglethrope Road at Carter Mill Drive, the available sight distance was visually estimated to be 350 feet to the east and 450 feet to the west. At the future Madison Oaks Road entrance at Carter Mill Drive, the available sight distance was visually estimated to be 625 feet to the east and 999+ feet (limit of the rangefinder) to the west. Based on visual observation, the available sight distances from all the entrances at Carter Mill Drive will be adequate. A slightly longer sight distance may be available to the east on Carter Mill Drive from Oglethrope Road but is reduced by the grass vegetation on the south side of Carter Mill Drive and is hindered by an existing real estate sign.

Images of the existing sight distances are labeled below with the ISD, SSD, and rangefinder measured sight distances.



View of Sight Distance on Carter Mill Drive at Carter Ridge Drive / Carter View Lane (Looking West)

View of Sight Distance on Carter Mill Drive at Carter Ridge Drive / Carter View Lane (Looking East)



View of Sight Distance on Carter Mill Drive at Oglethrope Road (Looking West)

View of Sight Distance on Carter Mill Drive at Oglethrope Road (Looking East)

View of Sight Distance on Carter Mill Drive at Future Madison Oaks Road Entrance (Looking West)

View of Sight Distance on Carter Mill Drive at Future Madison Oaks Road Entrance (Looking East)

EVALUATION OF TURN LANE THRESHOLDS

An evaluation of the need for separate entering turn lanes into the development in the projected 2028 conditions was conducted for the Carter Ridge Subdivision entrances on Carter Mill Drive.

The criteria used for this turn lane evaluation were based on Knox County's "Access Control and Driveway Design Policy". This design policy relates vehicle volume thresholds based on prevailing speeds for two-lane and four-lane roadways. This Knox County policy follows TDOT and nationally accepted guidelines for unsignalized intersections.

With an assumed speed limit of 30-mph on Carter Mill Drive, separate left and right-turn entering lanes are not warranted at any of the entrances on Carter Mill Drive based on the projected 2028 AM and PM peak hour traffic volumes. The worksheets for these evaluations are provided in Appendix I.

CONCLUSIONS & RECOMMENDATIONS

The following is an overview of recommendations to minimize the transportation impacts of Carter Ridge Phases VI – VIII on the adjacent transportation system while attempting to achieve an acceptable traffic flow and safety level.

<u>Carter Mill Drive at Carter Ridge Drive / Carter View Lane</u>: The existing and projected 2028 level of service calculations for this intersection resulted in excellent LOS and low vehicle delays. The construction of left and right-turn lanes on Carter Mill Drive for entering traffic into Carter Ridge Subdivision at Carter Ridge Drive is not warranted. No specific recommendations are offered for this intersection.

<u>Carter Mill Drive at Oglethrope Road</u>: The projected 2028 level of service calculations for this intersection resulted in excellent LOS and low vehicle delays. The construction of left and right-turn lanes on Carter Mill Drive for entering traffic into Carter Ridge Subdivision at Oglethrope Road is not warranted.

- 2a) A 24" white stop bar is recommended to be applied to the recently constructed Oglethrope Road approach at Carter Mill Drive. The stop bar should be applied a minimum of 4 feet away from the edge of Carter Mill Drive and placed at the desired stopping point that maximizes the sight distance. A Stop Sign (R1-1) has already been installed on the Oglethrope Road approach at Carter Mill Drive.
- 2b) Sight distance looking to the east at Oglethrope Road at Carter Mill Drive is impacted by an existing sign posted by the developer announcing houses for sale. This sign interferes with sight distance to the east and should be moved further away (to the south) from Carter Mill Drive. Furthermore, vegetation control on the slope south of Carter Mill Drive

and east of Oglethrope Road will be crucial since the visually measured sight distance is estimated to be only 350 feet.

<u>Carter Mill Drive at Future Madison Oaks Road Entrance</u>: The projected 2028 level of service calculations for this intersection resulted in excellent LOS and low vehicle delays. The construction of left and right-turn lanes on Carter Mill Drive for entering traffic into Carter Ridge Subdivision at the future Madison Oaks Road is not warranted. A single exiting lane for this entrance will be sufficient.

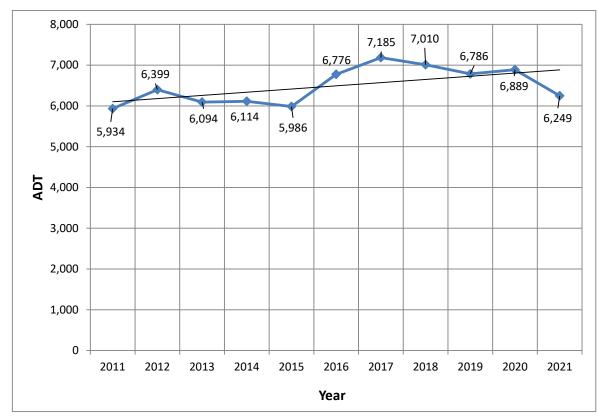
- 3a) It is recommended that a Stop Sign (R1-1) be installed, and a 24" white stop bar be applied to the Madison Oaks Road approach at Carter Mill Drive when constructed. The stop bar should be applied a minimum of 4 feet away from the edge of Carter Mill Drive and placed at the desired stopping point that maximizes the sight distance.
- 3b) Sight distances at the Madison Oaks Road approach at Carter Mill Drive must not be impacted by future landscaping, signage, or existing vegetation. Based on an assumed speed limit of 30-mph on Carter Mill Drive, the required intersection sight distance is 300 feet looking in each direction at the entrance. The stopping sight distance is 185 feet to the east and 195 feet to the west at the Madison Oaks Road approach at Carter Mill Drive. A visual inspection determined that the intersection and stopping sight distances are available at this future entrance location. The site designer must ensure that these sight distances are accounted for and provided in the design plans.

<u>Carter Ridge Phases VI - VIII Internal Roads:</u> The layout plan shows three entrances on Carter Mill Drive constructed for the Carter Ridge Subdivision, as shown in Figure 3.

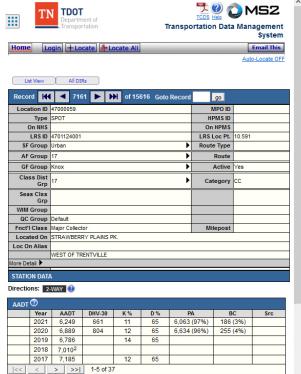
- 4a) A 25-mph Speed Limit Sign (R2-1) is recommended to be posted near the beginning of the future Madison Oaks Road entrance off Carter Mill Drive. 25-mph Speed Limit Signs (R2-1) are already posted on the Oglethrope Road and Carter Ridge Drive entrances in Carter Ridge Subdivision.
- 4b) Stop Signs (R1-1) with 24" white stop bars and other traffic signage are recommended to be installed at the internal locations in Carter Ridge Phases VI VIII, as shown below:

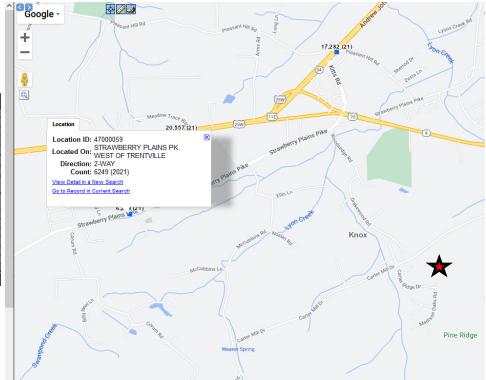
- 4c) Sight distance at the new internal road intersections must not be impacted by signage, parked cars, or future landscaping. With a proposed speed limit of 25-mph in the development, the internal intersection sight distance is 250 feet. The required stopping sight distance is 155 feet for a level road grade. The site designer should ensure that internal sight distance lengths are met and account for different proposed road grades.
- 4d) The extension of Carter Ridge Drive and the new Road "H" in Carter Ridge Phases VI and VII have long, straight road segments with steeper road grades. Straight road segments with steeper grades encourage higher vehicle speeds. It is recommended that the site designer consider traffic calming measures on these internal roads.
 - Speed humps are a prevalent traffic calming measure to install in residential areas to reduce vehicle speeds due to their low cost. However, speed humps are not recommended on roads with grades greater than 8%. Road "H" has a short section with a grade of 10%. Thus, speed humps would be inappropriate for this section of Road "H". Outside the 10% grade section on Road "H", the site designer should consider speed humps on these internal roads. Specifics regarding this recommendation should be discussed in the design phase with Knox County Engineering.
- 4e) All drainage grates and covers for the residential development must be pedestrian and bicycle safe.
- 4f) Internal sidewalks are proposed along Madison Oaks Road and a portion of Carter Ridge Drive in Carter Ridge Phase VI. Sidewalks should have appropriate ADA-compliant ramps at intersection corners, and the internal sidewalks are recommended to be 5 feet minimum in width to meet Knox County regulations. White crosswalks should be marked on the road pavement internally where pedestrians are expected to cross.
- 4g) If directed by the local post office, the site designer should include a parking area within the development for a centralized mail delivery center. The site plan does not currently show a general location in the development, and a specific plan with a parking area should be designed and provided if required.
- 4h) All road grade and intersection elements should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

APPENDIX A


HISTORICAL TRAFFIC COUNT DATA

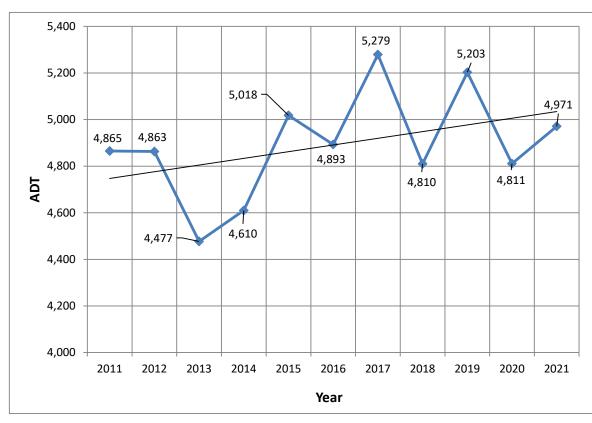
Historical Traffic Counts


Organization: TDOT Station ID #: 47000059

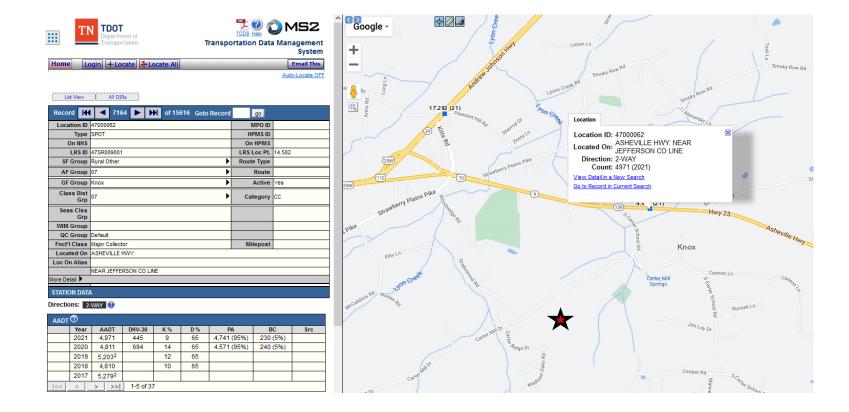

Location: Strawberry Plains Pike - West of Trentville

YEAR	ADT	
2011	5,934	
2012	6,399	
2013	6,094	
2014	6,114	
2015	5,986	ine
2016	6,776	Trendline
2017	7,185	Tre
2018	7,010	
2019	6,786	
2020	6,889	
2021	6,249	V

2011 - 2021 Growth Rate = 5.3% Average Annual Growth Rate = 0.5%



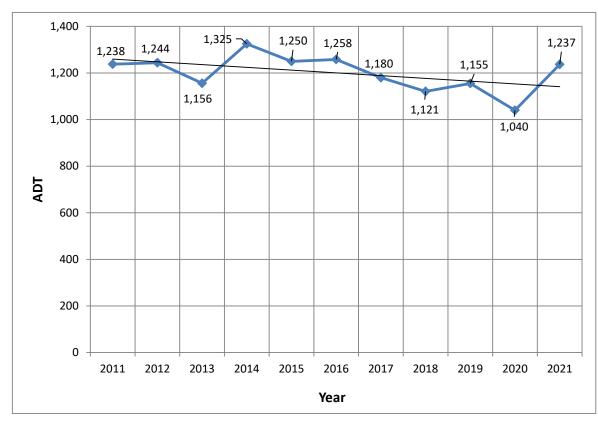
Historical Traffic Counts


Organization: TDOT Station ID #: 47000062

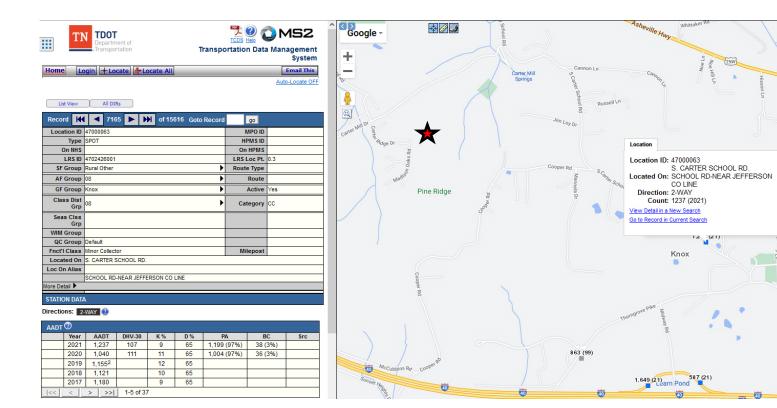
Location: Asheville Highway - Near Jefferson County Line

YEAR	ADT	
2011	4,865	
2012	4,863	
2013	4,477	
2014	4,610	
2015	5,018	ine
2016	4,893	Trendline
2017	5,279	Tre
2018	4,810	
2019	5,203	
2020	4,811	
2021	4,971	•

2011 - 2021 Growth Rate = 2.2% Average Annual Growth Rate = 0.2%



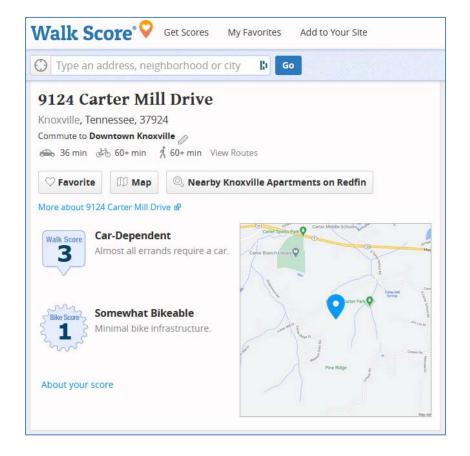
Historical Traffic Counts


Organization: TDOT Station ID #: 47000063

Location: South Carter School Road, North of Thorngrove Pike

YEAR	ADT	
2011	1,238	
2012	1,244	
2013	1,156	
2014	1,325	
2015	1,250	ine
2016	1,258	Trendline
2017	1,180	Tre
2018	1,121	
2019	1,155	
2020	1,040	
2021	1,237	V

2011 - 2021 Growth Rate = -0.1% Average Annual Growth Rate = 0.0%



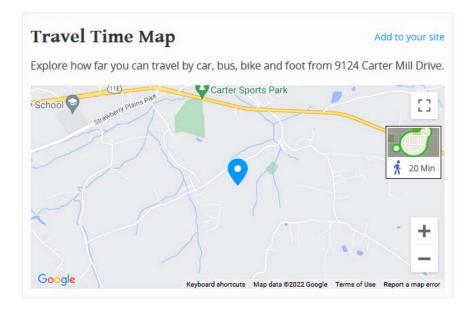
APPENDIX B

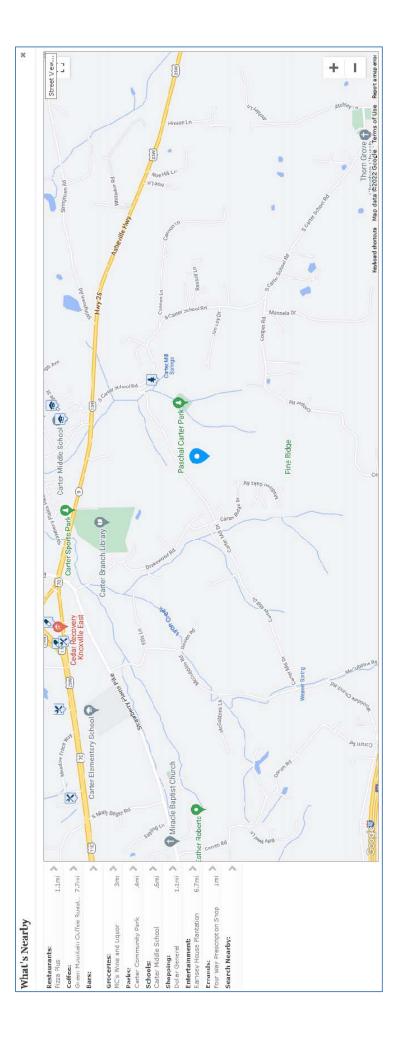
WALK SCORE

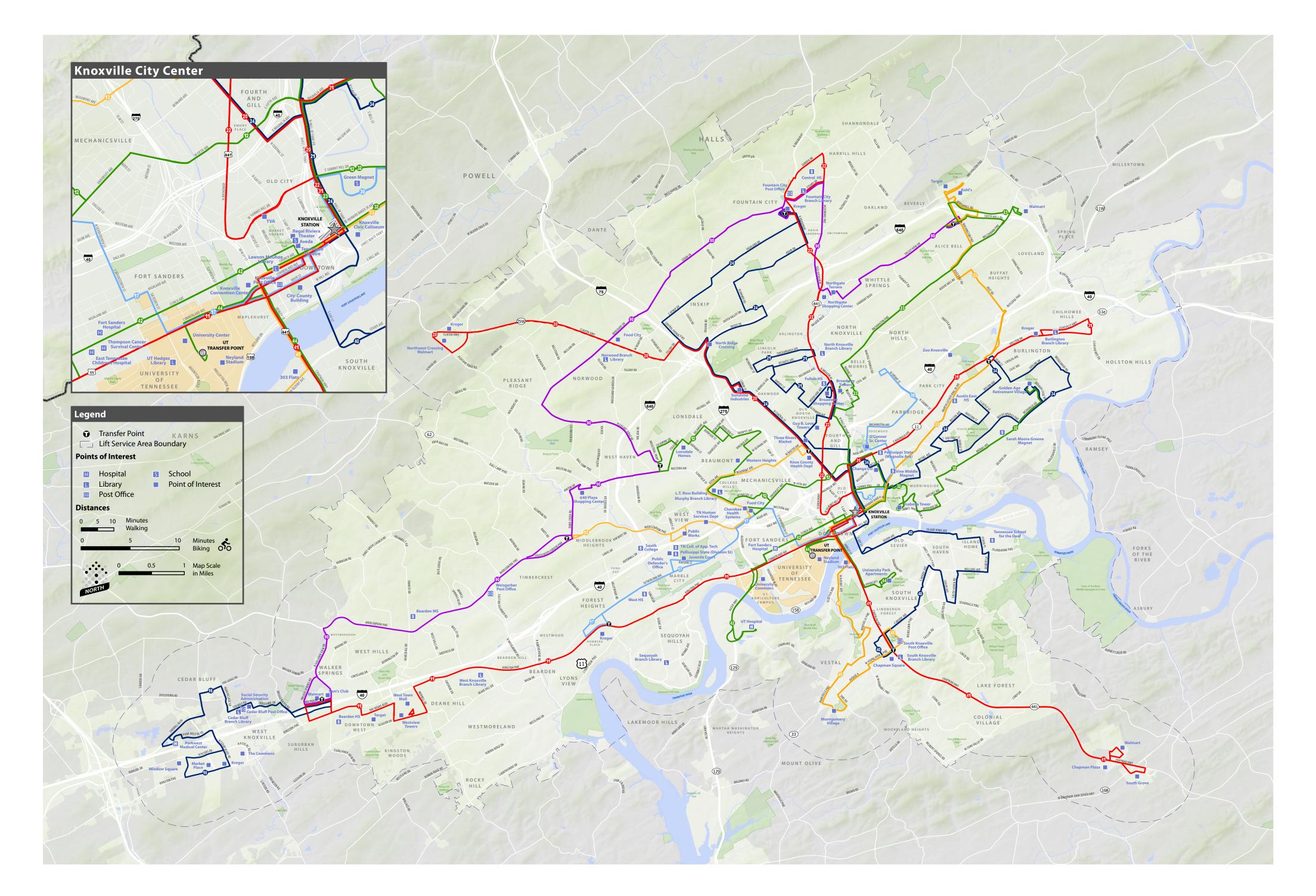
WALKSCORE

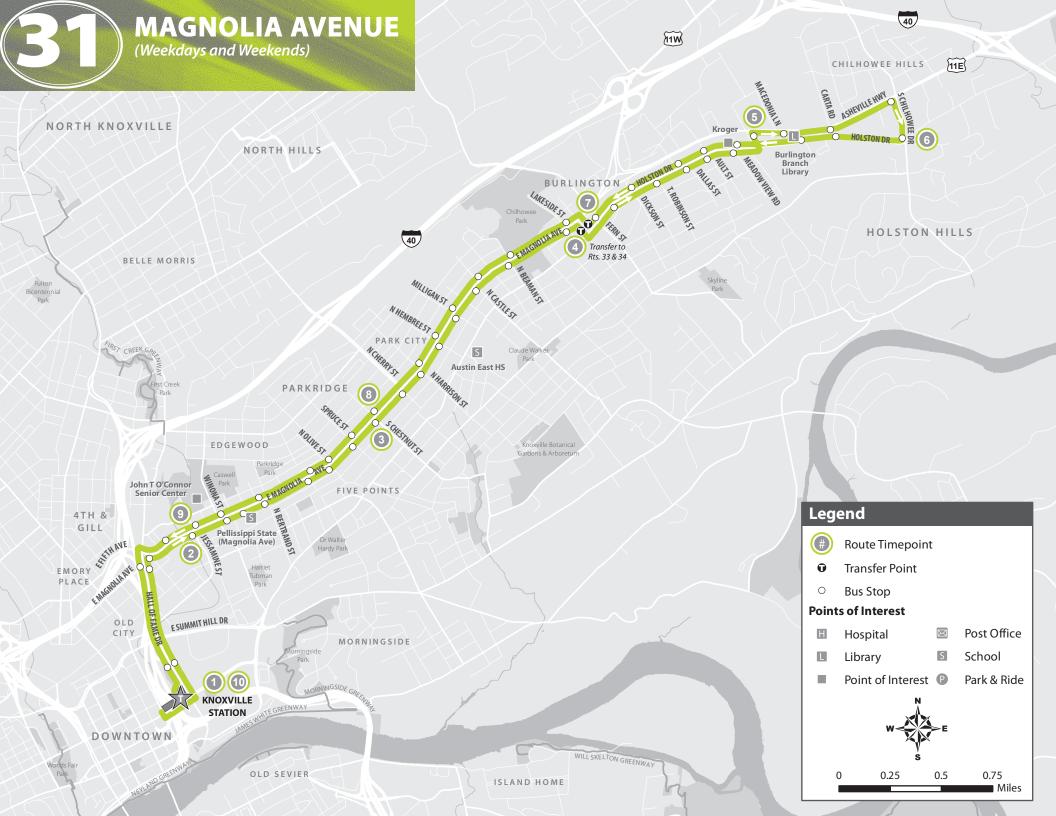
(from walkscore.com)

Scores for 9124 Carter Mill Drive




Walk Sc	ore	Transit Score	Bike Score
		now well a location is serve nd type of nearby transit li	, ,
90-100	Rider's Pa	radise	
	World-clas	s public transportation	
70-89	Excellent	Transit	
	Transit is c	onvenient for most trips	
50-69	Good Tran	nsit	
	Many near	by public transportation op	tions
25-49	Some Trai	nsit	
	A few near	by public transportation op	tions
0-24	Minimal T	ransit	
	lt is possib	le to get on a bus	


Walk So	ore	Transit Score	Bike Score
		ether an area is good for b d connectivity, and destin	
90-100	Biker's Pa	radise	
	Daily erran	ds can be accomplished on	a bike
70-89	Very Bikea	able	
	Biking is co	nvenient for most trips	
50-69	Bikeable		
	Some bike	infrastructure	
0-49	Somewhat	Bikeable	
	Minimal bi	ke infrastructure	



•		_	• т	\mathbf{r}	T1/	
^		нΙ	•		ΙX	•
_						

KNOXVILLE AREA TRANSIT MAP AND INFORMATION

Route 31 - Magnolia: Weekdays

Going awa	ay from dow	ıntown			Going towar	d downtown			
Knoxville	Magnolia	Magnolia		Burns @			Magnolia		Knoxville
Station	@	@	Kirkwood St.	Asheville	Chilhowee @	Kirkwood St.	@	Magnolia @	Station
Bay F	Jessamine	Chestnut	Superstop	Hwy	Holston	Superstop	Chestnut	Jessamine	Bay F
1	2	3	4	5	6	7	8	9	10
				5:38 AM	5:43 AM	5:53 AM	5:59 AM	6:04 AM	6:10 AM
				6:08 AM	6:13 AM	6:23 AM	6:29 AM	6:34 AM	6:40 AM
6:15 AM	6:19 AM	6:25 AM	6:33 AM	6:38 AM	6:43 AM	6:53 AM	6:59 AM	7:04 AM	7:10 AM
6:45 AM	6:49 AM	6:55 AM	7:03 AM	7:08 AM	7:13 AM	7:23 AM	7:29 AM	7:34 AM	7:40 AM
7:15 AM	7:19 AM	7:25 AM	7:33 AM	7:38 AM	7:43 AM	7:53 AM	7:59 AM	8:04 AM	8:10 AM
7:45 AM	7:49 AM	7:55 AM	8:03 AM	8:08 AM	8:13 AM	8:23 AM	8:29 AM	8:34 AM	8:40 AM
8:15 AM	8:19 AM	8:25 AM	8:33 AM	8:38 AM	8:43 AM	8:53 AM	8:59 AM	9:04 AM	9:10 AM
8:45 AM	8:49 AM	8:55 AM	9:03 AM	9:08 AM	9:13 AM	9:23 AM	9:29 AM	9:34 AM	9:40 AM
9:15 AM	9:19 AM	9:25 AM	9:33 AM	9:38 AM	9:43 AM	9:53 AM	9:59 AM	10:04 AM	10:10 AM
9:45 AM	9:49 AM	9:55 AM	10:03 AM	10:08 AM	10:13 AM	10:23 AM	10:29 AM	10:34 AM	10:40 AM
10:15 AM	10:19 AM	10:25 AM	10:33 AM	10:38 AM	10:43 AM	10:53 AM	10:59 AM	11:04 AM	11:10 AM
10:45 AM	10:49 AM	10:55 AM	11:03 AM	11:08 AM	11:13 AM	11:23 AM	11:29 AM	11:34 AM	11:40 AM
11:15 AM	11:19 AM	11:25 AM	11:33 AM	11:38 AM	11:43 AM	11:53 AM	11:59 AM	12:04 PM	12:10 PM
11:45 AM	11:49 AM	11:55 AM	12:03 PM	12:08 PM	12:13 PM	12:23 PM	12:29 PM	12:34 PM	12:40 PM
12:15 PM	12:19 PM	12:25 PM	12:33 PM	12:38 PM	12:43 PM	12:53 PM	12:59 PM	1:04 PM	1:10 PM
12:45 PM	12:49 PM	12:55 PM	1:03 PM	1:08 PM	1:13 PM	1:23 PM	1:29 PM	1:34 PM	1:40 PM
1:15 PM	1:19 PM	1:25 PM	1:33 PM	1:38 PM	1:43 PM	1:53 PM	1:59 PM	2:04 PM	2:10 PM
1:45 PM	1:49 PM	1:55 PM	2:03 PM	2:08 PM	2:13 PM	2:23 PM	2:29 PM	2:34 PM	2:40 PM
2:15 PM	2:19 PM	2:25 PM	2:33 PM	2:38 PM	2:43 PM	2:53 PM	2:59 PM	3:04 PM	3:10 PM
2:45 PM	2:49 PM	2:55 PM	3:03 PM	3:08 PM	3:13 PM	3:23 PM	3:29 PM	3:34 PM	3:40 PM
3:15 PM	3:19 PM	3:25 PM	3:33 PM	3:38 PM	3:43 PM	3:53 PM	3:59 PM	4:04 PM	4:10 PM
3:45 PM	3:49 PM	3:55 PM	4:03 PM	4:08 PM	4:13 PM	4:23 PM	4:29 PM	4:34 PM	4:40 PM
4:15 PM	4:19 PM	4:25 PM	4:33 PM	4:38 PM	4:43 PM	4:53 PM	4:59 PM	5:04 PM	5:10 PM
4:45 PM	4:49 PM	4:55 PM	5:03 PM	5:08 PM	5:13 PM	5:23 PM	5:29 PM	5:34 PM	5:40 PM
5:15 PM	5:19 PM	5:25 PM	5:33 PM	5:38 PM	5:43 PM	5:53 PM	5:59 PM	6:04 PM	6:10 PM
5:45 PM	5:49 PM	5:55 PM	6:03 PM	6:08 PM	6:13 PM	6:23 PM	6:29 PM	6:34 PM	6:40 PM
6:15 PM	6:19 PM	6:25 PM	6:33 PM	6:38 PM	6:43 PM	6:53 PM	6:59 PM	7:04 PM	7:10 PM
6:45 PM	6:49 PM	6:55 PM	7:03 PM	7:08 PM	7:13 PM	7:23 PM	7:29 PM	7:34 PM	7:40 PM
7:15 PM	7:19 PM	7:25 PM	7:33 PM	7:38 PM	7:43 PM	7:53 PM	7:59 PM	8:04 PM	8:10 PM
7:45 PM	7:49 PM	7:55 PM	8:03 PM	8:08 PM	8:13 PM	8:23 PM	8:29 PM	8:34 PM	8:40 PM
8:15 PM	8:19 PM	8:25 PM	8:33 PM	8:38 PM	8:43 PM	8:53 PM	8:59 PM	9:04 PM	9:10 PM
8:45 PM	8:49 PM	8:55 PM	9:03 PM	9:08 PM	9:13 PM	9:23 PM	9:29 PM	9:34 PM	9:40 PM
9:15 PM	9:19 PM	9:25 PM	9:33 PM	9:38 PM	9:43 PM	9:53 PM	9:59 PM	10:04 PM	10:10 PM
9:45 PM	9:49 PM	9:55 PM	10:03 PM	10:08 PM	10:13 PM	10:23 PM	10:29 PM	10:34 PM	
10:15 PM	10:19 PM	10:25 PM	10:33 PM	10:38 PM	10:43 PM	10:53 PM	10:59 PM	11:04 PM	11:10 PM
11:15 PM	11:19 PM	11:25 PM	11:33 PM	11:38 PM	11:43 PM	11:53 PM	11:59 PM	12:04 AM	

Route 31 - Magnolia: SATURDAYS

Going awa	y from dow	ıntown			Going towar	d downtown			
Knoxville	Magnolia	Magnolia		Burns @			Magnolia		Knoxville
Station	@	@	Kirkwood St.	Asheville	Chilhowee @	Kirkwood St.	@	Magnolia @	Station
Bay F	Jessamine	Chestnut	Superstop	Hwy	Holston	Superstop	Chestnut	Jessamine	Bay F
1	2	3	4	5	6	7	8	9	10
				6:38 AM	6:43 AM	6:53 AM	6:59 AM	7:04 AM	7:10 AM
7:15 AM	7:19 AM	7:25 AM	7:33 AM	7:08 AM	7:13 AM	7:23 AM	7:29 AM	7:34 AM	7:40 AM
7:45 AM	7:49 AM	7:55 AM	8:03 AM	7:38 AM	7:43 AM	7:53 AM	7:59 AM	8:04 AM	8:10 AM
8:15 AM	8:19 AM	8:25 AM	8:33 AM	8:08 AM	8:13 AM	8:23 AM	8:29 AM	8:34 AM	8:40 AM
8:45 AM	8:49 AM	8:55 AM	9:03 AM	8:38 AM	8:43 AM	8:53 AM	8:59 AM	9:04 AM	9:10 AM
9:15 AM	9:19 AM	9:25 AM	9:33 AM	9:08 AM	9:13 AM	9:23 AM	9:29 AM	9:34 AM	9:40 AM
9:45 AM	9:49 AM	9:55 AM	10:03 AM	9:38 AM	9:43 AM	9:53 AM	9:59 AM	10:04 AM	10:10 AM
10:15 AM	10:19 AM	10:25 AM	10:33 AM	10:08 AM	10:13 AM	10:23 AM	10:29 AM	10:34 AM	10:40 AM
10:45 AM	10:49 AM	10:55 AM	11:03 AM	10:38 AM	10:43 AM	10:53 AM	10:59 AM	11:04 AM	11:10 AM
11:15 AM	11:19 AM	11:25 AM	11:33 AM	11:08 AM	11:13 AM	11:23 AM	11:29 AM	11:34 AM	11:40 AM
11:45 AM	11:49 AM	11:55 AM	12:03 PM	11:38 AM	11:43 AM	11:53 AM	11:59 AM	12:04 PM	12:10 PM
12:15 PM	12:19 PM	12:25 PM	12:33 PM	12:08 PM	12:13 PM	12:23 PM	12:29 PM	12:34 PM	12:40 PM
12:45 PM	12:49 PM	12:55 PM	1:03 PM	12:38 PM	12:43 PM	12:53 PM	12:59 PM	1:04 PM	1:10 PM
1:15 PM	1:19 PM	1:25 PM	1:33 PM	1:08 PM	1:13 PM	1:23 PM	1:29 PM	1:34 PM	1:40 PM
1:45 PM	1:49 PM	1:55 PM	2:03 PM	1:38 PM	1:43 PM	1:53 PM	1:59 PM	2:04 PM	2:10 PM
2:15 PM	2:19 PM	2:25 PM	2:33 PM	2:08 PM	2:13 PM	2:23 PM	2:29 PM	2:34 PM	2:40 PM
2:45 PM	2:49 PM	2:55 PM	3:03 PM	2:38 PM	2:43 PM	2:53 PM	2:59 PM	3:04 PM	3:10 PM
3:15 PM	3:19 PM	3:25 PM	3:33 PM	3:08 PM	3:13 PM	3:23 PM	3:29 PM	3:34 PM	3:40 PM
3:45 PM	3:49 PM	3:55 PM	4:03 PM	3:38 PM	3:43 PM	3:53 PM	3:59 PM	4:04 PM	4:10 PM
4:15 PM	4:19 PM	4:25 PM	4:33 PM	4:08 PM	4:13 PM	4:23 PM	4:29 PM	4:34 PM	4:40 PM
4:45 PM	4:49 PM	4:55 PM	5:03 PM	4:38 PM	4:43 PM	4:53 PM	4:59 PM	5:04 PM	5:10 PM
5:15 PM	5:19 PM	5:25 PM	5:33 PM	5:08 PM	5:13 PM	5:23 PM	5:29 PM	5:34 PM	5:40 PM
5:45 PM	5:49 PM	5:55 PM	6:03 PM	5:38 PM	5:43 PM	5:53 PM	5:59 PM	6:04 PM	6:10 PM
6:15 PM	6:19 PM	6:25 PM	6:33 PM	6:08 PM	6:13 PM	6:23 PM	6:29 PM	6:34 PM	6:40 PM
6:45 PM	6:49 PM	6:55 PM	7:03 PM	6:38 PM	6:43 PM	6:53 PM	6:59 PM	7:04 PM	7:10 PM
7:15 PM	7:19 PM	7:25 PM	7:33 PM	7:08 PM	7:13 PM	7:23 PM	7:29 PM	7:34 PM	7:40 PM
7:45 PM	7:49 PM	7:55 PM	8:03 PM	7:38 PM	7:43 PM	7:53 PM	7:59 PM	8:04 PM	8:10 PM
8:15 PM	8:19 PM	8:25 PM	8:33 PM	8:08 PM	8:13 PM	8:23 PM	8:29 PM	8:34 PM	8:40 PM
8:45 PM	8:49 PM	8:55 PM	9:03 PM	8:38 PM	8:43 PM	8:53 PM	8:59 PM	9:04 PM	9:10 PM
9:15 PM	9:19 PM	9:25 PM	9:33 PM	9:08 PM	9:13 PM	9:23 PM	9:29 PM	9:34 PM	9:40 PM
9:45 PM	9:49 PM	9:55 PM	10:03 PM	9:38 PM	9:43 PM	9:53 PM	9:59 PM	10:04 PM	10:10 PM
10:15 PM	10:19 PM	10:25 PM	10:33 PM	10:08 PM	10:13 PM	10:23 PM	10:29 PM	10:34 PM	
11:15 PM	11:19 PM	11:25 PM	11:33 PM	10:38 PM	10:43 PM	10:53 PM	10:59 PM	11:04 PM	11:10 PM
				11:38 PM	11:43 PM	11:53 PM	11:59 PM	12:04 AM	

Route 31 - Magnolia: SUNDAYS

Going awa	ay from dow	ıntown			Going towar	d downtown			
Knoxville	Magnolia	Magnolia		Burns at			Magnolia		Knoxville
Station	@	@	Kirkwood St.	Asheville	Chilhowee @	Kirkwood St.	@	Magnolia @	Station
Bay F	Jessamine	Chestnut	Superstop	Hwy	Holston	Superstop	Chestnut	Jessamine	Bay F
1	2	3	4	5	6	7	8	9	10
8:15 AM	8:19 AM	8:25 AM	8:33 AM	8:38 AM	8:43 AM	8:53 AM	8:59 AM	9:04 AM	9:10 AM
9:15 AM	9:19 AM	9:25 AM	9:33 AM	9:38 AM	9:43 AM	9:53 AM	9:59 AM	10:04 AM	10:10 AM
10:15 AM	10:19 AM	10:25 AM	10:33 AM	10:38 AM	10:43 AM	10:53 AM	10:59 AM	11:04 AM	11:10 AM
11:15 AM	11:19 AM	11:25 AM	11:33 AM	11:38 AM	11:43 AM	11:53 AM	11:59 AM	12:04 PM	12:10 PM
12:15 PM	12:19 PM	12:25 PM	12:33 PM	12:38 PM	12:43 PM	12:53 PM	12:59 PM	1:04 PM	1:10 PM
1:15 PM	1:19 PM	1:25 PM	1:33 PM	1:38 PM	1:43 PM	1:53 PM	1:59 PM	2:04 PM	2:10 PM
2:15 PM	2:19 PM	2:25 PM	2:33 PM	2:38 PM	2:43 PM	2:53 PM	2:59 PM	3:04 PM	3:10 PM
3:15 PM	3:19 PM	3:25 PM	3:33 PM	3:38 PM	3:43 PM	3:53 PM	3:59 PM	4:04 PM	4:10 PM
4:15 PM	4:19 PM	4:25 PM	4:33 PM	4:38 PM	4:43 PM	4:53 PM	4:59 PM	5:04 PM	5:10 PM
5:15 PM	5:19 PM	5:25 PM	5:33 PM	5:38 PM	5:43 PM	5:53 PM	5:59 PM	6:04 PM	6:10 PM

APPENDIX D

ZONING MAP

500 1,000 ft

Knoxville - Knox County - KUB Geographic Information System

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS , WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

APPENDIX E

MANUAL TRAFFIC COUNT DATA

TRAFFIC COUNT DATA

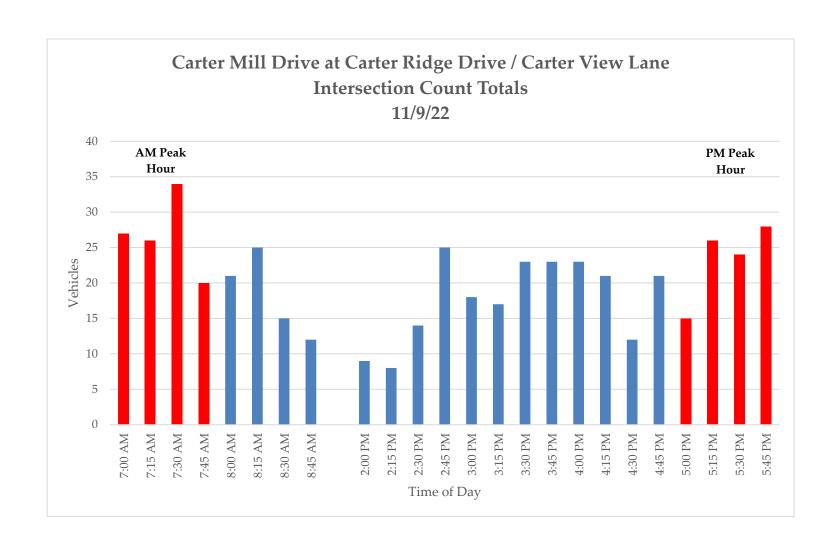
Major Street: Carter Mill Drive (EB and WB)

Minor Street: Carter Ridge Drive (NB) / Carter View Lane (SB)

Traffic Control: Stop Sign on Carter Ridge Drive and Carter View Lane

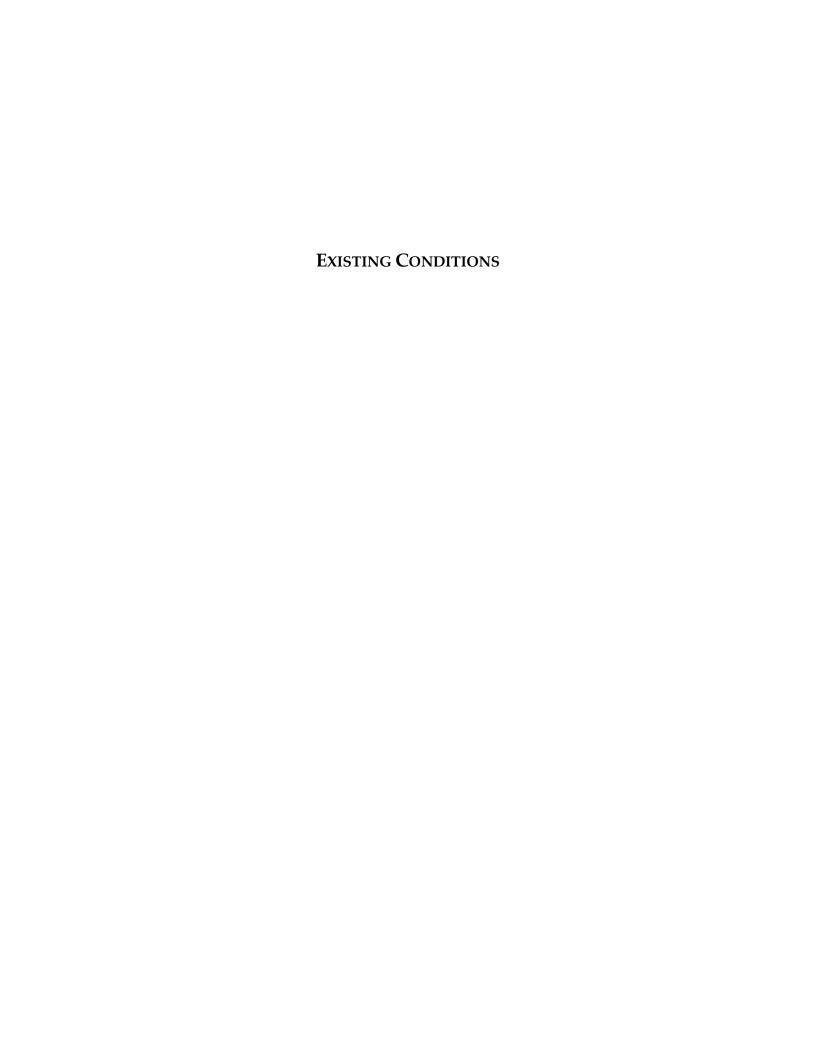
11/9/2022 (Wednesday) Sunny, Warm Conducted by: Ajax Engineering

	Ca	arter View La	ne	C	arter Mill Dri	ve	Ca	rter Ridge Dı	rive	Ca	arter Mill Dri	ive		
TIME	S	OUTHBOUN	D	I	VESTBOUNI)	N	ORTHBOUN	JD	1	EASTBOUNI)	VEHICLE	PEAK
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL	HOUR
7:00 AM	2	0	4	1	0	0	12	5	3	0	0	0	27	7:00 AM - 8:00 AM
7:15 AM	1	2	0	0	0	0	2	10	4	1	5	1	26	
7:30 AM	2	7	4	0	0	1	5	9	2	1	3	0	34	
7:45 AM	4	2	0	0	0	1	4	5	2	0	1	1	20	
8:00 AM	2	2	2	0	2	1	3	4	2	0	1	2	21	
8:15 AM	3	1	0	4	1	1	3	1	7	1	2	1	25	
8:30 AM	0	1	0	2	1	0	3	1	3	0	2	2	15	
8:45 AM	2	0	0	2	1	0	2	1	3	0	0	1	12	
TOTAL	16	15	10	9	5	4	34	36	26	3	14	8	180	
2:00 PM	1	1	0	2	0	0	0	0	0	1	2	2	9	
2:15 PM	1	2	0	0	1	1	0	2	0	0	0	1	8	
2:30 PM	1	0	0	2	1	0	3	3	1	0	3	0	14	
2:45 PM	2	4	0	1	2	1	2	4	1	2	1	5	25	
3:00 PM	1	6	1	2	0	0	0	0	7	0	0	1	18	
3:15 PM	1	2	1	0	2	1	0	1	4	1	3	1	17	
3:30 PM	2	5	1	7	3	0	1	0	1	0	1	2	23	
3:45 PM	1	2	0	6	1	3	0	2	4	0	0	4	23	
4:00 PM	0	3	0	4	4	3	4	0	1	2	0	2	23	
4:15 PM	0	2	0	6	1	0	3	4	2	0	1	2	21	
4:30 PM	0	1	0	1	0	2	1	3	2	1	0	1	12	
4:45 PM	0	6	0	4	2	1	2	2	2	0	0	2	21	
5:00 PM	0	2	1	3	1	0	3	2	0	1	1	1	15	5:00 PM - 6:00 PM
5:15 PM	0	5	0	6	0	2	1	3	2	3	0	4	26	
5:30 PM	2	5	1	2	3	2	2	2	1	0	0	4	24	
5:45 PM	2	1	1	5	1	3	3	1	4	1	1	5	28	
TOTAL	14	47	6	51	22	19	25	29	32	12	13	37	307	


2022 AM Peak Hour 7:00 AM - 8:00 AM

	Ca	arter View La	ne	Ci	arter Mill Dri	ve	Ca	rter Ridge Dı	rive	Ca	arter Mill Dri	ve
TIME	S	OUTHBOUN	D	I	VESTBOUNI	D	N	ORTHBOUN	ID	1	EASTBOUNI)
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT
7:00 AM	2	0	4	1	0	0	12	5	3	0	0	0
7:15 AM	1	2	0	0	0	0	2	10	4	1	5	1
7:30 AM	2	7	4	0	0	1	5	9	2	1	3	0
7:45 AM	4	2	0	0	0	1	4	5	2	0	1	1
TOTAL	9	11	8	1	0	2	23	29	11	2	9	2
PHF	0.56	0.39	0.50	0.25	-	0.50	0.48	0.73	0.69	0.50	0.45	0.50
TRUCK %	11.1%	9.1%	0.0%	0.0%	0.0%	0.0%	0.0%	3.4%	0.0%	50.0%	0.0%	0.0%

2022 PM Peak Hour


5:00 PM - 6:00 PM

	Ca	arter View La	ine	Ca	arter Mill Dri	ive	Ca	rter Ridge Dı	rive	Ca	arter Mill Dri	ve
TIME	S	OUTHBOUN	ID	I	WESTBOUNI	D	N	ORTHBOUN	ID	1	EASTBOUNE)
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT
5:00 PM	0	2	1	3	1	0	3	2	0	1	1	1
5:15 PM	0	5	0	6	0	2	1	3	2	3	0	4
5:30 PM	2	5	1	2	3	2	2	2	1	0	0	4
5:45 PM	2	1	1	5	1	3	3	1	4	1	1	5
TOTAL	4	13	3	16	5	7	9	8	7	5	2	14
PHF	0.50	0.65	0.75	0.67	0.42	0.58	0.75	0.67	0.44	0.42	0.50	0.70

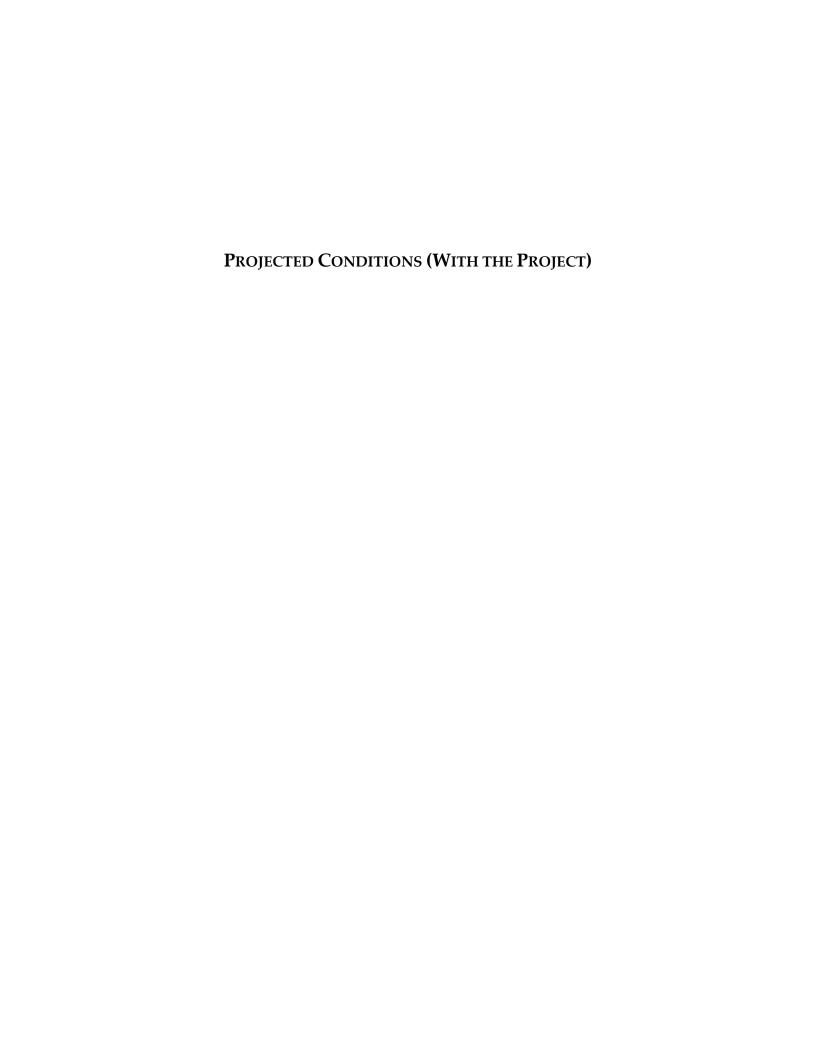
APPENDIX F

CAPACITY ANALYSES – HCM WORKSHEETS (SYNCHRO 11)

Intersection												
Int Delay, s/veh	8.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	9	2	1	0	2	23	29	11	9	11	8
Future Vol, veh/h	2	9	2	1	0	2	23	29	11	9	11	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	<u> </u>	None
Storage Length	-	-	-	-	-	-	_	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	_	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	20	4	4	0	4	48	40	16	16	28	16
Major/Minor N	1ajor1		N	Major2		N	/linor1			Minor2		
Conflicting Flow All	4	0	0	24	0	0	62	42	22	68	42	2
Stage 1	4			24	-	-	30	30	-	10	10	_
Stage 1	-	-	-		-	-	30	12	-	58	32	-
Critical Hdwy	4.6			4.1			6.3	5.73	5.8	8.21	7.59	6.7
,	4.0	-	-	4.1	-	-	5.3	4.73		7.21	6.59	
Critical Idwy Stg 1	-		-	-	-	-	5.3	4.73	-	7.21	6.59	-
Critical Hdwy Stg 2	- 2/F	-	-	-	-	-			-			- 2.2
Follow-up Hdwy	2.65	-	-	2.2	-	-	3.5	4.027	3.3	3.599	4.081	3.3
Pot Cap-1 Maneuver	1354	-	-	1604	-	-	951	856	1064	886	827	1088
Stage 1	-	-	-	-	-	-	999	874	-	985	871	-
Stage 2	-	-	-	-	-	-	997	886	-	917	847	-
Platoon blocked, %	4054	-	-	4/01	-	-	000	054	1011	000	000	4000
Mov Cap-1 Maneuver	1354	-	-	1604	-	-	908	851	1064	838	822	1088
Mov Cap-2 Maneuver	-	-	-	-	-	-	908	851	-	838	822	-
Stage 1	-	-	-	-	-	-	996	871	-	982	868	-
Stage 2	-	-	-	-	-	-	948	883	-	859	844	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.1			3.6			9.5			9.4		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		905	1354	-		1604	-	_	884			
HCM Lane V/C Ratio		0.114		_		0.002	_	_	0.068			
HCM Control Delay (s)		9.5	7.7	0		7.2	0	-	9.4			
HCM Lane LOS		7.5 A	Α.	A	-	Α.2	A		Α.4			
HCM 95th %tile Q(veh)		0.4	0	- A		0	- A	-	0.2			
Holvi 75th 70the Q(VeH)		0.4	U	-		U	-	-	0.2			

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	LDL		LDK	WDL		WDK	INDL		NDK	JDL		JDK
Lane Configurations Traffic Vol., veh/h	г	- ♣	1.1	1/	4	7	0	4	7	1	4	2
•	5	2	14	16	5	7	9	8	7	4	13	3
Future Vol, veh/h	5	2	14	16	5	7	9	8	7	4	13	3
Conflicting Peds, #/hr	0	0	0	0	0	0	O Cton	O Cton	O Cton	O Cton	O Cton	O Cton
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	- 40	0	70	-	0	-	- 75	-4	-	-	5	- 75
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	12	4	20	24	12	12	12	12	16	8	20	4
Major/Minor N	Major1		[Major2		ľ	Minor1		N	Minor2		
Conflicting Flow All	24	0	0	24	0	0	116	110	14	118	114	18
Stage 1	-	-	-		-	-	38	38	-	66	66	-
Stage 2	_	-	_	-	_	-	78	72	-	52	48	-
Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	-	-	_	-	_	-	5.3	4.7	-	7.1	6.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Follow-up Hdwy	2.2	_	_	2.2	_	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1604	-	-	1604	-	-	888	803	1073	835	756	1064
Stage 1	-	_	_	-	_	_	991	875	-	932	829	-
Stage 2	_	_	_	_	-	-	952	852	_	952	847	_
Platoon blocked, %		_	_		_	_	702	002		702	017	
Mov Cap-1 Maneuver	1604	_	_	1604	_	_	852	785	1073	799	739	1064
Mov Cap-2 Maneuver	-	_	_	-	_	_	852	785	-	799	739	-
Stage 1	_	_	_	_	_	_	983	868	_	925	817	_
Stage 2	_	_	_	_	_	_	911	839	_	918	840	_
Jugo 2							, , , ,	307		, 10	310	
				10.5								
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.4			3.6			9.2			9.8		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	t l	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		903	1604	_		1604	_		784			
HCM Lane V/C Ratio		0.044		-	_	0.015	-	_	0.041			
HCM Control Delay (s)		9.2	7.3	0	_	7.3	0	-	9.8			
HCM Lane LOS		7.2 A	7.5 A	A	-	7.5 A	A	_	7.0 A			
HCM 95th %tile Q(veh)		0.1	0	-		0	-		0.1			
How four four Q(veri)		0.1	U	_		U	_		U. I			

Intersection												
Int Delay, s/veh	8											
		FDT.	EDD	WDI	WET	WED	NDI	NDT	NDD	CDI	CDT	CDD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	•	4	•	-	4	•	0.1	4	10	10	4	0
Traffic Vol, veh/h	2	10	2	1	0	2	24	31	12	10	12	8
Future Vol, veh/h	2	10	2	1	0	2	24	31	12	10	12	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	22	4	4	0	4	50	42	17	18	31	16
Major/Minor N	/lajor1			Major2		_	Minor1			Minor2		
Conflicting Flow All	4	0	0	26	0	0	66	44	24	72	44	2
Stage 1	-	-	-	-	-	-	32	32	-	10	10	-
Stage 2		_	_	_	_	_	34	12	_	62	34	_
Critical Hdwy	4.6	_	_	4.1	_	_	6.3	5.73	5.8	8.21	7.59	6.7
Critical Hdwy Stg 1	٦.٠	_	_	7.1	_	_	5.3	4.73	5.0	7.21	6.59	- 0.7
Critical Hdwy Stg 2	-			_			5.3	4.73	-	7.21	6.59	_
Follow-up Hdwy	2.65	-	_	2.2		_	3.5	4.027	3.3		4.081	3.3
Pot Cap-1 Maneuver	1354		_	1601			946	854	1061	880	824	1088
Stage 1	1334			-			997	873	1001	985	871	1000
Stage 2	-	-	-	-	-	-	995	886		911	845	-
Platoon blocked, %				_	-	-	773	000	•	711	043	
Mov Cap-1 Maneuver	1354	-	-	1601	-	-	902	849	1061	829	819	1088
Mov Cap-2 Maneuver	1334		_	1001	-	-	902	849	1001	829	819	1000
Stage 1	-	-	-	-	-	-	902	870	-	982	868	-
	•	•	-	-	-	-	944	883	-	850	842	-
Stage 2	-	-	-	-	-	-	743	003	-	600	042	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			3.6			9.5			9.4		
HCM LOS							Α			Α		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)			1354	-		1601	-	-				
HCM Lane V/C Ratio		0.122	0.003	_		0.002	_		0.074			
HCM Control Delay (s)		9.5	7.7	0		7.3	0		9.4			
HCM Lane LOS		7.3 A	Α.	A	-	7.5 A	A	-	7.4 A			
HCM 95th %tile Q(veh)		0.4	0	-	_	0	-		0.2			
		0.4	U	_	-	U	-	_	0.2			


Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL		LDK	WDL		אטוי	NDL		חטול	JDL		אמכ
Traffic Vol, veh/h	Е	4	15	17	4	7	10	4	7	1	4	2
•	5 5	2	15 15	17	5	7		8	7 7	4	14	3
Future Vol, veh/h		2		17	5	7	10	8		4	14	3
Conflicting Peds, #/hr	0	0	0	0	0	0	O Cton	O Cton	O Cton	O Ctop	O Cton	O Cton
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	- 40	0	70	- 47	0	- E0	- 75	-4	-	-	5	- 75
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	12	4	21	25	12	12	13	12	16	8	22	4
Major/Minor N	/lajor1			Major2		<u> </u>	Minor1		N	/linor2		
Conflicting Flow All	24	0	0	25	0	0	120	113	15	121	117	18
Stage 1	-	-	-	-	-	-	39	39	-	68	68	-
Stage 2	-	-	-	-	-	-	81	74	-	53	49	-
Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1604	-	-	1603	-	-	883	801	1072	830	752	1064
Stage 1	-	-	-	-	-	-	990	874	-	930	826	-
Stage 2	-	-	-	-	-	-	949	851	-	951	846	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1604	-	-	1603	-	-	844	782	1072	793	734	1064
Mov Cap-2 Maneuver	-	-	-	-	-	-	844	782	-	793	734	-
Stage 1	-	-	-	-	-	-	982	867	-	923	813	-
Stage 2	-	-	-	-	-	-	906	837	-	917	839	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.3			3.7			9.2			9.8		
HCM LOS	2.3			3.1			9.2 A			9.0 A		
TICIVI LOS							A			A		
Minor Lane/Major Mvm	†	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SRI n1			
Capacity (veh/h)		897	1604	LUI	LDIN	1603	VVDT	WDIX.	777			
HCM Lane V/C Ratio		0.046		-	-	0.016	-		0.043			
				-	-		-	-				
HCM Lang LOS		9.2	7.3	0	-	7.3	0	-	9.8			
HCM DEth % tile O(vob)		0.1	A	А	-	A	А	-	A 0.1			
HCM 95th %tile Q(veh)		0.1	0	-	-	0	-	-	U. I			

Intersection												
Int Delay, s/veh	8.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	10	2	1	0	2	25	32	12	10	12	9
Future Vol, veh/h	2	10	2	1	0	2	25	32	12	10	12	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	22	4	4	0	4	52	44	17	18	31	18
Major/Minor M	lajor1		N	Major2		N	Minor1			Minor2		
		0			0	0		44	24	73	11	າ
Conflicting Flow All	4	0	0	26	0		67				44	2
Stage 1	-	-	-	-	-	-	32	32	-	10 63	10 34	-
Stage 2	1 4	-	-	- 11	-	-	35	12	5.8			- 47
Critical Hdwy	4.6	-	-	4.1	-	-	6.3	5.73		8.21	7.59	6.7
Critical Edwy Stg 1		-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Critical Hdwy Stg 2	- 2 (E	-	-	- 2.2	-	-	5.3	4.73	- 2.2	7.21	6.59	- 2 2
Follow-up Hdwy	2.65	-	-	2.2	-	-	3.5	4.027	3.3	3.599	4.081	3.3
	1354	-	-	1601	-	-	945	854	1061	878	824	1088
Stage 1	-	-	-	-	-	-	997	873	-	985	871	-
Stage 2	-	-	-	-	-	-	994	886	-	910	845	-
Platoon blocked, %	1254	-	-	1/01	-	-	000	0.40	10/1	007	010	1000
	1354	-	-	1601	-	-	899	849	1061	826	819	1088
Mov Cap-2 Maneuver	-	-	-	-	-	-	899	849	-	826	819	-
Stage 1	-	-	-	-	-	-	994	870	-	982	868	-
Stage 2	-	-	-	-	-	-	940	883	-	847	842	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			3.6			9.6			9.4		
HCM LOS							A			Α		
Minor Long/Major M.		UDI1	EDI	EDT	EDD	WDI	WDT	MDD	CDI ~1			
Minor Lane/Major Mvmt		VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :				
Capacity (veh/h)		900	1354	-		1601	-	-	880			
HCM Lane V/C Ratio		0.126	0.003	-	-	0.002	-		0.076			
HCM Control Delay (s)		9.6	7.7	0	-	7.3	0	-	9.4			
HCM Lane LOS		A	A	Α	-	A	Α	-	A			
HCM 95th %tile Q(veh)		0.4	0	-	-	0	-	-	0.2			

Intersection												
Int Delay, s/veh	6.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	2	15	18	6	8	10	9	8	4	14	3
Future Vol, veh/h	6	2	15	18	6	8	10	9	8	4	14	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	14	4	21	27	14	14	13	13	18	8	22	4
Major/Minor N	1ajor1		N	Major2		ı	Minor1		N	/linor2		
	28	0	0	25	0	0	131	125	15	133	128	21
Conflicting Flow All	Zŏ		U	25			43	43		75	75	
Stage 1	-	-	-	-	-	-	88	82	-	58	53	-
Stage 2 Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	4.1	-	-	4.1	-	-	5.3	4.7	5.8	7.1	6.5	0.7
	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	
Critical Hdwy Stg 2 Follow-up Hdwy	2.2		-	2.2	-	-	3.5	4.7	3.3	3.5	6.5	3.3
Pot Cap-1 Maneuver	1599	-	-	1603	-		871	791	1072	813	740	1059
	1099	-	-	1003	-	-	986	871	1072	920	819	1009
Stage 1 Stage 2	-	-	-	-	-	-	943	846	-	944	842	-
Platoon blocked, %	-	-	-	-	-	-	743	040	-	744	042	-
Mov Cap-1 Maneuver	1599	-	-	1603	-	-	831	770	1072	773	721	1059
Mov Cap-1 Maneuver	1099	-	-	1003	-	-	831	770	1072	773	721	1009
Stage 1	-	-	-	-	-	-	977	863	-	912	805	-
ū	-	-	-	•	-	-	899	832	-	905	834	-
Stage 2	-	-	-	-	-	-	099	032	-	700	034	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.6			3.6			9.3			9.9		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	l N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SRI n1			
	- 1											
Capacity (veh/h)		891	1599	-		1603	-	-	762			
HCM Control Doloy (c)		0.05	0.009	-		0.017	-		0.044			
HCM Lang LOS		9.3	7.3	0	-	7.3	0	-	9.9			
HCM Lane LOS		A	A	Α	-	Α	А	-	A			
HCM 95th %tile Q(veh)		0.2	0	-	-	0.1	-	-	0.1			

Intersection												
Int Delay, s/veh	8.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	10	2	1	0	2	26	32	12	10	12	9
Future Vol, veh/h	2	10	2	1	0	2	26	32	12	10	12	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	_	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	22	4	4	0	4	54	44	17	18	31	18
Major/Minor N	/lajor1			Major2			Minor1			Minor2		
Conflicting Flow All	4	0	0	26	0	0	67	44	24	73	44	2
Stage 1	4	-	U	20	-	-	32	32	- 24	10	10	_
Stage 2	-	-	-	-	-	-	35	12	-	63	34	-
Critical Hdwy	4.6	-	-	4.1	-	-	6.3	5.73	5.8	8.21	7.59	6.7
Critical Hdwy Stg 1	4.0	-	-	4.1	-	-	5.3	4.73	5.8	7.21	6.59	0.7
	-	-	-	-	-	-	5.3	4.73		7.21	6.59	-
Critical Hdwy Stg 2 Follow-up Hdwy	2.65		-	2.2	-	-	3.5	4.73	3.3		4.081	3.3
		-	-	1601	-	-		854				
Pot Cap-1 Maneuver	1354	-	-	1001	-	-	945		1061	878	824	1088
Stage 1	-	-	-	-	-	-	997	873	-	985	871	-
Stage 2	-	-	-	-	-	-	994	886	-	910	845	-
Platoon blocked, %	1254	-	-	1/01	-	-	000	0.40	10/1	007	010	1000
Mov Cap-1 Maneuver	1354	-	-	1601	-	-	899	849	1061	826	819	1088
Mov Cap-2 Maneuver	-	-	-	-	-	-	899	849	-	826	819	-
Stage 1	-	-	-	-	-	-	994	870	-	982	868	-
Stage 2	-	-	-	-	-	-	940	883	-	847	842	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			3.6			9.6			9.4		
HCM LOS							Α			Α		
Minor Long/Maior M.		JDL 1	EDI	EDT	EDD	WDI	MDT	MDD	CDI =1			
Minor Lane/Major Mvmi	t ľ	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR				
Capacity (veh/h)		900	1354	-		1601	-	-	880			
HCM Lane V/C Ratio		0.128	0.003	-	-	0.002	-		0.076			
HCM Control Delay (s)		9.6	7.7	0	-	7.3	0	-	9.4			
HCM Lane LOS		Α	Α	Α	-	Α	Α	-	Α			
HCM 95th %tile Q(veh)		0.4	0	-	-	0	-	-	0.2			

Intersection												
Int Delay, s/veh	6.1											
										001		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	2	16	18	6	8	10	9	8	4	15	3
Future Vol, veh/h	6	2	16	18	6	8	10	9	8	4	15	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	14	4	23	27	14	14	13	13	18	8	23	4
Major/Minor M	lajor1			Major2			Minor1		Λ	/linor2		
Conflicting Flow All	28	0	0	27	0	0	133	126	16	134	130	21
Stage 1	20	U	U	-	U	-	44	44	- 10	75	75	۷1
Stage 2	-	-	-	-	-	-	89	82	-	59	55	-
Critical Hdwy	4.1	-	-	4.1	-		6.3	5.7	5.8	8.1	7.5	6.7
3	4.1	-	-	4.1	-	-	5.3	4.7	5.8	7.1	6.5	0.7
Critical Hdwy Stg 1	-	-	-		-	-	5.3	4.7		7.1	6.5	-
Critical Hdwy Stg 2	2.2			2.2	-	-	3.5	4.7	3.3	3.5	0.5	3.3
Follow-up Hdwy		-	-		-	-						
Pot Cap-1 Maneuver	1599	-	-	1600	-	-	869	790	1071	811	737	1059
Stage 1	-	-	-	-	-	-	985	871	-	920	819	-
Stage 2	-	-	-	-	-	-	942	846	-	942	840	-
Platoon blocked, %	1500	-	-	1/00	-	-	000	7/0	1071	771	710	1050
Mov Cap-1 Maneuver	1599	-	-	1600	-	-	828	769	1071	771	718	1059
Mov Cap-2 Maneuver	-	-	-	-	-	-	828	769	-	771	718	-
Stage 1	-	-	-	-	-	-	976	863	-	912	805	-
Stage 2	-	-	-	-	-	-	896	832	-	903	832	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.5			3.6			9.3			10		
HCM LOS							A			В		
							, ,					
		IDI 1				14.5	14.5	14/5-5	001 1			
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:				
Capacity (veh/h)		889	1599	-	-	1600	-	-	, 00			
HCM Lane V/C Ratio		0.051	0.009	-	-	0.017	-	-	0.046			
HCM Control Delay (s)		9.3	7.3	0	-	7.3	0	-	10			
HCM Lane LOS		Α	Α	Α	-	Α	Α	-	В			
HCM 95th %tile Q(veh)		0.2	0	-	-	0.1	-	-	0.1			

Intersection												
Int Delay, s/veh	6.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	13	2	1	9	22	24	31	12	17	12	8
Future Vol, veh/h	2	13	2	1	9	22	24	31	12	17	12	8
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	<u> </u>	None	-	<u> </u>	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	29	4	4	10	44	50	42	17	30	31	16
Major/Minor N	/lajor1			Major2		N	Minor1		1	Minor2		
Conflicting Flow All	54	0	0	33	0	0	103	101	31	109	81	32
Stage 1	-	-	-	-	-	-	39	39	-	40	40	-
Stage 2	-	_	-	-	_	-	64	62	_	69	41	_
Critical Hdwy	4.6	-	-	4.1	-	-	6.3	5.73	5.8	8.21	7.59	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Critical Hdwy Stg 2	-	_	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Follow-up Hdwy	2.65	-	-	2.2	-	-	3.5	4.027	3.3	3.599	4.081	3.3
Pot Cap-1 Maneuver	1293	_	-	1592	-	-	903	805	1053	823	778	1043
Stage 1	-	-	-	-	-	-	990	868	-	942	839	-
Stage 2	-	_	-	-	-	-	966	853	-	902	838	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1293	-	-	1592	-	-	858	800	1053	773	773	1043
Mov Cap-2 Maneuver	-	-	-	-	-	-	858	800	-	773	773	-
Stage 1	-	-	-	-	-	-	987	865	-	939	836	-
Stage 2	-	-	-	-	-	-	913	850	-	841	835	-
Ŭ												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.8			0.5			9.8			9.9		
HCM LOS							A			Α		
Minor Lane/Major Mvmt	t ſ	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		859	1293	-	-	1592	-	-	817			
HCM Lane V/C Ratio		0.128		_	_	0.003	_	_	0.094			
HCM Control Delay (s)		9.8	7.8	0	-	7.3	0	_	9.9			
HCM Lane LOS		Α.	Α	A	_	Α.	A	_	A			
HCM 95th %tile Q(veh)		0.4	0	-	-	0	-	-	0.3			
/ 0 / 0 0 (/ 0 !!)		3.1							5.0			

Intersection						
Int Delay, s/veh	4.4					
			14/5:	14/5=		NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	¥	
Traffic Vol, veh/h	32	10	5	3	29	13
Future Vol, veh/h	32	10	5	3	29	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	-6	-	-	3	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mymt Flow	36	11	6	3	32	14
	- 50	- 11			02	- 11
	ajor1		/lajor2		Minor1	
Conflicting Flow All	0	0	47	0	57	42
Stage 1	-	-	-	-	42	-
Stage 2	-	-	-	-	15	-
Critical Hdwy	-	-	4.1	-	5.4	5.7
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	_	-	-	4.4	-
Follow-up Hdwy	_	_	2.2	_	3.5	3.3
Pot Cap-1 Maneuver	-	_	1573	-	971	1040
Stage 1	_	_	1070	_	997	-
Stage 2	_				1017	
Platoon blocked, %	-		_	_	1017	_
	-	-	1572	-	047	1040
Mov Cap-1 Maneuver	-	-	1573	-	967	1040
Mov Cap-2 Maneuver	-	-	-	-	967	-
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	1013	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		4.6		8.8	
HCM LOS	U		4.0		Α	
HOW LOS					А	
Minor Lane/Major Mvmt	N	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		988	-		1573	-
HCM Lane V/C Ratio		0.047	_		0.004	_
HCM Control Delay (s)		8.8	_	-		0
HCM Lane LOS		Α	_	-	7.5 A	A
HCM 95th %tile Q(veh)		0.1			0	-
HOW FOUT MILE Q(VEH)		U. I		_	U	-

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	12	15	17	11	21	10	8	7	27	14	3
Future Vol, veh/h	5	12	15	17	11	21	10	8	7	27	14	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	12	24	21	25	26	36	13	12	16	54	22	4
Major/Minor N	/lajor1		ľ	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	62	0	0	45	0	0	166	171	35	167	163	44
Stage 1	-	-	-	-	-	-	59	59	-	94	94	-
Stage 2	-	-	-	-	-	-	107	112	-	73	69	-
Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1554	-	-	1576	-	-	833	754	1048	765	701	1026
Stage 1	-	-	-	-	-	-	970	861	-	894	800	-
Stage 2	-	-	-	-	-	-	925	827	-	923	825	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1554	-	-	1576	-	-	795	735	1048	730	683	1026
Mov Cap-2 Maneuver	-	-	-	-	-	-	795	735	-	730	683	-
Stage 1	-	-	-	-	-	-	962	854	-	887	786	-
Stage 2	-	-	-	-	-	-	881	813	-	889	818	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.5			2.1			9.4			10.6		
HCM LOS							Α			В		
Minor Lane/Major Mvm	t ľ	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		854	1554	-	-	1576	_	-	727			
HCM Lane V/C Ratio		0.048		-	_	0.016	-	_	0.109			
HCM Control Delay (s)		9.4	7.3	0	-	7.3	0	-	10.6			
HCM Lane LOS		A	A	A	_	A	A	-	В			
HCM 95th %tile Q(veh)		0.2	0	-	-	0	-	-	0.4			

Intersection						
	3					
Int Delay, s/veh	3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			ર્ન	, A	
Traffic Vol, veh/h	13	33	14	29	20	8
Future Vol, veh/h	13	33	14	29	20	8
Conflicting Peds, #/hr	0	0	0	0	0	0
ğ	Free	Free	Free	Free	Stop	Stop
RT Channelized	_	None	_	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	_	-	0	0	-
Grade, %	-6	_	_	3	-5	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mymt Flow	14	37	16	32	22	9
IVIVIIIL FIOW	14	31	10	32	22	9
Major/Minor Major/Minor	ajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	51	0	97	33
Stage 1	-	_	-	-	33	-
Stage 2	_	_	_	_	64	_
Critical Hdwy	_	_	4.1	_	5.4	5.7
Critical Hdwy Stg 1			4.1	_	4.4	J. I -
Critical Hdwy Stg 2	-	-	_	-	4.4	_
		-	2.2	-	3.5	3.3
Follow-up Hdwy	-	-				
Pot Cap-1 Maneuver	-	-	1568	-	932	1051
Stage 1	-	-	-	-	1004	-
Stage 2	-	-	-	-	981	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1568	-	923	1051
Mov Cap-2 Maneuver	-	-	-	-	923	-
Stage 1	-	-	-	-	1004	-
Stage 2	-	-	-	-	971	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		2.4		8.9	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		956			1568	
HCM Lane V/C Ratio		0.033	-	-	0.01	-
HCM Control Delay (s)		8.9			7.3	0
			-	-		
HCM Lane LOS HCM 95th %tile Q(veh)		0.1	-	-	A	Α
		() [-	-	0	-

Intersection												
Int Delay, s/veh	7.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			44	
Traffic Vol, veh/h	2	13	7	1	9	22	40	52	12	17	19	9
Future Vol., veh/h	2	13	7	1	9	22	40	52	12	17	19	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	29	14	4	10	44	83	71	17	30	49	18
Major/Minor M	1ajor1		<u> </u>	Major2		<u> </u>	Minor1			Minor2		
Conflicting Flow All	54	0	0	43	0	0	118	106	36	128	91	32
Stage 1	-	-	-	-	-	-	44	44	-	40	40	-
Stage 2	-	-	-	-	-	-	74	62	-	88	51	-
Critical Hdwy	4.6	-	-	4.1	-	-	6.3	5.73	5.8	8.21	7.59	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Follow-up Hdwy	2.65	-	-	2.2	-	-	3.5	4.027	3.3	3.599	4.081	3.3
Pot Cap-1 Maneuver	1293	-	-	1579	-	-	886	801	1047	796	766	1043
Stage 1	-	-	-	-	-	-	985	865	-	942	839	-
Stage 2	-	-	-	-	-	-	956	853	-	876	827	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1293	-	-	1579	-	-	824	796	1047	726	761	1043
Mov Cap-2 Maneuver	-	-	-	-	-	-	824	796	-	726	761	-
Stage 1	-	-	-	-	-	-	982	862	-	939	836	-
Stage 2	-	-	-	-	-	-	882	850	-	788	825	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.7			0.5			10.5			10.2		
HCM LOS							В			В		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		830	1293	-	-	1579	-	-	789			
HCM Lane V/C Ratio		0.207	0.003	-	-	0.003	-	-	0.123			
HCM Control Delay (s)		10.5	7.8	0	-	7.3	0	-	10.2			
HCM Lane LOS		В	Α	Α	-	Α	Α	-	В			
HCM 95th %tile Q(veh)		8.0	0	-	-	0	-	-	0.4			

Intersection						
Int Delay, s/veh	5.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			र्स	, A	
Traffic Vol, veh/h	32	10	10	3	29	28
Future Vol, veh/h	32	10	10	3	29	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-6	-	_	3	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	36	11	11	3	32	31
WWW.Tiow	00	• • •	•	J	02	01
	ajor1	N	Najor2	N	/linor1	
Conflicting Flow All	0	0	47	0	67	42
Stage 1	-	-	-	-	42	-
Stage 2	-	-	-	-	25	-
Critical Hdwy	-	-	4.1	-	5.4	5.7
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	-	-	_	4.4	-
Follow-up Hdwy	-	-	2.2	_	3.5	3.3
Pot Cap-1 Maneuver	_	_	1573	_	961	1040
Stage 1	_	_	-	_	997	-
Stage 2	_	_	_	_	1010	-
Platoon blocked, %	_	_		_	1010	
Mov Cap-1 Maneuver	_		1573	_	954	1040
Mov Cap-1 Maneuver	-	-	10/3	-	954	1040
	-	-	-	-		
Stage 1	-	•	-	-	997	-
Stage 2	-	-	-	-	1003	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		5.6		8.9	
HCM LOS	U		3.0		Α	
HOW LOS						
Minor Lane/Major Mvmt		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		994	-		1573	_
HCM Lane V/C Ratio		0.064	-		0.007	-
HCM Control Delay (s)		8.9	-	-		0
HCM Lane LOS		A	_	-	A	A
HCM 95th %tile Q(veh)		0.2	-	_	0	-
110W 75W 76W Q(VCH)		0.2			U	

Intersection												
Int Delay, s/veh	6.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	12	32	18	12	22	20	22	8	27	36	3
Future Vol, veh/h	6	12	32	18	12	22	20	22	8	27	36	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	14	24	46	27	29	38	27	33	18	54	55	4
Major/Minor N	/lajor1			Major2		<u> </u>	/linor1		N	/linor2		
Conflicting Flow All	67	0	0	70	0	0	207	196	47	203	200	48
Stage 1	-	-	-	-	-	-	75	75	-	102	102	-
Stage 2	-	-	-	-	-	-	132	121	-	101	98	-
Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1547	-	-	1544	-	-	790	734	1033	718	662	1020
Stage 1	-	-	-	-	-	-	955	851	-	884	792	-
Stage 2	-	-	-	-	-	-	902	821	-	885	796	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1547	-	-	1544	-	-	720	714	1033	667	644	1020
Mov Cap-2 Maneuver	-	-	-	-	-	-	720	714	-	667	644	-
Stage 1	-	-	-	-	-	-	946	843	-	876	778	-
Stage 2	-	-	-	-	-	-	819	806	-	828	789	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.2			2.1			10.2			11.5		
HCM LOS							В			В		
Minor Lane/Major Mvm	t ſ	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		772	1547	-	-	1544	_	-	664			
HCM Lane V/C Ratio		0.101		-	_	0.017	-	_	0.171			
HCM Control Delay (s)		10.2	7.3	0	-	7.4	0	-	11.5			
HCM Lane LOS		В	Α	A	-	Α	A	-	В			
HCM 95th %tile Q(veh)		0.3	0	-	-	0.1	-	-	0.6			

Intersection						
Int Delay, s/veh	3.8					
			11/2-	14/5=		NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	¥	
Traffic Vol, veh/h	14	33	31	32	20	18
Future Vol, veh/h	14	33	31	32	20	18
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	-6	-	-	3	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	16	37	34	36	22	20
NA ' /NA' NA			4 ' 0		l' 1	
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	53	0	139	35
Stage 1	-	-	-	-	35	-
Stage 2	-	-	-	-	104	-
Critical Hdwy	-	-	4.1	-	5.4	5.7
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	-	-	-	4.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1566	-	893	1049
Stage 1	-	-	-	-	1002	-
Stage 2	-	-	-	-	952	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1566	-	873	1049
Mov Cap-2 Maneuver	-	-	-	-	873	-
Stage 1	-	-	-	-	1002	-
Stage 2	-	_	_	_	931	-
0	ED.		\A/D		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.6		9	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	<u> </u>	948	LDI	LDIC	1566	WDI
HCM Lane V/C Ratio		0.045	-	-	0.022	-
HCM Control Delay (s)		0.045	-		7.4	0
HCM Lane LOS		A	-	-		
		А	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	_		0.1	-

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	2	16	7	1	16	32	41	52	12	20	19	9
Future Vol, veh/h	2	16	7	1	16	32	41	52	12	20	19	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	50	45	50	25	90	50	48	73	69	56	39	50
Heavy Vehicles, %	50	0	0	0	0	0	0	3	0	11	9	0
Mvmt Flow	4	36	14	4	18	64	85	71	17	36	49	18
Major/Minor N	/lajor1		ľ	Major2		N	Minor1		1	Winor2		
Conflicting Flow All	82	0	0	50	0	0	143	141	43	153	116	50
Stage 1	-	-	-	-	-	-	51	51	-	58	58	-
Stage 2	-	-	-	-	-	-	92	90	-	95	58	-
Critical Hdwy	4.6	-	-	4.1	-	-	6.3	5.73	5.8	8.21	7.59	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.73	-	7.21	6.59	-
Follow-up Hdwy	2.65	-	-	2.2	-	-	3.5	4.027	3.3	3.599	4.081	3.3
Pot Cap-1 Maneuver	1261	-	-	1570	-	-	858	772	1038	761	737	1017
Stage 1	-	-	-	-	-	-	978	860	-	917	820	-
Stage 2	-	-	-	-	-	-	939	835	-	867	820	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1261	-	-	1570	-	-	796	767	1038	692	733	1017
Mov Cap-2 Maneuver	-	-	-	-	-	-	796	767	-	692	733	-
Stage 1	-	-	-	-	-	-	975	857	-	914	818	-
Stage 2	-	-	-	-	-	-	865	832	-	779	818	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.6			0.3			10.7			10.5		
HCM LOS							В			В		
Minor Lane/Major Mvml	t	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		802	1261	_	-	1570	-	-	754			
HCM Lane V/C Ratio		0.217	0.003	-	-	0.003	-	-	0.136			
HCM Control Delay (s)		10.7	7.9	0	-	7.3	0	-	10.5			
HCM Lane LOS		В	Α	Α	-	Α	Α	-	В			
HCM 95th %tile Q(veh)		0.8	0	-	-	0	-	-	0.5			

Intersection						
Int Delay, s/veh	4.3					
		EDD.	MDI	MPT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽			र्स	¥	
Traffic Vol, veh/h	38	10	10	20	29	28
Future Vol, veh/h	38	10	10	20	29	28
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-6	-	-	3	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	42	11	11	22	32	31
		_		_		
	ajor1		/lajor2		/linor1	
Conflicting Flow All	0	0	53	0	92	48
Stage 1	-	-	-	-	48	-
Stage 2	-	-	-	-	44	-
Critical Hdwy	-	-	4.1	-	5.4	5.7
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	-	-	-	4.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1566	-	937	1033
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	996	-
Platoon blocked, %	-				.,,	
Mov Cap-1 Maneuver	_		1566	_	930	1033
Mov Cap-1 Maneuver	_		1300	_	930	1000
Stage 1	_				993	_
Stage 2					989	
Staye 2	-	-	-	-	707	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		2.4		8.9	
HCM LOS					Α	
NA!		IDL 4	CDT	EDD	MDI	MET
Minor Lane/Major Mvmt	ľ	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		978	-		1566	-
HCM Lane V/C Ratio		0.065	-	-	0.007	-
HCM Control Delay (s)		8.9	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.2	-	-	0	-

Intersection						
Int Delay, s/veh	2.2					
		EDD	WDI	WDT	NDI	NDD
Movement Lang Configurations	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	}	- /	2	€	17	7
Traffic Vol, veh/h	60	6	2	13	17	7
Future Vol, veh/h	60	6	2	13	17	7
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	3	-	-	7	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	67	7	2	14	19	8
Major/Minor M	ajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	74	0	89	71
Stage 1	-	-	- 14	-	71	-
Stage 2	-	-	-	-	18	-
			11		5.4	5.7
Critical Hdwy	-	-	4.1	-		
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	-	-	-	4.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1538	-	940	1007
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	1015	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1538	-	939	1007
Mov Cap-2 Maneuver	-	-	-	-	939	-
Stage 1	-	-	-	-	976	-
Stage 2	-	-	-	-	1014	-
Annroach	ED		WB		ND	
Approach	EB				NB	
HCM Control Delay, s	0		1		8.9	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		958			1538	-
HCM Lane V/C Ratio		0.028	_		0.001	_
HCM Control Delay (s)		8.9	_		7.3	0
HCM Lane LOS		Α	-	-	7.3 A	A
HCM 95th %tile Q(veh)		0.1	_	-	0	- A
HOW FOUT WITH Q(VEH)		U. I	-	-	U	-

Intersection												
Int Delay, s/veh	6.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	6	20	33	18	17	28	20	22	8	37	37	3
Future Vol, veh/h	6	20	33	18	17	28	20	22	8	37	37	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	-4	-	-	5	-
Peak Hour Factor	42	50	70	67	42	58	75	67	44	50	65	75
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	14	40	47	27	40	48	27	33	18	74	57	4
Major/Minor N	1ajor1		ľ	Major2		ľ	Minor1		N	/linor2		
Conflicting Flow All	88	0	0	87	0	0	241	234	64	235	233	64
Stage 1	-	-	-	-	-	-	92	92	-	118	118	-
Stage 2	-	-	-	-	-	-	149	142	-	117	115	-
Critical Hdwy	4.1	-	-	4.1	-	-	6.3	5.7	5.8	8.1	7.5	6.7
Critical Hdwy Stg 1	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	5.3	4.7	-	7.1	6.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1520	-	-	1522	-	-	757	706	1013	678	629	997
Stage 1	-	-	-	-	-	-	939	840	-	863	776	-
Stage 2	-	-	-	-	-	-	887	808	-	864	779	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1520	-	-	1522	-	-	685	686	1013	628	611	997
Mov Cap-2 Maneuver	-	-	-	-	-	-	685	686	-	628	611	-
Stage 1	-	-	-	-	-	-	930	832	-	854	761	-
Stage 2	-	-	-	-	-	-	802	793	-	807	771	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			1.7			10.4			12.3		
HCM LOS							В			В		
Minor Lane/Major Mvmt		VBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		742	1520		-	1522	-	-	628			
HCM Lane V/C Ratio		0.105		-	_	0.018	-	_	0.215			
HCM Control Delay (s)		10.4	7.4	0	-	7.4	0	-	12.3			
HCM Lane LOS		В	Α	A	-	Α	A	-	В			
HCM 95th %tile Q(veh)		0.3	0	-	-	0.1	-	-	0.8			

Intersection						
Int Delay, s/veh	3.2					
		EDD.	WDI	MPT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			र्	¥	
Traffic Vol, veh/h	32	33	31	43	20	18
Future Vol, veh/h	32	33	31	43	20	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	-6	-	-	3	-5	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	36	37	34	48	22	20
		_		_		
	lajor1	N	/lajor2	Λ	/linor1	
Conflicting Flow All	0	0	73	0	171	55
Stage 1	-	-	-	-	55	-
Stage 2	-	-	-	-	116	-
Critical Hdwy	-	-	4.1	-	5.4	5.7
Critical Hdwy Stg 1	-	-	-	-	4.4	-
Critical Hdwy Stg 2	-	-	-	-	4.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	_	-	1540	-	864	1025
Stage 1	_	-	-	-	988	-
Stage 2	-	_	-	-	944	-
Platoon blocked, %	_	_		_	,	
Mov Cap-1 Maneuver	_	_	1540	-	844	1025
Mov Cap-1 Maneuver	-		1340	_	844	1023
Stage 1	-	-	-	-	988	-
	-	-			922	-
Stage 2	-	-	-	-	722	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.1		9.1	
HCM LOS					Α	
		IDI. 1			14.5	14/5-
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		921	-		1540	-
HCM Lane V/C Ratio		0.046	-	-	0.022	-
HCM Control Delay (s)		9.1	-	-	7.4	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	₽	LUK	VVDL	₩ <u>₩</u>	₩.	אטוז
Traffic Vol, veh/h	32	18	8	63	11	4
Future Vol, veh/h	32	18	8	63	11	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	Stop -	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	
Grade, %	, # 0	-		7	-5	-
	90		-			
Peak Hour Factor		90	90	90	90	90
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	36	20	9	70	12	4
Major/Minor N	/lajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	56	0	134	46
Stage 1	-	_	-	_	46	_
Stage 2	-	_	-	_	88	_
Critical Hdwy	-	_	4.1	_	5.4	5.7
Critical Hdwy Stg 1	_	_	_	-	4.4	-
Critical Hdwy Stg 2	_	_	_	_	4.4	_
Follow-up Hdwy	_	_	2.2	_	3.5	3.3
Pot Cap-1 Maneuver	_	_	1562	-	897	1036
Stage 1	_	_	1302	_	994	1030
Stage 2	-	-	-	-	964	-
Platoon blocked, %	-	-	-	-	904	-
		-	1562		000	1036
Mov Cap-1 Maneuver	-	-		-	892	
Mov Cap-2 Maneuver	-	-	-	-	892	-
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	958	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.8		9	
HCM LOS	- 0		0.0		Á	
TIOWI LOO						
Minor Lane/Major Mvm	t ſ	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		926	-	-	1562	-
HCM Lane V/C Ratio		0.018	-	-	0.006	-
HCM Control Delay (s)		9	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

APPENDIX G

ITE TRIP GENERATION RATES

Land Use: 210 Single-Family Detached Housing

Description

A single-family detached housing site includes any single-family detached home on an individual lot. A typical site surveyed is a suburban subdivision.

Specialized Land Use

Data have been submitted for several single-family detached housing developments with homes that are commonly referred to as patio homes. A patio home is a detached housing unit that is located on a small lot with little (or no) front or back yard. In some subdivisions, communal maintenance of outside grounds is provided for the patio homes. The three patio home sites total 299 dwelling units with overall weighted average trip generation rates of 5.35 vehicle trips per dwelling unit for weekday, 0.26 for the AM adjacent street peak hour, and 0.47 for the PM adjacent street peak hour. These patio home rates based on a small sample of sites are lower than those for single-family detached housing (Land Use 210), lower than those for single-family attached housing (Land Use 251), and higher than those for senior adult housing -- single-family (Land Use 251). Further analysis of this housing type will be conducted in a future edition of Trip Generation Manual.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

For 30 of the study sites, data on the number of residents and number of household vehicles are available. The overall averages for the 30 sites are 3.6 residents per dwelling unit and 1.5 vehicles per dwelling unit.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Arizona, California, Connecticut, Delaware, Illinois, Indiana, Kentucky, Maryland, Massachusetts, Minnesota, Montana, New Jersey, North Carolina, Ohio, Ontario (CAN), Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, Virginia, and West Virginia.

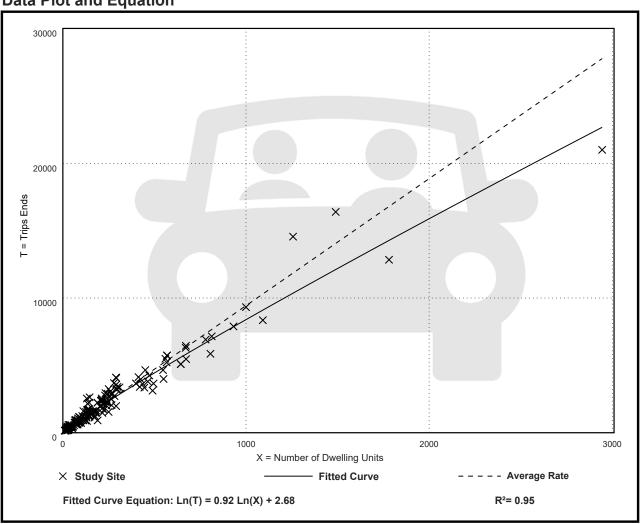
Source Numbers

100, 105, 114, 126, 157, 167, 177, 197, 207, 211, 217, 267, 275, 293, 300, 319, 320, 356, 357, 367, 384, 387, 407, 435, 522, 550, 552, 579, 598, 601, 603, 614, 637, 711, 716, 720, 728, 735, 868, 869, 903, 925, 936, 1005, 1007, 1008, 1010, 1033, 1066, 1077,1078, 1079

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: 174 Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.43	4.45 - 22.61	2.13

Data Plot and Equation

Single-Family Detached Housing (210)

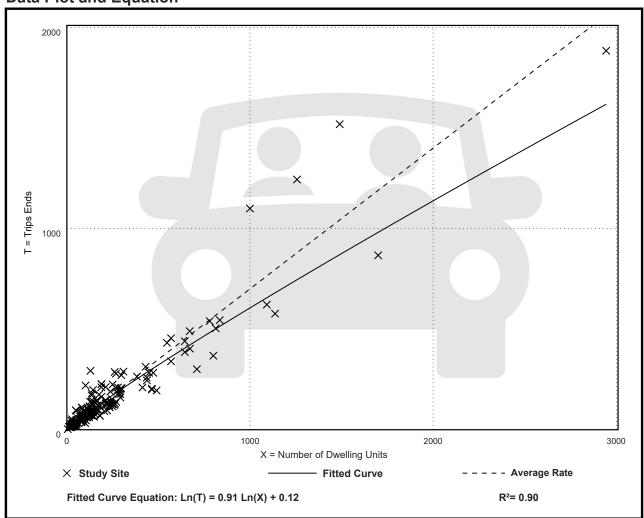
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 192 Avg. Num. of Dwelling Units: 226

Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	0.27 - 2.27	0.24

Data Plot and Equation

Single-Family Detached Housing (210)

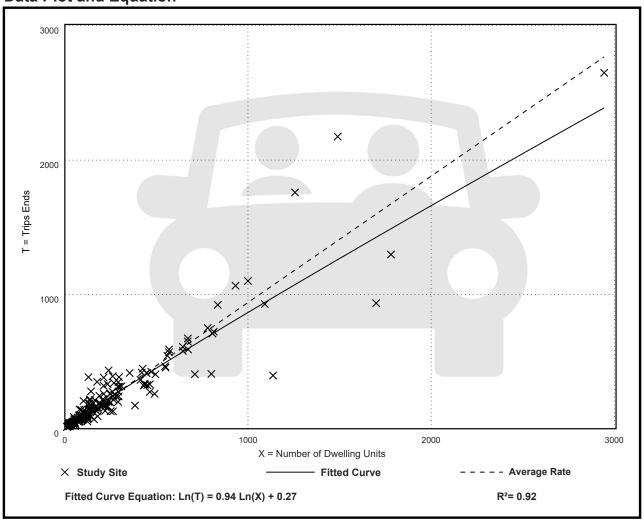
Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 208 Avg. Num. of Dwelling Units: 248

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.94	0.35 - 2.98	0.31

Data Plot and Equation

TRIP GENERATION FOR CARTER RIDGE PHASES IV - VIII

202 Single-Family Detached Houses

ITE LAND LAND USE USE CODE DESCRIPTION		UNITS	GENERATED UNITS DAILY TRAFFIC		GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL	
	Single-Family	Phase IV & V		26%	74%		63%	37%		
#210 Detached Housing	74 Houses	765	15	42	57	47	28	75		
	Single-Family	Phase VI & VII		26%	74%		63%	37%		
#210	Detached Housing	89 Houses	907	17	50	67	56	33	89	
	Single-Family	Phase VIII		26%	74%		63%	37%		
#210	Detached Housing		425	8	24	32	26	15	41	
Total New Volume Site Trips		202 Houses	2,097	40	116	156	129	76	205	
									•	

ITE Trip Generation Manual, 11th Edition

Trips calculated by using Fitted Curve Equation

TRIP GENERATION FOR CARTER RIDGE PHASES IV & V

74 Single-Family Detached Houses

74 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 4.30 + 2.68$$

$$Ln(T) = 6.64$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 4 + 0.12$$

$$Ln(T) = 4.04$$

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 4.30 + 0.27$$

$$Ln(T) = 4.32$$

TRIP GENERATION FOR CARTER RIDGE PHASES VI & VII

89 Single-Family Detached Houses

89 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 4.49 + 2.68$$

$$Ln(T) = 6.81$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 4 + 0.12$$

$$Ln(T) = 4.20$$

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 4.49 + 0.27$$

$$Ln(T) = 4.49$$

TRIP GENERATION FOR CARTER RIDGE PHASES VIII

39 Single-Family Detached Houses

39 Residential Houses = X

Weekday:

Fitted Curve Equation: Ln(T) = 0.92 Ln(X) + 2.68

$$Ln(T) = 0.92 * 3.66 + 2.68$$

$$Ln(T) = 6.05$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation: Ln(T) = 0.91 Ln(X) + 0.12

$$T = 0.91 * 4 + 0.12$$

$$Ln(T) = 3.45$$

$$T = 32 \text{ trips}$$

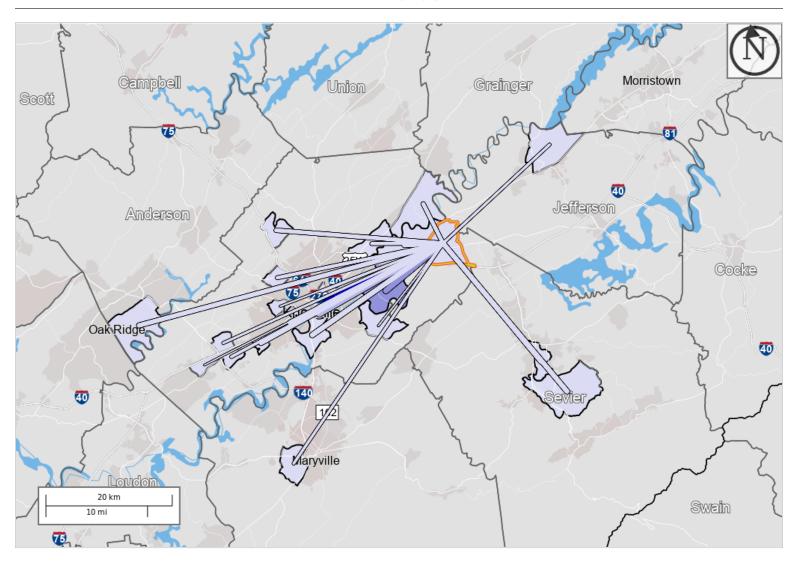
Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.94 Ln(X) + 0.27

$$Ln(T) = 0.94 * 3.66 + 0.27$$

$$Ln(T) = 3.71$$

$$T = 41 \text{ trips}$$


APPENDIX H

2019 CENSUS BUREAU DATA

Work Destination Report - Home Selection Area to Work Census Tracts All Jobs for All Workers in 2019

Created by the U.S. Census Bureau's OnTheMap https://onthemap.ces.census.gov on 11/11/2022

Counts of All Jobs from Home Selection Area to Work Census Tracts in 2019 All Workers

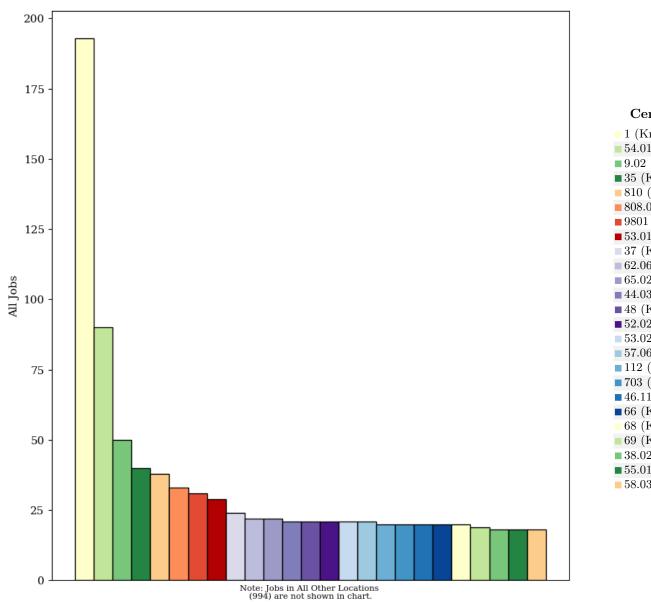
Map Legend

Job Count

- **1**69 193
- **1**44 168
- **119 143**
- 04 110
- **94** 118
- 69 9344 68
- **18 43**

Selection Areas

▶ Analysis Selection


Job Count

- ***** 169 193
- **N** 144 168
- **№** 119 143
- **№** 94 118
- **№** 69 93
- **№** 44 68
- ₩ 18 43

All Jobs from Home Selection Area to Work Census Tracts in 2019 All Workers

Census Tracts ■1 (Knox, TN) ■ 54.01 (Knox, TN) ■ 9.02 (Knox, TN) ■ 35 (Knox, TN) ■810 (Sevier, TN) ■ 808.01 (Sevier, TN) ■ 9801 (Anderson, TN) ■ 53.01 (Knox, TN) ■ 37 (Knox, TN) ■ 62.06 (Knox, TN) ■ 65.02 (Knox, TN) ■ 44.03 (Knox, TN) ■48 (Knox, TN) ■ 52.02 (Knox, TN) ■ 53.02 (Knox, TN) ■ 57.06 (Knox, TN) ■ 112 (Blount, TN) ■ 703 (Jefferson, TN) ■ 46.11 (Knox, TN) ■66 (Knox, TN) 68 (Knox, TN) ■69 (Knox, TN) ■ 38.02 (Knox, TN) ■ 55.01 (Knox, TN) ■ 58.03 (Knox, TN)

All Jobs from Home Selection Area to Work Census Tracts in 2019
All Workers

	20	19
Census Tracts as Work Destination Area	Count	Share
All Census Tracts	1,844	100.0
1 (Knox, TN)	193	10.5
54.01 (Knox, TN)	90	4.9
9.02 (Knox, TN)	50	2.7
35 (Knox, TN)	40	2.2
810 (Sevier, TN)	38	2.1
808.01 (Sevier, TN)	33	1.8
9801 (Anderson, TN)	31	1.7
53.01 (Knox, TN)	29	1.6
37 (Knox, TN)	24	1.3
62.06 (Knox, TN)	22	1.2

	20	19
Census Tracts as Work Destination Area	Count	Share
		1.0
$65.02~(\mathrm{Knox},~\mathrm{TN})$	22	1.2
44.03 (Knox, TN)	21	1.1
48 (Knox, TN)	21	1.1
$52.02 \; (\mathrm{Knox}, \mathrm{TN})$	21	1.1
53.02 (Knox, TN)	21	1.1
57.06 (Knox, TN)	21	1.1
112 (Blount, TN)	20	1.1
703 (Jefferson, TN)	20	1.1
46.11 (Knox, TN)	20	1.1
66 (Knox, TN)	20	1.1
68 (Knox, TN)	20	1.1
69 (Knox, TN)	19	1.0
38.02 (Knox, TN)	18	1.0
55.01 (Knox, TN)	18	1.0
58.03 (Knox, TN)	18	1.0
All Other Locations	994	53.9

Additional Information

Analysis Settings

Analysis Type	Destination
Destination Type	Census Tracts
Selection area as	Home
Year(s)	2019
Job Type	All Jobs
Selection Area	53.02 (Knox, TN) from Census Tracts
Selected Census Blocks	126
Analysis Generation Date	11/11/2022 17:59 - OnTheMap 6.8.1
Code Revision	f9358819 d46 a60 bb 89052036516 a1c8 fe8 bbbeac
LODES Data Version	20211018_1647

Data Sources

Source: U.S. Census Bureau, OnTheMap Application and LEHD Origin-Destination Employment Statistics (Beginning of Quarter Employment, 2nd Quarter of 2002-2019).

Notes

- 1. Race, Ethnicity, Educational Attainment, and Sex statistics are beta release results and are not available before 2009.
- 2. Educational Attainment is only produced for workers aged 30 and over.
- 3. Firm Age and Firm Size statistics are beta release results for All Private jobs and are not available before 2011.

APPENDIX I
KNOX COUNTY TURN LANE VOLUME THRESHOLD WORKSHEETS

TABLE 4A

	OPPOSING	16 + 32 = 48 THROUG	GH VOLUME	PLUS RIGHT	T-TURN V	VOLUME	*
2 + 16 + 7	VOLUME = 26 - 25	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
2 + 16 + 7	100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90
	200 - 249 250 - 299	205 175	Carter Mill D	rive at	115 105	100 90	80 70
	300 - 349 350 - 399	155 135	Carter Ridge Carter View	,	/ 1		65 60
	400 - 449 450 - 499	120 105	2028 Projected AM WB Left Turns = 1		75 70	65 60	55 50
	500 - 549 550 - 599	95 85	WB Left-Turn L Warrante	~	65 60	55 50	50 45
	600 - 649 650 - 699	75 70	65 60	60 55	55 50	45 40	40 35
	700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *									
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600				
100 - 149	100	80	70	60	55	50				
150 - 199	90	75	65	55	50	45				
200 - 249	80	72	- 460	55	50	45				
250 - 299	70	65	55	50	45	40				
300 - 349	65	60	50	50	45	40				
350 - 399	60	55	50	45	40	40				
400 - 449	55	50	45	45	40	35				
450 - 499	50	45	45	40	35	35				
500 - 549	50	45	40	40	35	35				
550 - 599	45	40	40	35	35	35				
600 - 649	40	35	35	35	35	30				
650 - 699	35	35	35	30	30	30				
700 - 749	30	30	30	30	30	30				
750 or More	30	30	30	30	30	30				

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS

FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

•	RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399	
7	Fewer Than 25 25 - 49 50 - 99							
	100 - 149 150 - 199		Carter Mill Drive at Carter Ridge Drive / Carter View Lane					
	200 - 249 250 - 299		2028 Project EB Right To				Yes	
	300 - 349 350 - 399		EB Right-Turn Warran	4	Yes	Yes Yes	Yes Yes	
	400 - 449 450 - 499		warran		Yes Yes	Yes Yes	Yes Yes	
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

RIGHT-TURN	THRO	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600			
Fewer Than 25 25 - 49						Yes			
50 - 99					Yes	Yes			
100 - 149			-	Yes	Yes	Yes			
150 - 199			Yes	Yes	Yes	Yes			
200 - 249		Yes	Yes	Yes	Yes	Yes			
250 - 299	Yes	Yes	Yes	Yes	Yes	Yes			
300 - 349	Yes	Yes	Yes	Yes	Yes	Yes			
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes			
400 - 449	Yes	Yes	Yes	Yes	Yes	Yes			
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes			
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes			
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

^{*} Or through volume only if a left-turn lane exists.

TABLE 4A

1		17 + 28 = 45					
	OPPOSING 1/4	THROU	GH VOLUME	PLUS RIGHT	I-TURN Y	VOLUME	*
	VOLUME T	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
+ 33	= 59 - 59 100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90
	200 - 249 250 - 299	205 175	Carter Mill I	115 105	100 90	80 70	
	300 - 349 350 - 399	155 135	Carter Ridge Carter View	,	95 85	\$0 70	65 60
	400 - 449 450 - 499	120 105	2028 Project WB Left Turn		75 70	65 60	55 50
	500 - 549 550 - 599	95 85	WB Left-Turn I Warrant	~	65 60	55 50	50 45
	600 - 649 650 - 699	75 70	65	60 55	55 50	45 40	40 35
	700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	- 460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50	50	45	40			
350 - 399	60	55	50	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS

FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

•	RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *-							
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
33	Fewer Than 25 25 - 49 50 - 99								
	100 - 149 150 - 199		Carter Mill Carter Ridge Carter View	e Drive /					
	200 - 249 250 - 299		2028 Projec EB Right Tu				Yes		
	300 - 349 350 - 399		EB Right-Turn Warran	4	Yes	Yes Yes	Yes Yes		
	400 - 449 450 - 499			Yes	Yes Yes	Yes Yes	Yes Yes		
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

RIGHT-TURN	THRO	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600			
Fewer Than 25 25 - 49						Yes			
50 - 99					Yes	Yes			
100 - 149			-	Yes	Yes	Yes			
150 - 199			Yes	Yes	Yes	Yes			
200 - 249		Yes	Yes	Yes	Yes	Yes			
250 - 299	Yes	Yes	Yes	Yes	Yes	Yes			
300 - 349	Yes	Yes	Yes	Yes	Yes	Yes			
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes			
400 - 449	Yes	Yes	Yes	Yes	Yes	Yes			
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes			
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes			
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

^{*} Or through volume only if a left-turn lane exists.

TABLE 4A

OPPOSING	THROU	ROUGH VOLUME PLUS RIGHT-TURN VOLUME *						
+ 10 = 48 - 48	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90		
200 - 249 250 - 299	205 175	Carter Mill Drive at Oglethrope Road 2028 Projected AM		115 105	100 90	80 70		
300 - 349 350 - 399	155 135			95 85	80 70	65 60		
400 - 449 450 - 499	120 105	WB Left Turn I	3	75 70	65 60	55 50		
500 - 549 550 - 599	95 85	WB Left-Turn Lane NOT Warranted		65 60	55 50	50 45		
600 - 649 650 - 699	75 70	65 60	60 55	55 50	45 40	40 35		
700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30		

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	- 460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50	50	45	40			
350 - 399	60	55	50	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS

FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

`	RIGHT-TURN	THRO	THROUGH VOLUME PLUS LEFT-TURN VOLUME *-						
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
10	Fewer Than 25 25 - 49 50 - 99								
	100 - 149 150 - 199		Carter Mill Drive at Oglethrope Road						
	200 - 249 250 - 299		2028 Project EB Right Tu				Yes		
	300 - 349 350 - 399		EB Right-Turn Warran	ited {	Yes	Yes Yes	Yes Yes		
	400 - 449 450 - 499			Yes Yes	Yes Yes	Yes Yes	Yes Yes		
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600		
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes		
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes		
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
300 - 349 350 - 399	Yes Yes	Yes Ye s	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

^{*} Or through volume only if a left-turn lane exists.

TABLE 4A

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *						
VOLUME 32 + 33 = 65	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90		
200 - 249 250 - 299	205 175	Carter Mill Drive at Oglethrope Road 2028 Projected PM		115 105	100 90	80 70		
300 - 349 350 - 399	155 135			95 85	80 70	65 60		
400 - 449 450 - 49 9	120 105	WB Left Turn I	3	75 70	65 60	. 55 50		
500 - 549 550 - 599	95 85	Warrant	ed }	65 60	55 50	50 45		
600 - 649 650 - 699	75 70	65 60	60 55	55 50	45 40	40 35		
700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30		

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600		
100 - 149	100	80	70	60	55	50		
150 - 199	90	75	65	55	50	45		
200 - 249	80	72	- 460	55	50	45		
250 - 299	70	65	55	50	45	40		
300 - 349	65	60	50	50	45	40		
350 - 399	60	55	50	45	40	40		
400 - 449	55	50	45	45	40	35		
450 - 499	50	45	45	40	35	35		
500 - 549	50	45	40	40	35	35		
550 - 599	45	40	40	35	35	35		
600 - 649	40	35	35	35	35	30		
650 - 699	35	35	35	30	30	30		
700 - 749	30	30	30	30	30 `	30		
750 or More	30	30	30	30	30	30		

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS

FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

•	RIGHT-TURN	THRO	UGH VOLUMI	E PLUS LER	T-TURN	VOLUMI	<u>;</u> *-
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
33	Fewer Than 25 25 - 49 50 - 99						
	100 - 149 150 - 199		Carter Mill Oglethrop	e Road			
	200 - 249 250 - 299		2028 Project EB Right Tu				Yes
	300 - 349 350 - 399		EB Right-Turn Warran	ited {	Yes	Yes Yes	Yes Yes
	400 - 449 450 - 499			Yes Yes	Yes Yes	Yes Yes	Yes Yes
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600			
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes			
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes			
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
300 - 349 350 - 399	Yes Yes	Yes Ye s	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

^{*} Or through volume only if a left-turn lane exists.

TABLE 4A

	OPPOSING 13	THROU	GH VOLUME I	PLUS RIGHT	r-TURN V	VOLUME	*
60 + 6 = 6	VOLUME T	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
60 + 6 - 6	100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90
	200 - 249 250 - 299	205 175	Carter Mill D	Prive at	115 105	100 90	80 70
	300 - 349 350 - 399	155 135	Madison Oaks Road 2028 Projected AM		95 85	80 70	65 60
	400 - 449 450 - 499	120 105	WB Left Tur	3	75 70	65 60	55 50
	500 - 549 550 - 599	95 85	WB Left-Turn L Warrant	ed }	65 60	55 50	50 45
	600 - 649 650 - 699	75 70	65 60	60 55	55 50	45 40	40 35
	700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	- 460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50	50	45	40			
350 - 399	60	55	50	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

•	RIGHT-TURN	THRO	UGH VOLUM	E PLUS LEI	T-TURN	VOLUMI	*-
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
6	Fewer Than 25 25 - 49 50 - 99						
	100 - 149 150 - 199		Carter Mill Madison Oa	*			
	200 - 249 250 - 299		2028 Project EB Right T	,			Yes
	300 - 349 350 - 399		EB Right-Turr Warran	nted {	Yes	Yes Yes	Yes Yes
	400 - 449 450 - 499	_		Yes Yes	Yes Yes	Yes Yes	Yes Yes
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600			
Fewer Than 25 25 - 49						Yes			
50 - 99					Yes	Yes			
100 - 149			-	Yes	Yes	Yes			
150 - 199			Yes	Yes	Yes	Yes			
200 - 249		Yes	Yes	Yes	Yes	Yes			
250 - 299	Yes	Yes	Yes	Yes	Yes	Yes			
300 - 349	Yes	Yes	Yes	Yes	Yes	Yes			
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes			
400 - 449	Yes	Yes	Yes	Yes	Yes	Yes			
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes			
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes			
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

^{*} Or through volume only if a left-turn lane exists.

TABLE 4A

OPPOSING 6	THROU	GH VOLUME	PLUS RIGH	T-TURN V	VOLUMI	C *
VOLUME 32 + 18 = 50 50	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
100 - 149 150 - 199	300 245	235 200	185 160	145 130	120 110	100 90
200 - 249 250 - 299	205 175	Carter Mill D	*	115 105	100 90	80 70
300 - 349 350 - 399	155 135	Madison Oaks Road 2028 Projected PM		95 85	80 70	65 60
400 - 449 450 - 499	120 105	WB Left Tur	3	75 70	65 60	55 50
500 - 549 550 - 599	95 85	Warrant	ed }	65 60	55 50	50 45
600 - 649 650 - 699	75 70	65 60	60 55	55 50	45 40	40 35
700 - 749 750 or More	65 60	55 50	50 45	45 40	35 35	30 30

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	- 460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50	50	45	40			
350 - 399	60	55	50	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

^{*} Or through volume only if a right-turn lane exists.

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS

FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

,	RIGHT-TURN	THRO	UGH VOLUMI	E PLUS LEI	T-TURN	VOLUMI	· *-
	VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
18	Fewer Than 25 25 - 49 50 - 99						
	100 - 149 150 - 199		Carter Mill Drive at Madison Oaks Road				
	200 - 249 250 - 299		2028 Project EB Right Tu				Yes
	300 - 349 350 - 399		EB Right-Turn Warran	ited {	Yes	Yes Yes	Yes Yes
	400 - 449 450 - 499			Yes Yes	Yes Yes	Yes Yes	Yes Yes
	500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
	600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/> 600			
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes			
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes			
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
300 - 349 350 - 399	Yes Yes	Yes Ye s	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

^{*} Or through volume only if a left-turn lane exists.

APPENDIX J

RESPONSE LETTER TO ADDRESS COMMENTS

11812 Black Road Knoxville, Tennessee 37932 Phone (865) 556-0042 ajaxengineering@gmail.com

December 12, 2022

PROJECT NAME: Carter Ridge Phases VI - VIII

TO: Knoxville-Knox County Planning

SUBJECT: Response Document for Carter Ridge Phases VI - VIII TIS Review Comments

Knoxville-Knox County Planning and Knox County Engineering Staff:

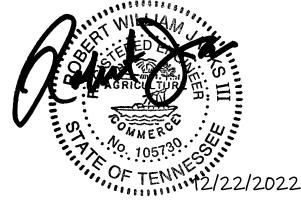
The following response document addresses the comment in an email from Mike Conger, PE, dated December 9, 2022. This letter is added to the end of the revised report in Appendix J.

1. On page 33 - the trip generation summary of Table 5 indicates 129 dwelling units in Phases VI-VIII, but the study proposes 128 dwelling units in other places. Please clarify.

Response:

The correct number of dwelling units in Phase VIII is 39 houses (instead of 40), resulting in a total of 128 dwelling units in Phases VI – VIII. This correction resulted in changes to the following:

- a) Page 1, first paragraph: updated discussion to denote a total of 202 houses in Phases IV VIII
- b) Page 1, first bullet point: updated trip generation results
- c) Page 33, first paragraph: updated discussion to denote a total of 202 houses in Phases IV VIII
- d) Page 33: revised Table 5 and trip generation number discussion in the last paragraph
- e) Page 42, Figure 7c: updated table and volumes at the intersection of Carter Mill Drive at Madison Oak Road
- f) Page 46, Figure 8c: updated volumes at the intersection of Carter Mill Drive at Madison Oak Road
- g) Page 48: updated results in Table 6c for the 2028 PM Peak Hour at the intersection of Carter Mill Drive at Madison Oak Road


In addition to the revisions listed above, other changes in the report include the following:

- Updated Title Page
- Updated Table of Contents
- Updated Page Footers
- A couple of minor grammatical updates
- Updated Appendix F Synchro results for 2028 PM Peak Hour
- Updated Appendix G Trip Generation numbers and calculations
- Added Appendix J to include this response letter

If you have any questions or further comments, please feel free to contact me. I look forward to your review and approval.

Sincerely,

Ajax Engineering, LLC Robert W. Jacks, P.E.

Ajax Engineering, LLC 11812 Black Road Knoxville, TN 37932 ajaxengineering@gmail.com © 2022 Ajax Engineering, LLC

CIVIL ENGINEERING / TRAFFIC ENGINEERING