SHORELINE CHURCH EXPANSION

Transportation Impact Analysis 9635 Westland Drive Knoxville, TN 37922

A Transportation Impact Analysis for the Shoreline Church Expansion

Submitted to

Knoxville - Knox County Planning

Revised September 23, 2022 September 9, 2022 FMA Project No. 391.041.1

Submitted By:

TABLE OF CONTENTS

Exi	ECUTIVE SUMMARY	3
1	Introduction	5
	1.1 Project Description	5
	1.2 Existing Site Conditions	8
2	EXISTING TRAFFIC VOLUMES	9
3	BACKGROUND GROWTH	11
4	TRIP GENERATION AND TRIP DISTRIBUTION	13
5	TABLE 4-1 SHORELINE CHURCH EXPANSION TRIP GENERATION SUMMARY PROJECTED CAPACITY AND LEVEL OF SERVICE	19
6	Table 5-1 Intersection Analysis Level of Service (LOS) Summary Conclusions and Recommendations	
	6.1 Westland Drive @ Emory Church Road	21
	6.2 Westland Drive @ Shoreline Church Driveway Connection	22
	6.3 EMORY CHURCH ROAD AT SHORELINE CHURCH DRIVEWAY CONNECTION	24

FIGURES

1	LOCATION MAP	6
2	SITE PLAN	7
3	2022 EXISTING PEAK 15-MINUTE TRAFFIC VOLUMES	10
4	2025 BACKGROUND PEAK 15-MINUTE TRAFFIC VOLUMES	12
5	Peak Hour Trip Distribution	15
6	Shoreline Church Expansion Background Sunday Peak Hour Site trips	16
7	Shoreline Church Expansion Sunday Peak Hour Site Trips	17
8	2025 Full Buildout Sunday Peak Hour Site Traffic	18

ATTACHMENTS

- 1 Aerial Photos
- 2 Traffic Counts
- 3 ADT TRENDS
- 4 TRIP GENERATION
- 5 SIGNAL TIMING
- 6 Intersection worksheets Existing Sunday Peak
- 7 INTERSECTION WORKSHEETS BACKGROUND SUNDAY PEAK
- 8 Intersection Worksheets Full Buildout Sunday Peak
- 9 SIGHT DISTANCE

Executive Summary

Shoreline Church, Inc. is proposing a building and parking lot expansion to the existing Shoreline Church located at 9635 Westland Drive in Knox County, TN. The existing church is located east of the intersection of Westland Drive at Pellissippi Parkway (I-140). The building expansion will consist of a new worship center with additional meeting and office space and the existing building will be modified to a smaller worship center with meeting rooms. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2025.

The Shoreline Church has two existing driveway connections. The main driveway is located on Westland Drive and the secondary driveway is located on Emory Church Road. The existing driveway connection to Emory Church Road is gated and is only used for Sunday church services or special events in order to prevent cut-thru traffic in the parking lot. The Morning Pointe Assisted Living Facility located north of the Shoreline Church shares both driveway connections.

In order to maintain or provide an acceptable level-of-service for each of the intersections studied, some recommendations are presented.

Westland Drive @ Emory Church Road

After the completion of the Shoreline Church Expansion the traffic conditions for the intersection of Westland Drive at Emory Church Road will operate at an acceptable overall LOS C during the Sunday peak hour.

The result of the queue analysis is that the existing storage for the eastbound left turn lane and westbound left turn lane are adequate and the southbound right turn lane will exceed capacity during the Sunday peak 15-minute entering and exiting periods. This will cause right turning traffic to queue past the 200 feet queue storage length and into the thru-left lane during the 15-minute peak periods. The intersection will continue to operate at an acceptable level of service and no additional improvements are necessary in order to accommodate the Shoreline Church Expansion.

Westland Drive @ Shoreline Church Driveway Connection

After the completion of the Shoreline Church Expansion the eastbound left turn movement (Westland Drive) will operate at a LOS E during the Sunday peak 15-minute entering conditions and the southbound approach (Church Driveway) will operate at a LOS F during both the Sunday peak 15-minute entering and exiting conditions.

Based on the HCS7 queue analysis the existing storage at the intersection of Westland Drive at the Shoreline Church driveway connection is inadequate. The eastbound left turn lane is expected to back up into the Westland Drive thru lane during the peak

15-minute entering conditions and a 16 vehicle (320 feet) queue will interfere with the signalized intersection of Westland Drive at the Pellissippi northbound ramp.

There are currently no police officers providing traffic control for Sunday services. FMA recommends that a police officer be placed at the intersection of Westland Drive at the Shoreline Church Driveway during both the entering and exiting peak periods in order to mitigate the expected queues and LOS F operating conditions.

Westland Drive at the existing intersection with the Shoreline Church driveway connection does not have adequate intersection sight distance looking east. The sight distance is partially blocked by the vegetation located within the right-of-way. Trimming the existing vegetation would improve the intersection sight distance. FMA recommends any necessary landscaping that may be involved to comply with Knox County Engineering and Public Works requirements.

The existing stop bar is located approximately 50 feet from the edge of pavement on Westland Drive. During the turning movement count it was observed that vehicles that were queued at the driveway waiting to turn both left and right onto Westland Drive pulled forward past the stop bar and queued at approximately 15 feet from the edge of pavement. An updated site plans shows the stop bar location at 15 feet from the edge of pavement. Any improvements to the intersection of Westland Drive at the Shoreline Church Driveway should be coordinated with Knox County Engineering & Public Works.

FMA recommends that the signs and pavement markings be installed in accordance with the standards provided in the *Manual on Uniform Traffic Control Devices* (MUTCD).

Emory Church Road @ Shoreline Church Driveway Connection

After the completion of the Shoreline Church Expansion the eastbound approach (Church Driveway) and the northbound approach (Emory Church Road) will operate at a LOS B or better during both the Sunday entering and exiting peak 15-minute conditions.

The result of the queue analysis is that the existing storage at the intersection is adequate and there are no recommended improvements to the intersection of Emory Church Road at Shoreline Church driveway connection.

Emory Church Road has adequate intersection sight distance at the intersection with the existing Shoreline Church driveway connection.

1 Introduction

1.1 Project Description

This report provides a summary of a traffic impact study that was performed for the Shoreline Church Expansion. The existing church is located east of the intersection of Westland Drive at Pellissippi Parkway (I-140) at 9635 Westland Drive within the limits of the City of Knoxville. The location of the site is shown in Figure 1.

The full build out of the development will include a building and parking lot expansion. The building expansion will consist of a new worship center with additional meeting and office space and the existing building will be modified to a smaller worship center with meeting rooms. The new proposed parking count will be 503 parking spaces. Construction is proposed to take place this year, and this study assumes full build out for the development will occur in 2025.

The Shoreline Church has two existing driveway connections. The main driveway is located on Westland Drive and the secondary driveway is located on Emory Church Road. The existing driveway connection to Emory Church Road is gated and is only used for Sunday church services or special events in order to prevent cut-thru traffic in the parking lot. The Morning Pointe Assisted Living Facility located north of the Shoreline Church shares both driveway connections. The proposed site layout is shown in Figure 2.

There are no proposed changes to the existing driveway connections. The site circulation will include a proposed connection from the upper parking lot to the lower parking lot and additional parking aisles that are marked one-way to accommodate angled parking. The revised parking lot layout will alter the interior site circulation but the Shoreline Church traffic will continue to enter/exit at both existing driveway connections. There are currently no police officers providing traffic control for Sunday services.

The Shoreline Church schedule for Fall of 2022 has three worship times on Sunday starting at 8:15 a.m., 9:30 a.m. and 11:00 a.m. After the completion of the expansion Sunday services are expected to be reduced to two services with a maximum campus capacity of approximately 1,500 members on site at one time.

The purpose of this study is to evaluate the impacts to the traffic conditions caused by the proposed development.

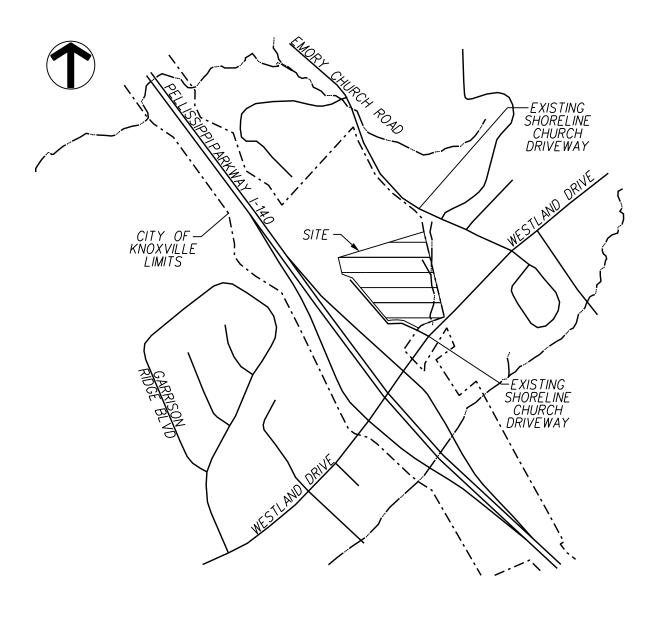


Figure 1: Location Map

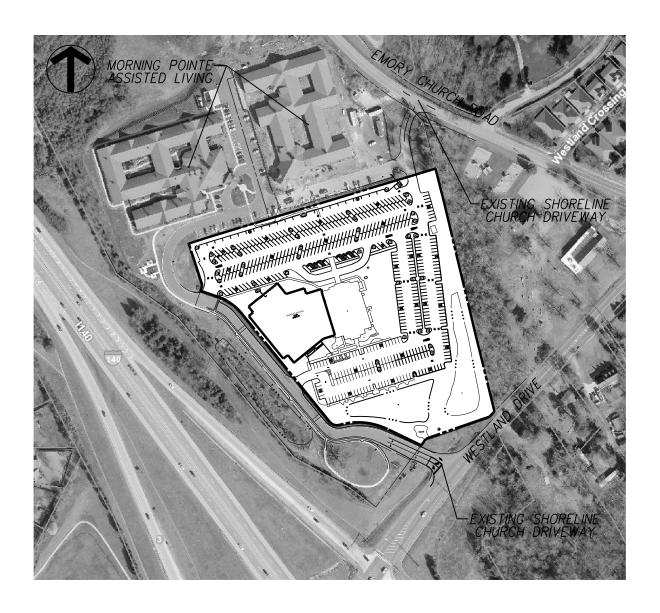


Figure 2: Site Plan

1.2 Existing Site Conditions

Westland Drive is a two-lane road at the existing intersection with the Shoreline Church driveway connection. Knoxville-Knox County Planning classifies Westland Drive as a Minor Arterial with an 88-foot right-of-way per the Major Road Plan. The speed limit on Westland Drive in the vicinity of the project area is 40 mph.

Emory Church Road is a two-lane road at the existing intersection with the Shoreline Church driveway connection. Knoxville-Knox County Planning classifies Emory Church Road as a Minor Collector with a 60-foot right-of-way per the Major Road Plan. The speed limit on Emory Church Road is 30 mph.

The existing driveway connection to Westland Drive is located approximately 350 feet east of the intersection of Westland Drive at Pellissippi Parkway (I-140) northbound ramp and approximately 940 feet west of the signalized intersection of Westland Drive at Emory Church Road / Treymour Way. The driveway connection has a separate right and left turn lane with an approximate storage length of 125 feet for each lane.

The existing driveway connection to Emory Church Road is gated and is only used for Sunday church services or special events in order to prevent cut-thru traffic in the parking lot. The driveway connection is located approximately 210 feet north of the intersection with Henderson Lane and approximately 815 feet north of the signalized intersection at Westland Drive.

Emory Church Road has an existing southbound right turn lane with a 200 foot storage length and Westland Drive has an eastbound left turn lane with a 280 foot storage length and a westbound left turn lane with a 100 foot storage length at the signalized intersection of Emory Church Road at Westland Drive.

Westland Drive has a sidewalk on the south side of the road between the driveway at 9600 Westland Drive and Emory Church Road. Westland Drive has sidewalks on both sides of the road east of the signalized intersection with Emory Church Road. Emory Church Road has a sidewalk on the east side of the road between Westland Drive and Henderson Lane.

The Knoxville Area Transit does not operate in the vicinity of the existing Shoreline Church.

Aerial photos of the existing Shoreline Church driveway connections and the signalized intersection of Westland Drive at Emory Church Road are included in Attachment 1.

2 Existing Traffic Volumes

FMA conducted peak hour turning movement counts at the intersections of Westland Drive at Emory Church Road, Westland Drive at the Shoreline Church driveway connection and Emory Church Road at the Shoreline Church driveway connection on Sunday, August 28, 2022.

There were three church services on Sunday August 28th. The first service from 8:15 a.m. to 9:15 a.m., a second service from 9:30 a.m. to 10:30 a.m. and a third service from 11:00 a.m. to 12:15 p.m.

The current Sunday peak 15-minute entering time period occurred at 10:45 a.m. and the Sunday peak 15-minute exiting time period occurred at 12:15 p.m. using the turning movement count that FMA conducted. The Sunday peak hour at all three count locations occurred between 12:00 p.m. and 1:00 p.m. which coincided with the end of the third church service.

The existing volumes including the entering and exiting peak 15-minute traffic volumes at the count location are shown in Figure 3, and the count data collected is included in Attachment 2.

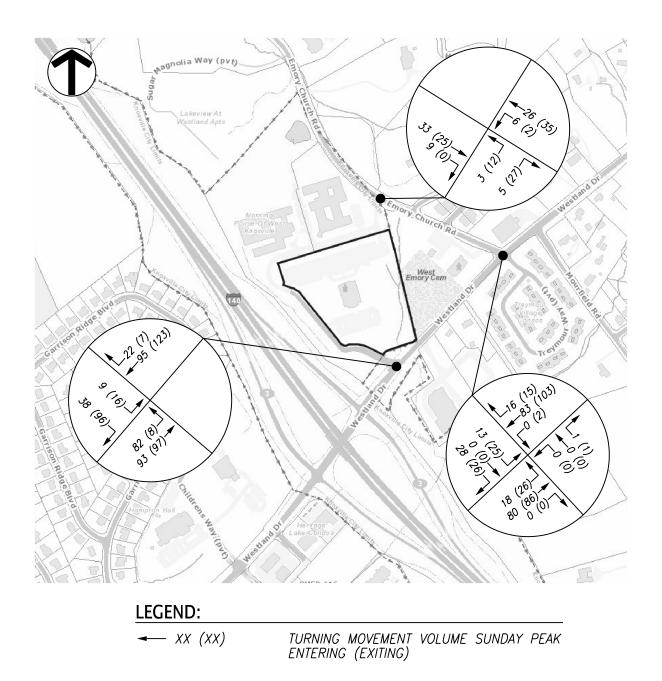


Figure 3: 2022 Existing Peak 15-Minute Traffic Volumes

3 Background Growth

The Knoxville Regional Transportation Planning Organization (TPO) maintain count stations in the vicinity of the proposed development.

TPO Count Station ID: 093M268 is located on Emory Church Road north of Westland Drive. The annual growth rate for this station over the last twenty years is approximately 3.21% and the 2021 ADT was 5,300 vehicles per day.

TPO Count Station ID: 093M001 is located on Westland Drive approximately 100 feet east of Clover Hill Lane. The annual growth rate for this station over the last twenty years is approximately 1.77% and the 2021 ADT was 12,310 vehicles per day.

TPO Count Station ID: 093M085 Is located on Westland Drive west of Pelllissippi Parkway (I-140) near the intersection of Heritage Lake Boulevard. The annual growth rate for this station over the last twenty years is approximately 1.90% and the 2020 ADT was 11,140 vehicles per day.

For the purpose of this study, an annual growth rate of 2.0% was assumed for the traffic at the studied intersections until full occupancy is reached in 2025. Trend line growth charts for TPO count stations are included in Attachment 3.

Figure 4 demonstrates the projected background peak entering and exiting 15-minute volumes at the studied intersections after applying the background growth rate to the existing conditions.

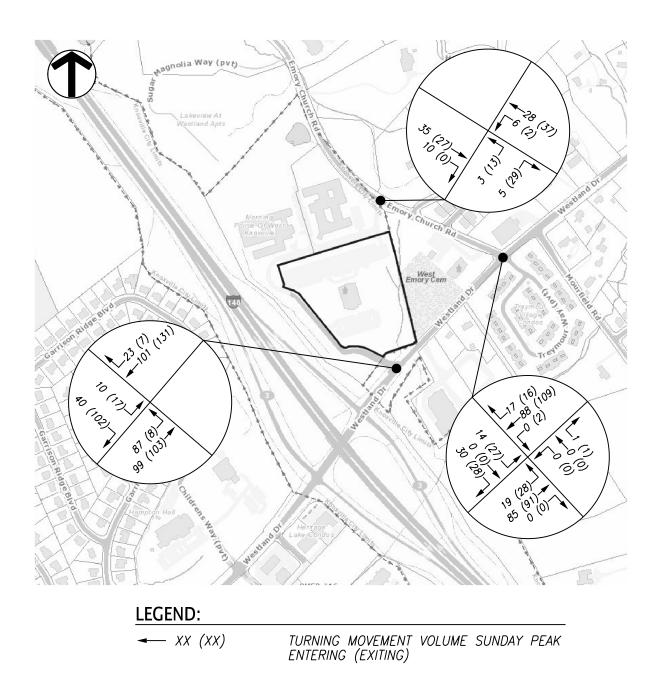


Figure 4: 2025 Background Peak 15-Minute Traffic Volumes

4 Trip Generation and Trip Distribution

The existing Shoreline Church has a building square footage of 15,100 SF with 450 seats in the worship center. The existing Sunday entering 15-minute peak occurred at 10:45 a.m. with 119 vehicles entering and 55 vehicles exiting. The existing Sunday exiting 15-minute peak occurred at 12:15 p.m. with 17 vehicles entering and 151 vehicles exiting.

After the completion of the Shoreline Church Expansion the proposed building will have 47,040 SF with 1,243 seats in the new worship center. In order to calculate the trip generation for the proposed church expansion a factor of 2.76 (1243 seats/450 seats) was applied to the existing entering / exiting peak 15-minute traffic volumes to simulate a worst case scenario.

The trip generation worksheet is included in Attachment 4.

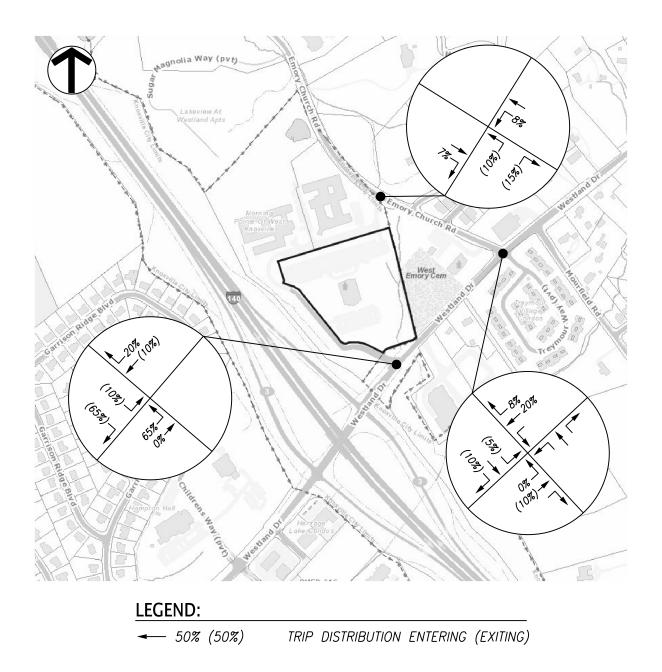
The estimated 15-minute peak and hourly volumes for the Sunday peak entering and exiting volumes are included in the trip generation summary and shown in Table 4-1.

Table 4 – Shoreline Church Expansion Trip Generation Summary

Land Use		Daily Trips	Enterin Enter	g Peak Exit	Exiting Enter	Peak Exit
	Ex	kisting Shoreline	e Church			
Church – Sunday 15-Minute Peak Hourly Volume	450 Seats		119 476	55 220	1 <i>7</i> 68	151 604
	Propose	d Shoreline Chu	urch Expan	sion		
Church – Sunday 15-Minute Peak Hourly Volume	1,243 Seats		329 1314	152 607	4 <i>7</i> 188	41 <i>7</i> 1667

The existing distribution of traffic on Westland Drive at the intersection with Emory Church Road is approximately 50% eastbound and 50% westbound during the Sunday peak hour.

The existing directional distribution of the traffic generated by the Shoreline Church was determined using the existing traffic volumes at the intersections of Westland


Drive at the Shoreline Church driveway connection, Westland Drive at Emory Church Road and Emory Church Road at the Shoreline Church driveway connection.

Morning Pointe Assisted Living Facility shares the Westland Drive and Emory Church Road driveway connections. Based on the existing turning movement counts there was negligible traffic travelling to/from the Morning Pointe Assisted Living during the Sunday peak entering and exiting 15-minute periods; therefore, no volume was removed or directly attributed to the Morning Pointe Assisted Living Facility.

Figure 5 shows the existing peak hour trip distribution for the Shoreline Church during the Sunday peak periods.

Figure 6 shows the background Sunday peak 15-minute site trips generated by the existing Shoreline Church and Figure 7 shows the full buildout Sunday hourly site trips generated by the proposed Shoreline Church Expansion.

Figure 8 shows the 2025 full buildout Sunday peak hourly volumes of traffic including the background traffic data combined with the additional site trips from the Shoreline Church Expansion.

Figure 5: Peak Hour Trip Distribution

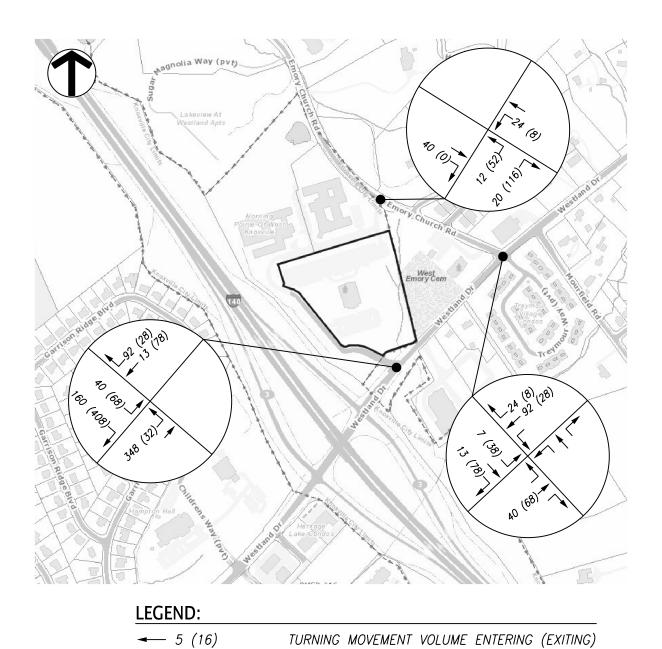


Figure 6: Shoreline Church Expansion Background Sunday Peak Hour Site Trips

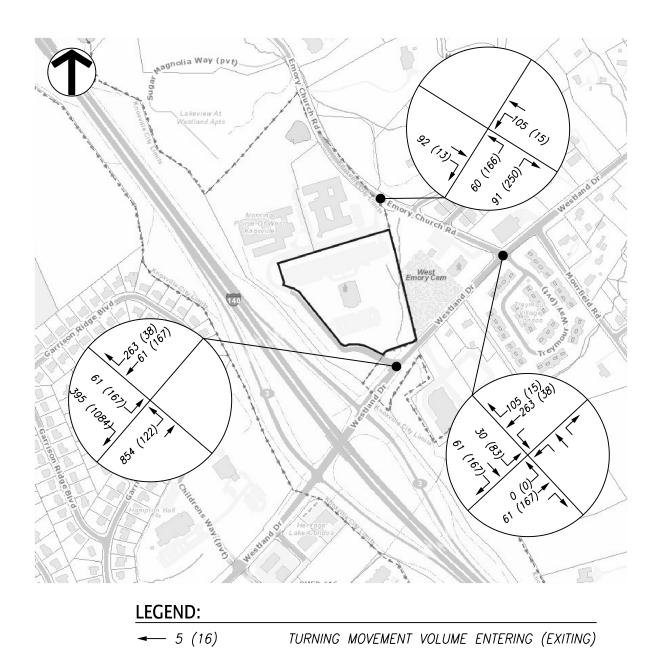


Figure 7: Shoreline Church Expansion Sunday Peak Hour Site Trips

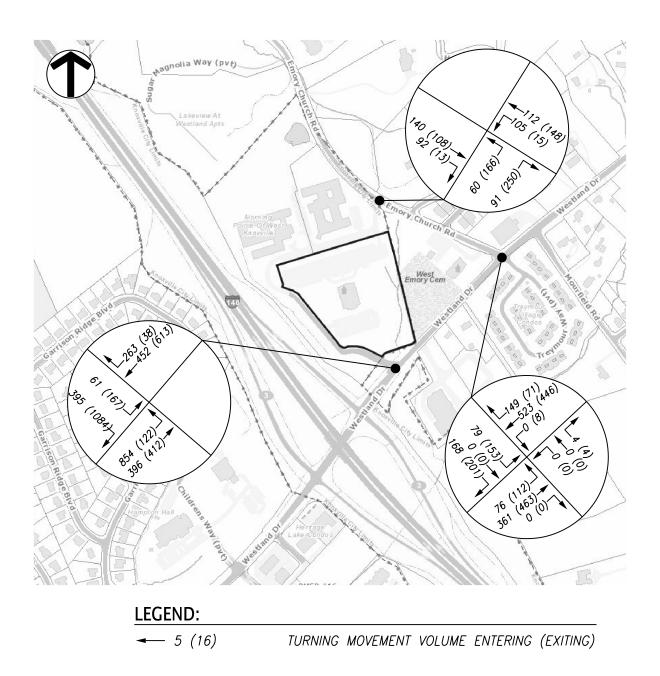


Figure 8: 2025 Full Buildout Sunday Peak Hour Site Traffic

5 Projected Capacity and Level of Service

The existing intersections of Westland Drive and Emory Church Road at the Shoreline Church driveway connections are stop-controlled with stop signs located at the driveway connections. The existing intersection of Westland Drive at Emory Church Road is signalized.

Signalized intersection capacity analyses were performed using the Highway Capacity Software (HCS7) at the intersection of Westland Drive at Emory Church Road for the existing, background and full buildout Sunday peak hour. The existing signal timing was provided by the Knox County Engineering and is included in Attachment 5.

Unsignalized intersection capacity analyses were performed using the Highway Capacity Software (HCS7) for the Sunday peak hour to evaluate the existing, background and full buildout conditions at the existing intersections of Westland Drive at the Shoreline Church driveway connection and Emory Church Road at the Shoreline Church driveway connection.

The results from the analyses are expressed with a term "level of service" (LOS), which is based on the amount of delay experienced at the intersection. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions with excessive delay. LOS D generally is considered the minimum acceptable condition in urban areas. The HCS7 worksheets are included in Attachments 6, 7 and 8.

Table 5-1 shows the results of the capacity analyses.

Table 5-1 Intersection Analysis Level of Service (LOS) Summary

Intersection	Time Period	Year 2022 Existing (Delay/LOS)	Year 2025 Background (Delay/LOS)	Year 2025 Full Buildout (Delay/LOS)					
Westland Drive @	Sunday Peak								
Emory Church Road	Entering	18.7 / B	19.5 / B	26.3 / C					
	Exiting	19.9 / B	20.8 / C	34.6 / C					
Westland Drive @	Sunday Peak –	Entering							
Driveway Connection	EB Left Turn	9.7 / A	10.0 / A	44.0 / E					
	SB Approach	31.4 / D	43.9 / E	11529.4 / F					
	Sunday Peak – Exiting								
	EB Left Turn	8.6 / A	8.7 / A	9.4 / A					
	SB Approach	28.1 / D	35.6 / E	640.0 / F					
Emory Church Road @	Sunday Peak –	Entering							
Driveway Connection	EB Approach	9.7 / A	9.8 / A	12.1 / B					
,	NB Approach	7.6 / A	7.6 / A	7.9 / A					
	Sunday Peak –	Exiting							
	EB Approach	10.0 / B	10.2 / B	13.8 / B					
	NB Approach	7.4 / A	7.4 / A	7.5 / A					

6 Conclusions and Recommendations

6.1 Westland Drive @ Emory Church Road

The existing, background and full buildout conditions for the Sunday entering and exiting peak 15-minute conditions at the signalized intersection of Westland Drive at Emory Church Road were analyzed using the Highway Capacity Software (HCS7). The existing signal timing was provided by Knox County Engineering and Public Works.

The existing peak 15-minute entering and exiting traffic conditions for the signalized intersection of Westland Drive at Emory Church Road operates at an overall LOS B during the Sunday entering and exiting peak 15-minute conditions.

The background peak 15-minute entering and exiting traffic conditions for the signalized intersection of Westland Drive at Emory Church Road operates at an overall LOS B during the Sunday entering peak 15-minute conditions and a LOS C during the Sunday exiting peak 15-minute conditions.

After the completion of the Shoreline Church Expansion the traffic conditions for the intersection of Westland Drive at Emory Church Road will operate at an acceptable overall LOS C during the Sunday entering and exiting peak 15-minute conditions.

The 95% queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95% queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage.

The existing eastbound left turn lane at the intersection of Westland Drive at Emory Church Road has an available storage length of 280 feet. The signalized intersection capacity analysis shows the full buildout 95% queue length for the eastbound left turn lane (Westland Drive) of 30.6 feet (1.2 vehicles) during the Sunday entering peak and 48.1 feet (1.9 vehicles) during the Sunday exiting peak.

The existing westbound left turn lane at the intersection of Westland Drive at Emory Church Road has an available storage length of 100 feet. The signalized intersection capacity analysis shows the full buildout 95% queue length for the westbound left turn lane (Westland Drive) of less than one vehicle during the Sunday entering and exiting peaks.

The existing southbound right turn lane at the intersection of Westland Drive at Emory Church Road has an available storage length of 200 feet. The signalized intersection capacity analysis shows the full buildout 95% queue length for the southbound right

turn lane (Emory Church Road) of 291.9 feet (11.5 vehicles) during the Sunday entering peak and 395.2 feet (15.6 vehicles) during the Sunday exiting peak.

The existing southbound right turn lane (Emory Church Road) will exceed capacity during the Sunday peak 15-minute entering and exiting periods. This will cause right turning traffic to queue past the 200 feet queue storage length and into the thru-left lane. The intersection will continue to operate at an acceptable level of service and no additional improvements are necessary in order to accommodate the Shoreline Church Expansion.

6.2 Westland Drive @ Shoreline Church Driveway Connection

The existing, background and full buildout conditions for the Sunday entering and exiting peak 15-minute conditions at the unsignalized intersection of Westland Drive at Shoreline Church driveway connection were analyzed using the Highway Capacity Software (HCS7).

The existing peak 15-minute traffic entering and exiting conditions for the eastbound left turn movement (Westland Drive) operate at a LOS A during both the Sunday entering and exiting peak and the southbound approach (Church Driveway) operates at a LOS D during both the Sunday entering and exiting peak.

The background peak 15-minute traffic entering and exiting conditions for the eastbound left turn movement (Westland Drive) operate at a LOS A during both the Sunday entering and exiting peak and the southbound approach (Church Driveway) operates at a LOS E during both the Sunday entering and exiting peak.

After the completion of the Shoreline Church Expansion the full buildout traffic conditions for the intersection of Westland Drive at Shoreline Church driveway connection will operate as follows. The eastbound left turn movement (Westland Drive) will operate at a LOS E during the Sunday entering peak and a LOS A during the Sunday exiting peak the southbound approach (Church Driveway) will operate at a LOS F during the both the Sunday entering and exiting peak 15-minute conditions.

The 95% queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95% queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage.

The existing southbound left turn lane at the intersection of Westland Drive at the Shoreline Church driveway connection has an available storage length of 125 feet. The unsignalized intersection capacity analysis shows the full buildout 95% queue length for the southbound left turn lane (Church Driveway) of 9.9 vehicles during the

Sunday entering peak 15-minute conditions and 12.2 vehicles during the Sunday exiting peak 15-minute conditions.

The existing eastbound left turn lane at the intersection of Westland Drive at the Shoreline Church driveway connection has an available storage length of 150 feet. The unsignalized intersection capacity analysis shows the full buildout 95% queue length for the eastbound left turn lane (Westland Drive) of 16.1 vehicles during the Sunday peak entering 15-minute conditions and less than one vehicle during the Sunday peak exiting 15-minute conditions.

Based on the HCS7 queue analysis the existing storage at the intersection of Westland Drive at the Shoreline Church driveway connection is inadequate. The eastbound left turn lane is expected to back up into the Westland Drive thru lane during the peak 15-minute entering conditions and a 16 vehicle (320 feet) queue will interfere with the signalized intersection of Westland Drive at the Pellissippi northbound ramp.

There are currently no police officers providing traffic control for Sunday services. FMA recommends that a police officer be placed at the intersection of Westland Drive at the Shoreline Church Driveway during both the entering and exiting peak periods in order to mitigate the expected queues.

The minimum required sight distance for a road with a posted speed limit of 40 mph is 400 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through February 13, 2020. FMA measured the sight distance at the existing intersection of Westland Drive at the Shoreline Church driveway connection in September 2022. At 15 feet from the edge of pavement the sight distance at the proposed intersection is greater than 400 feet looking to the west and approximately 265 feet looking to the east.

The sight distance looking to the east is partially blocked by the existing vegetation located within the right-of-way. Trimming the existing vegetation would improve the intersection sight distance. FMA recommends any necessary landscaping that may be involved to comply with Knox County Engineering and Public Works requirements.

The existing stop bar is located approximately 50 feet from the edge of pavement on Westland Drive. During the turning movement count it was observed that vehicles that were queued at the driveway waiting to turn both left and right onto Westland Drive pulled forward past the stop bar and queued at approximately 15 feet from the edge of pavement. An updated site plans shows the stop bar location at 15 feet from the edge of pavement. Any improvements to the intersection of Westland Drive at the Shoreline Church Driveway should be coordinated with Knox County Engineering & Public Works.

FMA recommends that the signs and pavement markings be installed in accordance with the standards provided in the *Manual on Uniform Traffic Control Devices* (MUTCD).

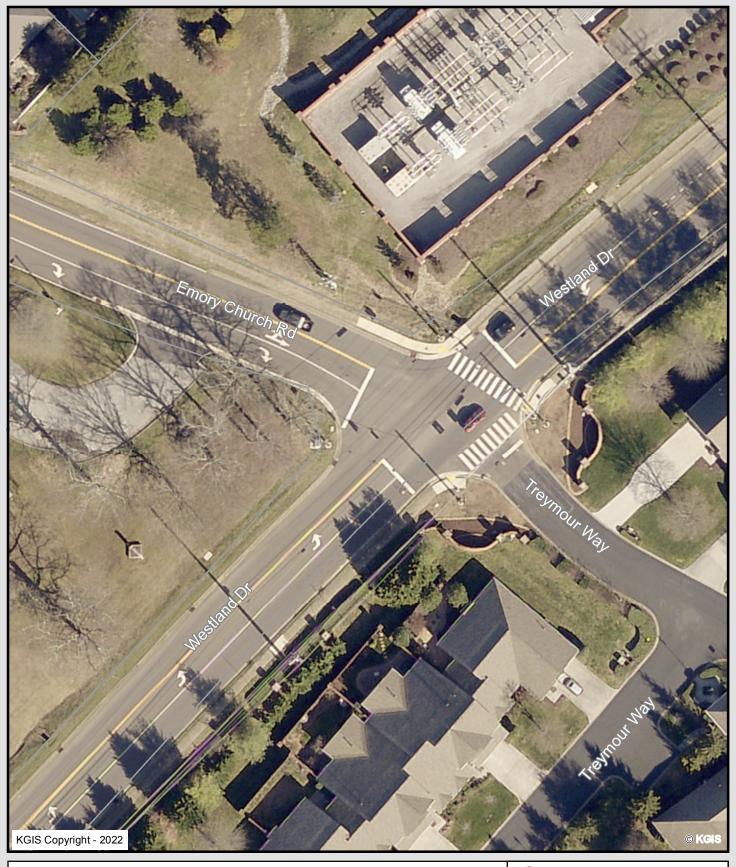
Included in Attachment 9 are pictures of the existing sight distance at both the stop bar and 15 feet from the edge of pavement and the intersection sight distance triangles.

6.3 Emory Church Road at Shoreline Church Driveway Connection

The existing, background and full buildout conditions for the Sunday entering and exiting peak 15-minute conditions at the unsignalized intersection of Emory Church Road at Shoreline Church driveway connection were analyzed using the Highway Capacity Software (HCS7).

The existing and background peak 15-minute entering and exiting traffic conditions for the eastbound approach (Church Driveway) operate at a LOS A during the Sunday entering peak and a LOS B during the Sunday exiting peak and the northbound approach (Emory Church Road) operates at a LOS A during both the Sunday entering and exiting peak 15-minute conditions.

After the completion of the Shoreline Church Expansion the full buildout traffic conditions for the intersection of Emory Church Road at the Shoreline Church driveway connection will operate as follows. The eastbound approach (Church Driveway) will operate at a LOS B during the Sunday entering and exiting peak 15-minute traffic conditions and the northbound approach (Emory Church Road) will operate at a LOS A during the Sunday entering and exiting peak 15-minute conditions.

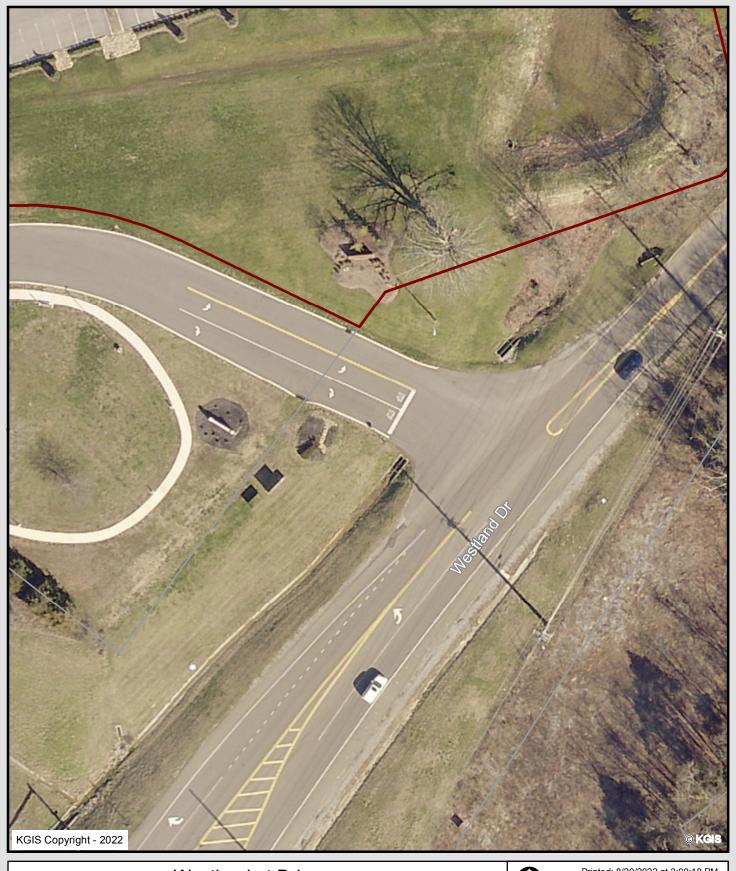

The 95% queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95% queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage.

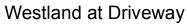
The unsignalized intersection capacity analysis shows the full buildout 95% queue length for the eastbound approach (Church Driveway) of less than one car length during the Sunday entering peak 15-minute conditions and 2.9 vehicles (60 feet) during the Sunday exiting peak 15-minute conditions. Based on the HCS7 queue analysis the existing storage at the intersection of Emory Church Road at the Shoreline Church driveway connection is adequate and no improvements to the intersection are necessary in order to accommodate the Shoreline Church Expansion.

The minimum required sight distance for a road with a posted speed limit of 30 mph is 300 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through February 13, 2020. FMA measured the

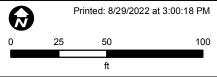
sight distance at the existing intersection of Emory Church Road at the Shoreline Church driveway connection in September 2022. At 15 feet from the edge of pavement the sight distance at the existing intersection is greater than 300 feet looking to the north and greater than 300 feet looking to the south. Attachment 9 shows photos of the sight distance at the proposed intersection.

Attachment 1 Aerial Photos


Printed: 8/29/2022 at 3:01:27 PM


0 25 50 100

ft


Knoxville - Knox County - KUB Geographic Information System

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

Knoxville - Knox County - KUB Geographic Information System

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

Emory Church at Driveway

0 25 50 100 ft

Knoxville - Knox County - KUB Geographic Information System

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

Attachment 2 Traffic Count

Project: Shoreline Church Expansion Intersection: Westland Drive at Church Driveway Date Conducted: Sunday August 28, 2022

	We	stland Dri	ive	We	stland Dr	ive	Chui	rch Drive	way]	
	E	astbound		W	estbound/	b	Sc	outhboun	d		
Start	Left	Thru	Total	Thru	Right	Total	Left	Right	Total	Int. Total	
8:00 AM	11	31	42	58	4	62	0	0	0	104	
8:15 AM	9	28	37	46	2	48	0	2	2	87	
8:30 AM	2	43	45	72	1	73	1	1	2	120	
8:45 AM	7	43	50	89	2	91	0	0	0		
Total	29	145	174	265	9	274	1	3	4	452	
9:00 AM	13	47	60	91	5	96	0	1	1	157	
9:15 AM	59	41	100	89	32	121	0	16	16	l	
9:30 AM	26	50	76	129	11	140	0	3	3		
9:45 AM	0	81	81	134	0	134	0	3	3	218	
Total	98	219	317	443	48	491	0	23	23	831	
10:00 AM	4	64	68	106	1	107	0	2	2	177	
10:15 AM	7	80	87	106	0	106	0	2	2		
10:30 AM	23	75	98	119	10	129	10	53	63		
10:45 AM	82	93	175	95	22	11 <i>7</i>	9	38	47		
Total	116	312	428	426	33	459	19	95	114	1001	
11:00 PM	29	133	162	98	5	103	3	8	11	276	
11:15 PM	4	87	91	109	1	110	1	5	6		
11:30 PM	3	107	110	125	0	125	0	3	3	238	
11:45 PM	1	104	105	123	2	125	1	3	4	234	
Total	37	431	468	455	8	463	5	19	24	955	
12:00 PM] 3	111	114	95	1	96	0	4	4	214	
12:15 PM	8	97	105	123	7	130	16	96	112	347	
12:30 PM	2	120	122	156	1	157	1	24	25	304	
12:45 PM	4	138	142	121	0	121	4	27	31	l	
Total	17	466	483	495	9	504	21	151	172	1159	
Grand Total	Grand Total 297 1573		1870	2084	107	2191	46	291	337	4398	
Approach %	15.9	84.1		95.1	4.9		13.6	86.4			
Total %	7%	36%	43%	47%	2%	50%	1%	7%	8%		

Project: Shoreline Church Expansion

Intersection: Westland Drive at Church Driveway

Date Conducted: Sunday August 28, 2022

Entering Peak Hour	10:15 AM - 11:15 AM	1100
Exiting Peak Hour	12:00 PM - 1:00 PM	1159

	We	stland [Orive	We	stland E	Orive	Chur			
	E	astbour	nd	V	√estbou	nd	So			
Start	Left	Thru	Total	Thru	Right	Total	Left	Right	Total	Int. Total
Peak Hour Analysis from 8:00) AM to 1	:00 PM								_
Sunday Peak Hour Entering T	raffic beg	ins at 10):15 AM						_	
10:15 AM	7	80	87	106	0	106	0	2	2	195
10:30 AM	23	<i>7</i> 5	98	119	10	129	10	53	63	290
10:45 AM	82	93	175	95	22	117	9	38	47	339
11:00 AM	29	133	162	98	5	103	3	8	11	276
Total Volume	141	381	522	418	37	455	22	101	123	1100
Future (2% over 3 yrs)	87	99		101	23		10	40		360
PHF	0.43	0.72		0.88	0.42		0.55	0.48		0.81
	<u></u>									
	We	stland [Orive	We	stland D	Orive	Chur			
	E	astbour	nd	V	√estbou	nd	Southbound			
Start	Left	Thru	Total	Thru	Right	Total	Left	Right	Total	Int. Total
Peak Hour Analysis from 8:00) AM to 1	:00 PM								
Sunday Peak Hour Exiting Tra	ıffic begir	ns at 12:0	00 PM							
12:00 PM	3	111	114	95	1	96	0	4	4	214
12:15 PM	8	97	105	123	7	130	16	96	112	347
13.30 DM									~ -	204
12:30 PM	2	120	122	156	1	157	1	24	25	304
12:30 PM 12:45 PM	2 4	120 138	122 142	156 121	1 0	15 <i>7</i> 121	1 4	24 27	25 31	294
	l		ı		1 0 9	- 1	1 4 21			
12:45 PM	4	138	142	121		121		27	31	294

Project: Shoreline Church Expansion Intersection: Westland Drive at Emory Church Road Date Conducted: Sunday August 28, 2022

	Emory Church Road				Westland Drive				Treymour Way				Westland Drive				
		South	oound			Westb				Northk	ound			Eastb	ound		
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right		Int. Total
8:00 AM	9	0	15	24	1	45	6	52	1	0	0	1	4	27	1	32	109
8:15 AM	0	0	5	5	0	46	3	49	0	0	0	0	4	24	0	28	82
8:30 AM	3	0	15	18	2	5 <i>7</i>	4	63	1	0	1	2	11	31	0	42	125
8:45 AM	9	0	13	22	0	74	8	82	2	2	0	4	8	36	0	44	152
Total	21	0	48	69	3	222	21	246	4	2	1	7	27	118	1	146	468
9:00 AM	8	0	18	26	0	77	8	85	0	0	0	ol	8	39	0	47	158
9:15 AM	9	0	24	33	2	96	15	113	1	0	0	1	8	32	0	40	18 <i>7</i>
9:30 AM	14	0	25	39	0	108	22	130	2	1	1	4	9	43	0	52	225
9:45 AM	16	0	24	40	1	113	21	135	0	0	0	0	16	60	2	78	253
Total	47	0	91	138	3	394	66	463	3	1	1	5	41	174	2	217	823
10:00 AM	12	0	22	34	0	77	13	90	2	0	0	2	10	55	0	65	191
10:15 AM	18	0	26	44	1	78	13	92	1	0	2	3	25	52	0	77	216
10:30 AM	17	0	27	44	1	101	17	119	1	1	1	3	14	73	2	89	255
10:45 AM	13	0	28	41	0	83	16	99	0	0	1	1	18	80	0	98	239
Total	60	0	103	163	2	339	59	400	4	1	4	9	67	260	2	329	901
11:00 AM	l 13	0	21	34	0	81	16	97	0	0	0	ol	23	111	0	134	265
11:15 AM	14	0	30	44	0	80	17	97	1	0	1	2	15	73	2	90	233
11:30 AM	15	0	25	40	0	99	16	115	0	0	0	0	17	83	1	101	256
11:45 AM	16	0	23	39	0	105	13	118	1	1	1	3	20	88	2	110	270
Total	58	0	99	157	0	365	62	427	2	1	2	5	75	355	5	435	1024
12:00 PM	l 19	0	12	31	0	79	12	91	0	0	0	ol	21	92	0	113	235
12:15 PM	25	0	26	51	2	103	15	120	0	0	1	1	26	86	0	112	284
12:30 PM	10	0	29	39	0	124	19	143	1	0	0	<u>'</u> 1	21	97	1	119	302
12:45 PM	20	1	19	40	0	102	23	125	0	0	0	ol.	22	119	0	141	306
Total	74	1	86	161	2	408	69	479	1	0	1	2	90	394	1	485	
	•							'									
Grand Total	260	1	427	688	10	1728	277	2015	14	5	9	28	300	1301	11	1612	4343
Approach %	37.8	0.1	62.1		0.5	85.8	13.7		50.0	17.9	32.1	١	18.6	80.7	0.7	1012	
Total %	6.0	0.0	9.8	15.8	0.2	39.8	6.4	46.4	0.3	0.1	0.2	0.6	6.9	30.0	0.3	37.1	

Project: Shoreline Church Expansion

Intersection: Westland Drive at Emory Church Road

Date Conducted: Sunday August 28, 2022

Entering Peak Hour	10:15 AM - 11:15 AM	975
Exiting Peak Hour	12:00 PM - 1:00 PM	1127

	Emo	ory Chu	ırch Ro	ad	V	Vestlan	d Drive	9	Treymour Way				Westland Drive				
		Southb	ound			Westk	oound		Northbound				Eastbound				
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
Peak Hour Analysis fro	m 8:00 A	M to 1:	00 PM														
Sunday Peak Hour Entering Traffic begins at 10:15 AM																	
10:15 AM	18	0	26	44	1	78	13	92	1	0	2	3	25	52	0	77	216
10:30 AM	1 <i>7</i>	0	27	44	1	101	17	119	1	1	1	3	14	73	2	89	255
10:45 AM	13	0	28	41	0	83	16	99	0	0	1	1	18	80	0	98	239
11:00 AM	13	0	21	34	0	81	16	97	0	0	0	0	23	111	0	134	265
Total Volume	61	0	102	163	2	343	62	407	2	1	4	7	80	316	2	398	975
Future (2% over 3 yrs)	14	0	30		0	88	17		0	0	1		19	85	0		254
PHF	0.85		0.91		0.50	0.85	0.91		0.50	0.25	0.50		0.80	0.71	0.25		0.92
ı		., .1	15:				14/			A / .1	<u> </u>						
	Emo	ory Chu		oad	V		d Drive	9		Γreymo	,		V	Vestland		9	
		Southb				Westk			Northbound				Eastbound				
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
Peak Hour Analysis fro			00 PM														
Sunday Peak Hour beg	ins at 12	:00 PM															
12:00 PM	19	0	12	31	0	79	12	91	0	0	0	0	21	92	0	113	
12:15 PM	25	0	26	51	2	103	15	120	0	0	1	1	26	86	0	112	284
12:30 PM	10	0	29	39	0	124	19	143	1	0	0	1	21	97	1	119	302
12:45 PM	20	1	19	40	0	102	23	125	0	0	0	0	22	119	0	141	306
Total Volume	74	1	86	161	2	408	69	479	1	0	1	2	90	394	1	485	1127
Future (2% over 3 yrs)	27	0	28		2	109	16		0	0	1		28	91	0		301
PHF	0.74	0.25	0.74		0.25	0.82	0.75		0.25		0.25		0.87	0.83	0.25		0.92

Project: Shoreline Church Expansion

Intersection: Emory Church Road at Church Driveway

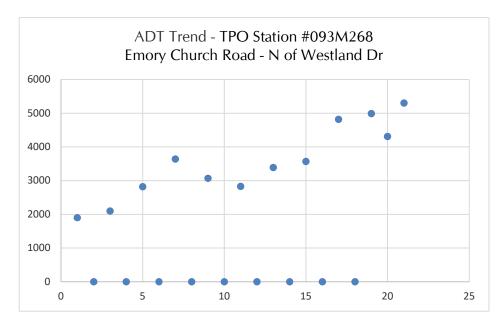
Date Conducted: Sunday August 28, 2022

	Chu	rch Drivev	way	Emory	Church	Road	Emory	/ Church	Road		
	l E	astbound		N	orthboun	d	Sc	outhbound	d		
Start	Left	Right	Total	Left	Thru	Total	Thru	Right	Total	Int. Total	
8:00 AM	0	0	0	1	10	11	23	2	25	36	
8:15 AM	1	0	1	1	6	7	5	1	6	14	
8:30 AM	0	0	0	0	14	14	14	1	15	29	
8:45 AM	0	0	0	0	17	17	22	0	22	39	
Total	1	0	1	2	47	49	64	4	68	118	
9:00 AM	0	4	4	4	12	16	22	2	24	44	
9:15 AM	2	6	8	5	14	19	29	5	34	61	
9:30 AM	2	1	3	4	27	31	37	4	41	75	
9:45 AM	0	2	2	1	33	34		1	36		
Total	4	13	17	14	86	100	123	12	135	252	
10:00 AM	0	0	0	1	19	20	32	0	32	52	
10:15 AM	0	1	1	2	37	39	41	1	42	82	
10:30 AM	7	15	22	3	22	25	28	1	29	76	
10:45 AM	3	5	8	6	26	32	33	9	42	82	
Total	10	21	31	12	104	116	134	11	145	292	
11:00 PM	0	4	4	2	36	38	28	2	30		
11:15 PM	1	1	2	2	29	31	37	0	37	70	
11:30 PM	0	2	2	1	32	33		0	32	67	
11:45 PM	3	2	5	2	32	34		3	37	76	
Total	4	9	13	7	129	136	131	5	136	285	
12:00 PM	1	1	2	0	32	32	30	1	31	65	
12:15 PM	12	27	39	2	35	37	25	0	25	101	
12:30 PM	3	4	7	1	40	41	36	0	36	84	
12:45 PM	0	1	1	0	43	43		0	38	82	
Total	16	33	49	3	150	153	129	1	130	332	
Grand Total 35 76 111				38	516	554	581	33	614	1279	
Approach %	31.5	68.5		6.9	93.1		94.6	5.4			
Total %	3%	6%	9%	3%	40%	43%	45%	3%	48%		

Project: Shoreline Church Expansion

Intersection: Emory Church Road at Church Driveway

Date Conducted: Sunday August 28, 2022


Entering Peak Hour	10:15 AM - 11:15 AM	312
Exiting Peak Hour	12:00 PM - 1:00 PM	332

	Chu	rch Driv	eway	Emory	y Churc	h Road	Emory	Church	Road	
	1	Eastbour	nd	Ν	orthbou	ınd	So			
Start	Left	Right	Total	Left	Thru	Total	Thru	Right	Total	Int. Total
Peak Hour Analysis from 8:00	AM to	1:00 PM								
Sunday Peak Hour Entering T	raffic beg	gins at 12	2:15 AM							
10:15 PM	0	1	1	2	37	39	41	1	42	82
10:30 PM	7	15	22	3	22	25	28	1	29	76
10:45 PM	3	5	8	6	26	32	33	9	42	82
11:00 PM	0	4	4	2	36	38	28	2	30	72
Total Volume	10	25	35	13	121	134	130	13	143	312
Background (2% over 3 yrs)	3	5		6	28		35	10		87
PHF	0.36	0.42		0.54	0.82		0.79	0.36	·	0.95

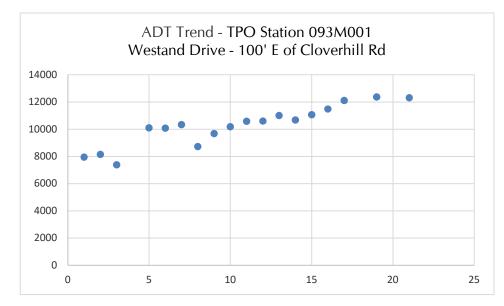
Attachment 3 ADT Trends

Adjusted Average Daily

Year	Traffic
2001	1900
2002	-
2003	2100
2004	-
2005	2821
2006	-
2007	3640
2008	-
2009	3070
2010	-
2011	2830
2012	-
2013	3390
2014	-
2015	3570
2016	-
2017	4820
2018	-
2019	4990
2020	4310
2021	5300

Most Recent Trend Line Growth

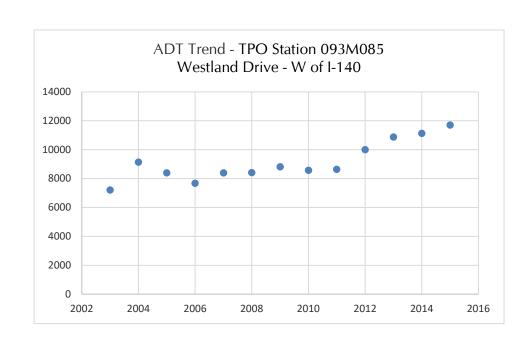
Year	ADT
2001	1900
2021	5300


Annual Percent Growth	3.21%
-----------------------	-------

Adjusted Average Daily Traffic 7950 8150 7380

12310

2021



Most Recent Trend Line Growth

ADT Year 2001 7950 2021 12310

Annual Percent Growth 1.77%

Adjusted Average Daily Traffic Year

Most Recent Trend Line Growth

Year ADT 2001 7110 2020 11140

Annual Percent Growth	1.90%
-----------------------	-------

Attachment 4 Trip Generation

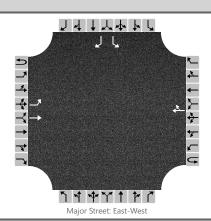
Shoreline Church Expansion

2022 traffic volumes

Entering Exiting Entering Exiting Entering Exiting EBLT WBRT SBRT NBLT SBRT EBLT EBRT 8:00 11 4 0 0 1 2 0 0 18 0 8:15 9 2 0 2 1 1 1 0 13 3 8:30 2 1 1 1 0 0 4 2 8:45 7 2 0 0 0 0 9 0 44 5 9:00 13 5 0 1 4 2 0 4 24 5 5 0 10	
8:00 11 4 0 0 1 2 0 0 18 0 8:15 9 2 0 2 1 1 1 0 13 3 8:30 2 1 1 1 0 1 0 0 4 2 8:45 7 2 0 0 0 0 0 0 9 0 44 5	
8:15 9 2 0 2 1 1 1 0 13 3 8:30 2 1 1 1 0 0 4 2 8:45 7 2 0 0 0 0 0 0 0 9 0 44 5	
8:30	
8:45 7 2 0 0 0 0 0 0 9 0 44 5	
9.00 13 5 0 1 4 2 0 4 24 5 50 10	
5.00 15 5 0 1 7 2 0 7 27 5 50 10	
9:15 59 32 0 16 5 5 2 6 101 24 138 31	
9:30 26 11 0 3 4 4 2 1 45 6 179 35 1st entering peak hour	
	Directional split
10:00 4 1 0 2 1 0 0 0 6 2 154 37 Highest peak entering Corresponding exiting traffic E	Entering Exiting
10:15 7 0 0 2 2 1 0 1 10 <u>3</u> 63 16 10:15 10 3	
10:30 23 10 10 53 3 1 7 15 37 85 55 95 10:30 37 85	
10:45 82 22 9 38 6 9 3 5 119 55 172 145 10:45 119 55	
11:00 29 5 3 8 2 2 0 4 38 15 204 158 2nd entering peak hour 11:00 38 204 15 158	204 158
11:15 4 1 1 5 2 0 1 1 7 <mark>8</mark> 201 163 1st exiting peak hour Proportion of total entering- 43%	56% 44%
11:30 3 0 0 3 1 0 0 2 4 5 168 83 (=204/475) Dir	Directional split
11:45 1 2 1 3 2 3 3 2 8 9 57 37 Highest peak exiting Corresponding entering traffic E	Entering Exiting
12:00	
12:15 8 7 16 96 2 0 12 27 17 151 34 171 12:15 151 17	
12:30 2 1 1 24 1 0 3 4 4 32 34 198 12:30 32 4	
12:45 4 0 4 27 0 0 0 1 4 32 30 221 2nd exiting peak hour 12:45 32 221 4 30	30 221
Total 297 107 46 291 38 33 35 76 475 448 Proportion of total exiting-	12% 88%
(=221/448)	

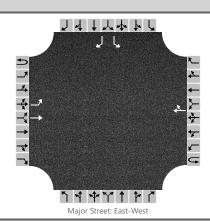
	Entering	Exiting
Peak 15-Minute Entering Traffic (10:45 AM)	119	55
Expansion factor (1243 seasts/450 seats)	2.76	2.76
Account for Expansion & PHF (multiply by 4)	1314	607
Peak 15-Minute Exiting Traffic (10:45 AM)	17	151
Expansion factor (1243 seasts/450 seats)	2.76	2.76
Account for Expansion & PHF (multiply by 4)	188	1667

Attachment 5 Signal Timing

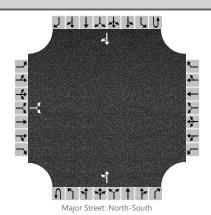

ntersection N						Id:	75			
Basic Tim	MARKET CONTRACTOR	nds)	Phase 1	Phase 2	Phase 3	Phase		Phase 6	Phase 7	Phase
	vement		WBLT	EB	NB	SB	EBLT	WB		
	Green		8	10	10	10	8	10		
	Extension	1	2.0	4.0	2.0	2.0	2.0	4.0		
	Iax 1		15	30	30	30	15	30		
N	Iax 2									
Yellow	Clearanc	ee	4.5	4.0	3.5	3.5	4.0	4.5		
Red C	Clearance		2.0	2.5	3.0	3.0	2.0	2.5		
V	Valk			7	7					
Pedestria	n Cleara	nce		16	14					
Max	Recall									
Active (E1	nable) Ph	ases	X	X	X	X	X	X		
Flashing Y	Yellow Ar	row	X				X			
	laps (1-4)									
			Coord	lination T	iming/(se	econds).			
Split#	Coord.	Phase	Phase 1	Phase 2	Phase 3	Phase		Phase 6	Phase 7	Phase
Split 1	N/	Charles at a core in								State Telephone (1)
Split 2	N/									
Split 3	2		15	72	19	24	15	72		
Split 4	2		15	93	17	25	28	80		
Split 5			10	75	17		20	00		
Split 6										
Spite	Dotto	rn Table		1 1	Lead /	T og	Fixed / Flo	odina	Fixed FC	DII 2
Pattern#	Cycle	Offset	Split	Seq. #	Phase		End / Begi		rixeu r ()-I II 3
1	N/A	N/A	Spin	Bey. n	1 11450	PRINCIPLES PARTIES. ME	Intersection	CONTRACTOR OF THE PARTY OF THE	754	1
2	N/A	N/A					I/P Addi	large land and the facility	192.168	
3	130	117	3				Hub Add	ELECTRIC SERVICE	172.100	.03.34
4	150	28	4				Radio Ad	Charles and the Control of the		
5	130	20	7			8	Comm. T	historical and real	tolograph to	
6							Detecti	A STATE OF THE PARTY OF THE PAR		
				D D1	TC 4		Detecti	on	Loo	ps americalia
D DI	TTTT	V (1) (1)	D 44	and the second second second second	n Events	DI	TTTT	473 AT	D 44	
Day Plan	HH:		Patt		Day		HH:N		Patte	
1	00:		54		2		11:4		54	
1	06:		4		2		17:0		54	
1	08:		54		2		20:0		54	
1	09:		54		3		00:0		54	
1	16:		3		3		10:0		54	
1	18:		54		3		11:3		54	
1	21:		54		, 3		14:0		54	
2	00:		54		3		19:0	00	54	
2	08:	00	54							
			THE PARTY OF THE PARTY OF THE PARTY.	ear Plan	STANGE STREET, SHEET STREET,	A STATE OF THE PARTY OF THE PAR				
Plan	Mo	nth of Ye	ar: 01 - 12	2]	Day of	Month: 01	- 31]	Plan
M - F		01 –	12				01 – 31			1
SAT		01 –	12				01 - 31			2 3
		01 –	12		01 – 31					
SUN										

Attachment 6 Intersection Worksheets – Existing Sunday Peak

HCS7 Signalized Intersection Results Summary																	
General Inforn	nation	T										ormatic	n	_		\$≥ 1 <u>4</u>	
Agency		Ardurra							Durat			0.25				k_	
Analyst		Addie Kirkham		_		9/7/20		_	Area [·]	Туре	:	Other		≯		<u>4</u> ⊀	
Jurisdiction		Knox County					ng Sund ing Peal		PHF		1.00			\$ -{ -}	w∓E s	<u>√</u> + *	
Urban Street		Westland Drive		Analys	sis Year	2022			Analy	sis P	S Period 1> 7:00						
Intersection		Westland Drive at E	Emor	File Na	ame	Existi	ng Sund	lay Pe	ak_W	estla	ınd at l	Emory (Churc	,	 최 ↑ 수 약	†* *	
Project Descrip	tion	391.046.1 - Shoreli	ne Chur	ch Expa	n Expansion												
Demand Inforr	nation				EB			WE	3			NB			SB		
Approach Move				L	Т	R		Т	-	R	L	Т	R	L	Т	R	
Demand (v), v				72	320	0	0	33		64	0	0	4	52	0	112	
Signal Informa	ition							크겠	2		\top						
Cycle, s	130.0	Reference Phase	2		L 6	Ħ			A2					\Leftrightarrow	1	47	
Offset, s	0	Reference Point	End	Green	0.0	7.4	83.3	11.5	 	.3	0.0		1	Y 2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.5	3.5		3.5	0.0		7	\rightarrow		S	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.5	3.0	3	3.0	0.0		5	6	7	8	
Timer Results				EBI	-	EBT	WB	L	WBT	_	NBI	_	NBT	SB	_	SBT	
Assigned Phase	e			5	_	2	1	_	6	4			8			4	
Case Number				1.1		4.0	1.1	_	4.0	-			12.0	-		11.0	
Phase Duration		`				103.7	0.0	_	90.3	-			7.8		_	18.4	
Change Period						7.0	6.5		7.0				6.5		-	6.5	
Max Allow Head						0.0	0.0 0.0		-	3.3			_	3.2			
Queue Clearan				3.6		0.0	0.0		-	2.3			-	11.8 0.1			
Green Extension		(<i>g</i> e), S				0.0	0.0 0.		0.0	-			0.0	-		1.00	
Phase Call Pro				0.93					-	0.13		-	_				
Max Out Proba	DIIILY			0.00	,					_			0.00			80.0	
Movement Gro	oup Res	sults			EB		WB			Т	NB				SB		
Approach Move	ement			L	Т	R	L	Т	R	₹	L	Т	R	L	Т	R	
Assigned Move	ment			5	2	12	1	6	16	6	3	8	18	7	4	14	
Adjusted Flow I		,		72	0		0	396		_		0			52	112	
		ow Rate (<i>s</i>), veh/h/l	n	1781	0		1781	1817		4		0			1641	1460	
Queue Service		- ,		1.6	0.0		0.0	13.0	_	4		0.0			3.9	9.8	
Cycle Queue C		e Time (<i>g c</i>), s		1.6	0.0		0.0	13.0		-		0.0			3.9	9.8	
Green Ratio (g				0.71			0.59	0.64	_	4					0.09	0.09	
Capacity (c), v				691	0.000		736	1165	_	-		0.000		-	150	134	
Volume-to-Cap			\	0.104	_		0.000	0.340	_	_		0.000			0.346	0.837	
	• ,	/In(95 th percentile) eh/In(95 th percent		24.1 0.9	0.0		0.0	224.6 8.8	9	-		0.0		-	73.3	184.3 7.3	
	· · · · ·	RQ) (95 th percent		0.09	0.00		0.00	0.00		+		0.00			0.00	0.92	
Uniform Delay			uic)	6.5	0.00		0.0	10.7	_	-		0.00			55.4	58.1	
	` '			0.0	0.0		0.0	0.8		_		0.0			0.5	12.3	
Incremental Delay (d 2), s/veh Initial Queue Delay (d 3), s/veh				0.0	0.0		0.0	0.0		_		0.0			0.0	0.0	
Control Delay (6.5			0.0	11.5							55.9	70.4	
Level of Service				A				В							E	E	
Approach Delay				5.7		Α	11.5		В		66.6	3	E	65.8		E	
Intersection De							3.7							В			
88141								14/5				NE			0.5		
Multimodal Re		// 00		0.0	EB		2.2	WB			0.0	NB			SB		
Pedestrian LOS				2.0		В	2.2	_	В	-	2.3		В	2.3		В	
Bicycle LOS So	ore / LC	13		1.1		Α	1.1		Α		0.5		Α	0.8		Α	

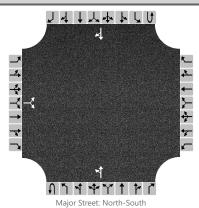

		нсѕ	7 Sig	nalize	ed In	tersec	tion F	Resu	lts S	Sum	mar	у				
General Inform	nation								Into-	0004	on Inf	ormati	on		J a4 JJaba J	يا مل
Agency	nation	Ardurra							Dura			0.25	on	-	Ţŀ	
Analyst		Addie Kirkham								Type		Othe	r	_1 _1,		₹_
Jurisdiction		Knox County		Time F			ng Sund		PHF		•	1.00	<u> </u>		w∳E	<u>.</u>
Julisulction		Triox County		111110	Criou		g Peak	lay				1.00		₹ *		<u>↓</u>
Urban Street		Westland Drive		Analys	sis Yea	r 2022			Analy	ysis F	Period	1> 7:	00			<u></u>
Intersection		Westland Drive at E	mor	File N	ame	Existi	ng Sund	lay Pe	ak_V	Vestla	nd at	Emory	Churc		ገ 1 4 1 ቀ የ	†* (*
Project Descrip	tion	391.046.1 - Shorelii	ne Chui	rch Expa	ansion											
									_		1			_		
Demand Infor					EB		-	W				NB		+ .	SB	
Approach Move				L	T	R	L	1	_	R	L	T	R	L	T	R
Demand (v), v	/eh/h		_	104	344	. 0	8	41	2	60	0	0	4	100	0	104
Signal Informa	ation				T		,		l. I		$\overline{}$					
Cycle, s	130.0	Reference Phase	2	1	12 6	d=3 -			· A 2				<u> </u>	Z	ı	小
Offset, s	0	Reference Point	End		100	50	00.5	144		4.0			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		5.3	83.5 4.5	3.5		1.3 3.5	0.0		,	\rightarrow		κŤ»
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.5	3.0		3.0	0.0		5	6	7	8
	II.			_10************************************										·	<u> </u>	
Timer Results				EBI	L	EBT	WB	L	WB ⁻	T	NB	L	NBT	SB	L	SBT
Assigned Phas	е			5		2	1		6				8			4
Case Number				1.1		4.0	1.1		4.0				12.0			11.0
Phase Duration	າ, ຮ			13.8	3	95.9	8.5		90.5	5			7.8			17.8
Change Period	, (Y+R	c), S		6.0		7.0	6.5		7.0				6.5			6.5
Max Allow Hea	dway(<i>I</i>	<i>MAH</i>), s		3.1		0.0	3.1		0.0				3.3			3.2
Queue Clearan	ice Time	e (g s), s		4.3			2.2						2.3			11.1
Green Extension	n Time	(g _e), s		0.1		0.0	0.0	0.0 0.0			0.0				0.2	
Phase Call Pro				0.98			0.25	0.25		_			0.13			1.00
Max Out Proba	bility			0.00			0.00						0.00			0.04
Movement Gro	oun Res	sults			EB			WE	3			NB			SB	
Approach Move				L	T	R	L	T		R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	_	16	3	8	18	7	4	14
Adjusted Flow), veh/h		104	0		8	472	_			0			100	104
		ow Rate (s), veh/h/l	n	1781	0		1781	182				0			1641	1460
Queue Service		· · · ·		2.3	0.0	1	0.2	16.2	2	\neg		0.0			7.7	9.1
Cycle Queue C	learanc	e Time (<i>g c</i>), s		2.3	0.0		0.2	16.2	2			0.0			7.7	9.1
Green Ratio (g	r/C)			0.71			0.66	0.64	1						0.09	0.09
Capacity (c), v	/eh/h			640			701	117	5						143	127
Volume-to-Cap	acity Ra	itio (X)		0.162	0.000)	0.011	0.40	2			0.000			0.701	0.820
Back of Queue	(Q), ft/	In (95 th percentile)		35.6	0		3.3	269				0			148.6	164.3
Back of Queue	(Q), ve	eh/In (95 th percenti	le)	1.4	0.0		0.1	10.6	3			0.0			5.9	6.5
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.13	0.00		0.03	0.00		_		0.00			0.00	0.82
Uniform Delay	• ,			7.0			7.8	11.2	2	_					57.7	58.4
Incremental De		·		0.0	0.0		0.0	1.0	_	_		0.0			2.3	7.9
Initial Queue Delay (d 3), s/veh				0.0	0.0		0.0	0.0		_		0.0			0.0	0.0
Control Delay (7.1			7.8	12.2	2						60.0	66.2
Level of Service				A			A	В							E	_ E
Approach Dela	•			8.2		A	12.	1	В		66.6	5	E	63.	2	E
Intersection De	lay, s/ve	eh / LOS				19	9.9							В		
Multimodal Re	sults				EB			WE	}			NB			SB	
Pedestrian LOS		/LOS		2.1		В	2.2		, В		2.3		В	2.3		В
Bicycle LOS So				1.2	_	A	1.3	_	A		0.5		A	0.8	_	A
Bicycle LOS Score / LOS						•	1.0				3.0			0.0		

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway							
Agency/Co.	Ardurra	Jurisdiction	Knox County							
Date Performed	9/19/2022	East/West Street	Westland Drive							
Analysis Year	2022	North/South Street	Church Driveway							
Time Analyzed	Existing Entering Peak	Peak Hour Factor	1.00							
Intersection Orientation	Analysis Time Period (hrs)	0.25								
Project Description	391.046.1 - Shoreline Church Expansion									


Vehicle Volumes and Ad	justme	ents														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		328	372				380	88						36		152
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)														į	5	
Right Turn Channelized		Ν	lo			N	lo			Ν	lo			N	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												7.42		6.72
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, an	d Leve	el of S	ervice	•												
Flow Rate, v (veh/h)		328												36		152
Capacity, c (veh/h)		1093												67		594
v/c Ratio		0.30												0.54		0.26
95% Queue Length, Q ₉₅ (veh)		1.3												2.2		1.0
Control Delay (s/veh)		9.7												108.4		13.1
Level of Service, LOS		А												F		В
Approach Delay (s/veh)		4	.5											31	1.4	
Approach LOS														[)	

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway
Agency/Co.	Ardurra	Jurisdiction	Knox County
Date Performed	9/19/2022	East/West Street	Westland Drive
Analysis Year	2022	North/South Street	Church Driveway
Time Analyzed	Existing Exiting Peak	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	391.046.1 - Shoreline Church Expansion		

Vehicle Volumes and Adj	ustme	ents														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		32	388				492	28						64		384
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)														!	5	
Right Turn Channelized		Ν	lo			N	lo			Ν	lo			N	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												7.42		6.72
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, an	d Leve	el of S	ervice	•												
Flow Rate, v (veh/h)	Π	32												64		384
Capacity, c (veh/h)		1046												212		528
v/c Ratio		0.03												0.30		0.73
95% Queue Length, Q ₉₅ (veh)		0.1												1.2		6.0
Control Delay (s/veh)		8.6												29.1		27.9
Level of Service, LOS		А												D		D
Approach Delay (s/veh)		0	.7											28	3.1	
Approach LOS														[)	


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway
Agency/Co.	Ardurra	Jurisdiction	Knox County
Date Performed	9/19/2022	East/West Street	Church Driveway
Analysis Year	2022	North/South Street	Emory Church Road
Time Analyzed	Existing Peak Entering	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	391.046.1 - Shoreline Church Expansion		

Vehicle Volumes and Adj	ustme	ents														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume, V (veh/h)		12		20						24	104				132	36
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized		Ν	lo			Ν	lo			N	lo			Ν	lo	
Median Type/Storage		Undivided														
Critical and Follow-up Ho	eadwa	ıys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.42		6.22						4.12						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, and	d Leve	of S	ervice	•												
Flow Rate, v (veh/h)			32							24						
Capacity, c (veh/h)			799							1409						
v/c Ratio			0.04							0.02						
95% Queue Length, Q ₉₅ (veh)			0.1							0.1						
Control Delay (s/veh)			9.7							7.6						
Level of Service, LOS			А							А						
Approach Delay (s/veh)		9	.7							1	.5					

Approach LOS

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway
Agency/Co.	Ardurra	Jurisdiction	Knox County
Date Performed	9/19/2022	East/West Street	Church Driveway
Analysis Year	2022	North/South Street	Emory Church Road
Time Analyzed	Existing Peak Exiting	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	391.046.1 - Shoreline Church Expansion		

	,					_	_	_

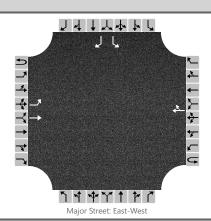
venicie	voiumes	and	Aaj	ustments	õ
			•		

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration		LR							LT						TR	
Volume, V (veh/h)		48		108						8	140				100	0
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized	No					N	lo			N	lo			N	lo	
Median Type/Storage		Undivided														

Critical and Follow-up Headways

Base Critical Headway (sec)	7.1	6.2			4.1			
Critical Headway (sec)	6.42	6.22			4.12			
Base Follow-Up Headway (sec)	3.5	3.3			2.2			
Follow-Up Headway (sec)	3.52	3.32			2.22			

Delay, Queue Length, and Level of Service


Flow Rate, v (veh/h)	156				8				
Capacity, c (veh/h)	872				1491				
v/c Ratio	0.18				0.01				
95% Queue Length, Q ₉₅ (veh)	0.6				0.0				
Control Delay (s/veh)	10.0				7.4				
Level of Service, LOS	В				А				
Approach Delay (s/veh)	10.0				0	.4			
Approach LOS	В								

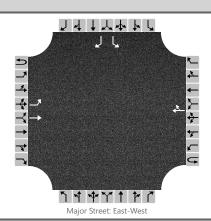
Attachment 7 Intersection Worksheets – Background Sunday Peak

		HCS	7 Sig	nalize	ed Int	ersec	tion F	Resu	ılts	Sun	nmar	y				
	-								-							
General Inform	nation	ır										ormati	on	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$24 Ly.
Agency		Ardurra		1					-	ration,		0.25				PL.
Analyst		Addie Kirkham		-	sis Date		19, 2022			еа Туре		Othe	<u> </u>			<u>*</u>
Jurisdiction		Knox County		Time F	Period		ground ay Peak ing		PHI	F		1.00		**	w 	γ + γ γ γ
Urban Street		Westland Drive		Analys	sis Yea	r 2025			Ana	alysis I	Period	1> 7:	00	7 4	ች የተለቀም	to d
Intersection		Westland Drive at E	mor	File N	ame	Back	ground S	Sunda	у Ре	eak_W	estland	at Em	ory Ch.			
Project Descrip	tion	391.046.1 - Shorelir	ne Chur	ch Expa	ansion											
	4.								<u>,</u>			A I D			0.0	
Demand Inform				.	EB		+ .	W	_		.	NB	T 5		SB	
Approach Move				L	T	R	L	7		R	L	T	R	L	T	R
Demand (v), v	eh/h		_	76	340	0	0	35	2	68	0	0	4	56	0	120
Signal Informa	ition				T	T			l.	Т						$\overline{}$
Cycle, s	130.0	Reference Phase	2		12 6	43			N 20			L		Z		4
Offset, s	0	Reference Point	End					1.0	<u> </u>	1.			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		7.5 4.0	82.5 4.5	12 3.5		1.3	0.0		,	→		-4-
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.5	3.0		3.0	0.0		5	6	7	Y
T GLOC III.GUC		Cilitati Cap I II C					1	1		1010						
Timer Results				EBI	L	EBT	WB	L	W	ВТ	NB	L	NBT	SB	SL	SBT
Assigned Phase	<u> </u>			5		2	1	\neg					8			4
Case Number				1.1		4.0	1.1	\neg	4.	_			12.0			11.0
Phase Duration	. S			13.5	_	103.0	0.0	_	89	_			7.8			19.1
Change Period,		c), s		6.0	_	7.0	6.5	_	7.	$\overline{}$			6.5			6.5
Max Allow Head		·		3.1	_	0.0	0.0	_	0.	_			3.3			3.2
Queue Clearan				3.7	_								2.3			12.5
Green Extensio		, = ,		0.1	_	0.0	0.0		0.	.0			0.0			0.1
Phase Call Prol		(3 //		0.94	_								0.13			1.00
Max Out Proba				0.00				\neg					0.00			0.17
												"				
Movement Gro		sults			EB		_	WE	3			NB		_	SB	
Approach Move				L	Т	R	L	Т	_	R	L	Т	R	L	T	R
Assigned Move				5	2	12	1	6	+	16	3	8	18	7	4	14
Adjusted Flow F		,		76	0	<u> </u>	0	420	_	\blacksquare		0		ــــــ	56	120
		ow Rate (s), veh/h/l	n	1781	0	-	1781	181	_			0		_	1641	1460
Queue Service				1.7	0.0	-	0.0	14.3	_	_		0.0		_	4.1	10.5
Cycle Queue C		e Time (<i>g c</i>), s		1.7	0.0	-	0.0	14.3	_	_		0.0		-	4.1	10.5
Green Ratio (g				0.71			0.58	0.63	_						0.10	0.10
Capacity (c), v		r: / \/ \		666	0.000		717	115	_			0.000			159	142
Volume-to-Capa				0.114	0.000		0.000	0.36	\rightarrow			0.000			0.351	0.846
	• •	In (95 th percentile)		26.3	0		0	243	_			0			78.6	201.2
		eh/ln (95 th percenti		1.0	0.0		0.0	9.6	_			0.0			3.1	7.9
		RQ) (95 th percent	iie)	0.09	0.00		0.00	0.00	_			0.00			0.00	1.01
Uniform Delay (6.9	0.0		0.0	11.3	_	_		2.2			54.9	57.7
Incremental De	- '	<u> </u>		0.0	0.0		0.0	0.9	_			0.0			0.5	16.1
	nitial Queue Delay (d 3), s/veh						0.0	0.0	_			0.0			0.0	0.0
	Control Delay (d), s/veh Level of Service (LOS)						0.0	12.2	_						55.3	73.8
		A 6.0		^	40.4	В			60.4		E	67	E	E		
	Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS					Α 1	12.2		E	3	66.6	י	Е	67.	ฮ	Е
intersection De				1	9.5							В				
Multimodal Results					EB			WE	3			NB			SB	
Pedestrian LOS Score / LOS				2.0		В	2.2	-	E	3	2.3		В	2.3		В
	cycle LOS Score / LOS					A	1.2	_		<u> </u>	0.5	_	A	0.8		A
2.5,510 200 00	3,3 / LC			1.2			1.2		- 1	•	5.0			0.0		

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ılts	Sun	nmar	y				
General Inform	nation	Y										ormatio	on	_	_ } = 1,4 } = 1,4	<u> </u>
Agency		Ardurra							-	ration,		0.25		_#	* *	P.
Analyst		Addie Kirkham		-	sis Date		19, 2022			еа Туре)	Othe	-			<u>*</u> }-
Jurisdiction		Knox County		Time F	Period		ground ay Peak g		PH	F		1.00		\$\frac{1}{4}\frac{1}{4}	w‡	<u>↓</u> ↓ * *
Urban Street		Westland Drive		Analys	sis Year	_			Ana	alysis F	Period	1> 7:	00	7 .	ቀ 1 4 1 ቀጥ	t- 4
Intersection		Westland Drive at E	mor	File Na	ame	Back	ground S	Sunda	у Ре	eak_W	estland	at Em	ory Ch			Pilli
Project Descrip	tion	391.046.1 - Shorelin	ne Chur	ch Expa	ansion											
D	4.								<u>'</u>			ND			0.0	
Demand Inform					EB		+ -	W	- 1			NB		+ -	SB	
Approach Move				L 440	T	R	L	1	\rightarrow	R	L	T	R	100	T	R
Demand (v), v	en/n			112	364	0	8	43	36	64	0	0	4	108	0	112
Signal Informa	tion								Į,	П						T
Cycle, s	130.0	Reference Phase	2	1	12 E				rы 5:Ф21				<u> </u>	4	ľ	4
Offset, s	0	Reference Point	End		20	5.4	3	10	JII.	1.2			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		5.4 0.0	82.8 4.5	12 3.5		1.3 3.5	0.0	-	ا ہر	\rightarrow		кŤя
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.5	3.0		3.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L	W	ВТ 📗	NBI	-	NBT	SB	L	SBT
Assigned Phase	Э			5		2	1		6	6			8			4
Case Number				1.1		4.0	1.1		4.	.0			12.0			11.0
Phase Duration	, S			13.9	9	95.1	8.5		89	9.8			7.8			18.5
Change Period,	(Y+R	c), S		6.0		7.0		6.5		.0			6.5			6.5
Max Allow Head	dway (<i>N</i>	<i>MAH</i>), s		3.1		0.0	3.1	3.1		.0			3.3			3.2
Queue Clearan	ce Time	e (g s), s		4.5			2.2	2.2					2.3			11.8
Green Extensio	n Time	(g e), s		0.2		0.0	0.0		0.	.0			0.0			0.2
Phase Call Prol	bability			0.98	3		0.25	5				0.13				1.00
Max Out Proba	bility			0.00)		0.00)					0.00			0.09
Movement Gro	up Res	sults			EB			WE	3			NB			SB	
Approach Move				L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		112	0		8	500)			0			108	112
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1781	0		1781	182	8			0			1641	1460
Queue Service	Time (g	g s), s		2.5	0.0		0.2	17.8	3			0.0			8.3	9.8
Cycle Queue C	learance	e Time (<i>g c</i>), s		2.5	0.0		0.2	17.8	3			0.0			8.3	9.8
Green Ratio (g	/C)			0.71			0.65	0.64	4						0.09	0.09
Capacity (c), v	eh/h			612			678	116	4						152	135
Volume-to-Capa	-	· ,		0.183	0.000		0.012	\vdash	\rightarrow			0.000			0.713	0.831
	• •	In (95 th percentile)		39.7	0		3.4	291.	_			0			160	183.5
		eh/ln (95 th percenti		1.6	0.0		0.1	11.5	\rightarrow			0.0			6.3	7.2
		RQ) (95 th percent	ile)	0.14	0.00		0.03	0.00	_			0.00			0.00	0.92
Uniform Delay (<u> </u>			7.5	0.0		8.1	11.8	_						57.3	58.0
	Incremental Delay (d 2), s/veh						0.0	1.2	_			0.0			2.3	11.8
Initial Queue De		0.0	0.0		0.0	0.0	_			0.0			0.0	0.0		
Control Delay (7.6			8.1	13.0	J						59.6	69.8		
Level of Service		A			A 42.0	В			00.0			0.4	E	E		
Approach Delay		8.6		A	12.9	9	E	3	66.6)	E	64.8	0	E		
intersection De	Intersection Delay, s/veh / LOS					2	8.0							С		
Multimodal Re	sults				EB			WE	3			NB			SB	
Pedestrian LOS		/ LOS		2.1		В	2.2	_		3	2.3	-	В	2.3		В
Bicycle LOS Sc				1.3	_	A	1.3	-		4	0.5	_	A	0.9		A
•							-									

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway								
Agency/Co.	Ardurra	Jurisdiction	Knox County								
Date Performed	9/19/2022	East/West Street	Westland Drive								
Analysis Year	2025	North/South Street	Church Driveway								
Time Analyzed	Background Peak Entering	Peak Hour Factor	1.00								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description 391.046.1 - Shoreline Church Expansion											

Vehicle Volumes a	and Adjustments
-------------------	-----------------


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		348	396				404	92						40		160
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)												5				
Right Turn Channelized		N	10		No					N	lo		No			
Median Type/Storage				Undi	Undivided											

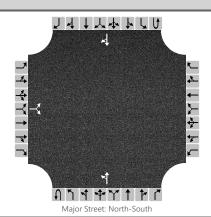
Critical and Follow-up Headways

Base Critical Headway (sec)	4.1						7.1	6.2
Critical Headway (sec)	4.12						7.42	6.72
Base Follow-Up Headway (sec)	2.2						3.5	3.3
Follow-Up Headway (sec)	2.22						3.52	3.32

Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		348												40		160
Capacity, c (veh/h)		1067												56		572
v/c Ratio		0.33												0.72		0.28
95% Queue Length, Q ₉₅ (veh)		1.4												3.0		1.1
Control Delay (s/veh)		10.0												164.5		13.7
Level of Service, LOS		Α												F		В
Approach Delay (s/veh)		4.	.7											43	3.9	
Approach LOS														-		

HCS7 Two-Way Stop-Control Report											
General Information	Site Information										
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway								
Agency/Co.	Ardurra	Jurisdiction	Knox County								
Date Performed	9/19/2022	East/West Street	Westland Drive								
Analysis Year	2025	North/South Street	Church Driveway								
Time Analyzed	Background Peak Exiting	Peak Hour Factor	1.00								
Intersection Orientation	0.25										
Project Description 391.046.1 - Shoreline Church Expansion											

Vahicla Va	lumas and	Adjustments	


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		32	412				524	28						68		408
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)													5			
Right Turn Channelized	No				Ν	lo			N	lo			Ν	lo		
Median Type/Storage				Undi	divided											
Cuitical and Fallan, un lla	Una divinire															

Critical and Follow-up Headways

Base Critical Headway (sec)	4.1						7.1	6.2
Critical Headway (sec)	4.12						7.42	6.72
Base Follow-Up Headway (sec)	2.2						3.5	3.3
Follow-Up Headway (sec)	2.22						3.52	3.32

Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		32												68		408
Capacity, c (veh/h)		1017												193		504
v/c Ratio		0.03												0.35		0.81
95% Queue Length, Q ₉₅ (veh)		0.1												1.5		7.7
Control Delay (s/veh)		8.7												33.4		35.9
Level of Service, LOS		А												D		Е
Approach Delay (s/veh)		0	.6											35	5.6	
Approach LOS															E	

HCS7 Two-Way Stop-Control Report											
General Information Site Information											
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway								
Agency/Co.	Ardurra	Jurisdiction	Knox County								
Date Performed	9/19/2022	East/West Street	Church Driveway								
Analysis Year	2025	North/South Street	Emory Church Road								
Time Analyzed	Background Peak Entering	Peak Hour Factor	1.00								
Intersection Orientation North-South Analysis Time Period (hrs) 0.25											
Project Description 391.046.1 - Shoreline Church Expansion											

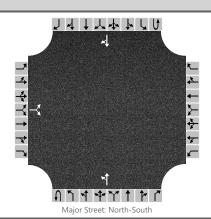
Approach		Eastb	ound			Westk	ound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	ſ
Configuration			LR							LT						
Volume, V (veh/h)		12		20						24	112				140	
Percent Heavy Vehicles (%)		2		2						2						

Percent Grade (%)	0			
Right Turn Channelized	No	No	No	No
Median Type/Storage	Undi	vided		

Critical and Follow-up Headways

Proportion Time Blocked

Vehicle Volumes and Adjustments


Base Critical Headway (sec)	7.1	6.2			4.1			
Critical Headway (sec)	6.42	6.22			4.12			
Base Follow-Up Headway (sec)	3.5	3.3			2.2			
Follow-Up Headway (sec)	3.52	3.32			2.22			

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)		32				24				
Capacity, c (veh/h)		785				1394				
v/c Ratio		0.04				0.02				
95% Queue Length, Q ₉₅ (veh)		0.1				0.1				
Control Delay (s/veh)		9.8				7.6				
Level of Service, LOS		А				А				
Approach Delay (s/veh)	9.8					1	.5			
Approach LOS	-	Α								

R 6 0 TR 40

	HCS7 Two-Way St	op-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway
Agency/Co.	Ardurra	Jurisdiction	Knox County
Date Performed	9/19/2022	East/West Street	Church Driveway
Analysis Year	2025	North/South Street	Emory Church Road
Time Analyzed	Background Peak Exiting	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	391.046.1 - Shoreline Church Expansion		

venicie	volumes	anu	Auju	ıstments)
					_

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume, V (veh/h)		52		116						8	148				108	0
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized	No				Ν	lo			N	lo			Ν	lo		
Median Type/Storage				Undi	vided											
Cuitinal and Fallance and Ha																

Critical and Follow-up Headways

Base Critical Headway (sec)	7.1	6.2			4.1			
Critical Headway (sec)	6.42	6.22			4.12			
Base Follow-Up Headway (sec)	3.5	3.3			2.2			
Follow-Up Headway (sec)	3.52	3.32			2.22			

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)		168				8				
Capacity, c (veh/h)		859				1481				
v/c Ratio		0.20				0.01				
95% Queue Length, Q ₉₅ (veh)		0.7				0.0				
Control Delay (s/veh)		10.2				7.4				
Level of Service, LOS		В				А				
Approach Delay (s/veh)	10).2				0	.4			
Approach LOS	E	3								

Attachment 8 Intersection Worksheets – Full Buildout Sunday Peak

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ılts	Sun	nmar	y				
								1								
General Inform	nation	ľ										ormatio	on	_	 4 7 4 1	ليد الير
Agency		Ardurra							_	ration,		0.25		_9	* *	R_
Analyst		Addie Kirkham		-	sis Date		19, 2022		_	еа Туре)	Other	ſ			<u>≛</u> - <u>x</u> ⊱
Jurisdiction		Knox County		Time F	Period		Buildout ay Peak ing		PH	IF		1.00		\$\frac{1}{4}\frac{1}{4}	w ‡ E 8	<u>}</u>
Urban Street		Westland Drive		Analys	sis Year	_			Ana	alysis F	Period	1> 7:	00	7 4	ቀ 14 ሰቀም	1- 0
Intersection		Westland Drive at E	mor	File Na	ame	Full B	Buildout	Sunda	ay P	eak_W	/estlan	d at Em	ory C			
Project Descrip	tion	391.046.1 - Shorelir	ne Chur	ch Expa	ansion											
Damand Inform					- FD			10.	/D			ND			CD	
Demand Inform Approach Move					EB T	R		W T		R	L	NB T	R		SB	R
Demand (v), v				76	361	0	0	52		149	0	0	4	79	0	168
Demand (v), v	en/m			70	301	0	0	32	23	149	U	U	4	19	0	100
Signal Informa	tion								J	Т	\top					
Cycle, s	130.0	Reference Phase	2	1	12 P	\exists		~ []	- 5小刀	,		×	<u> </u>	$\Leftrightarrow \bot$	ľ	A
Offset, s	0	Reference Point	End	Green	0.0	7.5	78.4	16	 : 8	1.3	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.5	3.5		3.5	0.0		,	\rightarrow		KÎZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.5	3.0)	3.0	0.0		5	6	7	8
Timer Results				EBI	-	EBT	WB	L		/BT	NBI	<u> </u>	NBT	SB	L	SBT
Assigned Phase	9			5		2	1	_		6			8			4
Case Number				1.1	_	4.0	1.1	-		.0		_	12.0			11.0
Phase Duration		,		13.5	_	98.9	0.0	_		5.4		_	7.8		_	23.3
Change Period,		·		6.0	-	7.0	6.5	_		.0		_	6.5		-	6.5
Max Allow Head				3.1		0.0	0.0		0.	.0		_	3.3 2.3		_	3.2 16.7
Queue Clearan		, - ,		3.9		0.0				.0		_			_	0.0
Green Extension Phase Call Prof		(<i>g e</i>), s		0.1		0.0	0.0		U.	.0			0.0		_	1.00
Max Out Probal				0.92	_			-				_	0.13			1.00
Wax Out 1 lobal	Onity			0.00	,								0.00			1.00
Movement Gro	up Res	ults			EB			WE	3			NB			SB	
Approach Move	ment			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6		16	3	8	18	7	4	14
Adjusted Flow F	Rate(<i>v</i>), veh/h		76	0		0	672	2			0			79	168
-		ow Rate (<i>s</i>), veh/h/l	n	1781	0		1781	179	9			0			1641	1460
Queue Service				1.9	0.0		0.0	30.8	-			0.0			5.7	14.7
Cycle Queue C		e Time (<i>g c</i>), s		1.9	0.0		0.0	30.8	_			0.0			5.7	14.7
Green Ratio (g				0.68			0.55	0.60	-	_					0.13	0.13
Capacity (c), v				438			672	108	_						212	188
Volume-to-Capa	-	· · ·		0.173	-		0.000	0.61	_			0.000			0.373	0.892
	• •	In (95 th percentile)		30.6	0		0	467.	_			0			107.8	291.9
		eh/ln (95 th percenti		1.2	0.0		0.0	18. ⁴	_			0.0			4.2	11.5
Uniform Delay (RQ) (95 th percent	iie)	0.11	0.00		0.00	16.3	-			0.00			0.00 51.8	1.46 55.7
Incremental De	<u> </u>			0.1	0.0		0.0	2.7	_			0.0			0.4	34.0
	- 1	<u> </u>		0.0	0.0		0.0	0.0	_			0.0			0.4	0.0
	nitial Queue Delay (d ȝ), s/veh Control Delay (d), s/veh				3.0		0.0	19.0	_			0.0			52.2	89.8
Level of Service (LOS)				11.8 B			0.0	В	+						D	F
Approach Delay, s/veh / LOS				8.2		Α	19.0		F	В	66.6	3	E	77.		E
Intersection Delay, s/veh / LOS							6.3							С		
	,															
	Iultimodal Results				EB			WE				NB			SB	
	edestrian LOS Score / LOS			2.1 1.2		В	2.3	-		В	2.3		В	2.3		В
Bicycle LOS Sc	ycle LOS Score / LOS					Α	1.6		E	B	0.5		Α	0.9		Α

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	ılts	Sun	nmar	y				
								1								with the same of t
General Inform	nation	Y										ormatio	on	_	_ } = 1,4 } = 1,4	Da l _M
Agency		Ardurra							_	ration,		0.25		_9	* *	R_
Analyst		Addie Kirkham		-	sis Date		19, 2022		-	еа Туре	e	Othe	-	<u></u>		<u>≛</u> -{ <u>x</u>
Jurisdiction		Knox County		Time F	Period		Buildout ay Peak g		PH	IF		1.00		***	w‡	<u>}</u>
Urban Street		Westland Drive		Analys	sis Year	_			Ana	alysis l	Period	1> 7:	00	7 4	ቀ 1 4 1 ቀጥ	t= 2
Intersection		Westland Drive at E	mor	File Na	ame	Full E	Buildout	Sunda	ау Р	eak_W	/estlan	d at Em	ory C			ri i i i i
Project Descrip	tion	391.046.1 - Shorelir	ne Chur	ch Expa	ansion											
D	41								<u>'</u> D			ND			0.0	
Demand Inform					EB		+ -	W	-		-	NB		+ -	SB	
Approach Move				L 440	T	R	L	1	_	R	L	T	R	450	T	R
Demand (v), v	en/n			112	463	0	8	44	10	71	0	0	4	153	0	201
Signal Informa	ition								Į,	T	Т					T
Cycle, s	130.0	Reference Phase	2	1	12 E				도마고 도마고	,			<u> </u>	4	ľ	4
Offset, s	0	Reference Point	End		20	5.4	77.0	17	<u> </u>	1 2			1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		5.4 0.0	77.3 4.5	17 3.5		1.3 3.5	0.0		ا ج	\rightarrow		кŤя
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.5	3.0		3.0	0.0		5	6	7	Y 8
Timer Results				EBI	-	EBT	WB	L	W	/BT	NB		NBT	SB	L L	SBT
Assigned Phase	е			5		2	1		(6			8			4
Case Number				1.1		4.0	1.1		4	.0			12.0			11.0
Phase Duration	, S			13.9	9	89.6	8.5		84	4.3			7.8			24.0
Change Period,	, (Y+R	c), S		6.0		7.0	6.5		7	7.0			6.5			6.5
Max Allow Head	dway (<i>I</i>	<i>MAH</i>), s		3.1		0.0	3.1		0	.0			3.3			3.2
Queue Clearan	ce Time	e (g s), s		4.9			2.2						2.3			19.5
Green Extensio		(g e), s		0.1		0.0	0.0		0	.0			0.0			0.0
Phase Call Prol	bability			0.98	3		0.25	5					0.13			1.00
Max Out Proba	bility			0.00)		0.00)					0.00			1.00
Movement Gro	up Res	sults			EB			WE	3			NB			SB	
Approach Move				L	Т	R	L	Т	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	\top	16	3	8	18	7	4	14
Adjusted Flow F	Rate (v), veh/h		112	0		8	517	7			0			153	201
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1781	0		1781	182	5			0			1641	1460
Queue Service	Time (g	g s), S		2.9	0.0		0.2	20.8	В			0.0			11.6	17.5
Cycle Queue C	learanc	e Time (<i>g c</i>), s		2.9	0.0		0.2	20.8	3			0.0			11.6	17.5
Green Ratio (g	/C)			0.67			0.61	0.59	9						0.13	0.13
Capacity (c), v	/eh/h			547			548	108	5						221	197
Volume-to-Capa				0.205	0.000		0.015	\vdash	\rightarrow			0.000			0.693	1.023
Back of Queue	(Q), ft/	/In (95 th percentile)		48.1	0		4	341.	.4			0			226.1	395.2
		eh/ln (95 th percenti		1.9	0.0		0.2	13.4	_			0.0			8.9	15.6
		RQ) (95 th percent	ile)	0.17	0.00		0.04	0.00	_			0.00			0.00	1.98
Uniform Delay (`			9.9			10.5	14.9	_						53.7	56.3
Incremental De	- '	,		0.1	0.0		0.0	1.5	_			0.0			7.6	70.2
	nitial Queue Delay (d ₃), s/veh				0.0		0.0	0.0	_			0.0			0.0	0.0
Control Delay (d), s/veh				10.0			10.5	16.4	4						61.2	126.4
Level of Service (LOS)				12.0			В	В							E	F
	Approach Delay, s/veh / LOS)	В	16.3	3	E	В	66.6	j	E	98.	3	F
Intersection Delay, s/veh / LOS						3	4.6							С		
Multimodal Po	Multimodal Results				EB			WE	3			NB			SB	
	Pedestrian LOS Score / LOS			2.1		В	2.3	-		В	2.3	-	В	2.3		В
Bicycle LOS Sc				1.4	_	A	1.4	_		A	0.5		A	1.1		A
, 55 56						-	M				2.0					

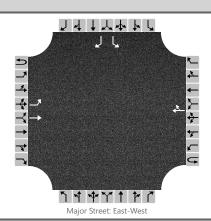

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway
Agency/Co.	Ardurra	Jurisdiction	Knox County
Date Performed	9/19/2022	East/West Street	Westland Drive
Analysis Year	2025	North/South Street	Church Driveway
Time Analyzed	Full Build Peak Entering	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	391.046.1 - Shoreline Church Expansion		

Level of Service, LOS

Approach LOS

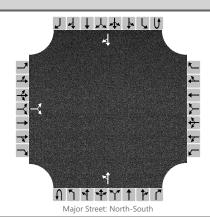
Approach Delay (s/veh)

30.0


						or Street: Ea										
Vehicle Volumes and Adj	ustme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1
Configuration		L	Т					TR						L		R
Volume, V (veh/h)		854	396				452	263						61		395
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)												5				
Right Turn Channelized		Ν	10			١	10			Ν	10			Ν	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ays														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												7.42		6.72
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, and	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		854												61		395
Capacity, c (veh/h)	n/h) 885													0		472
v/c Ratio		0.97												153.65		0.84
95% Queue Length, Q ₉₅ (veh)		16.1												9.9		8.3
Control Delay (s/veh)		44.0												85921. 7		41.0

Ε

11529.4


F

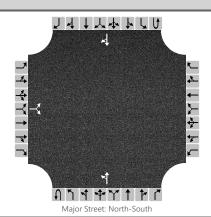
HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	Addie Kirkham	Intersection	Westland Dr at Driveway										
Agency/Co.	Ardurra	Jurisdiction	Knox County										
Date Performed	9/19/2022	East/West Street	Westland Drive										
Analysis Year	2025	North/South Street	Church Driveway										
Time Analyzed	Full Build Peak Exiting	Peak Hour Factor	1.00										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	391.046.1 - Shoreline Church Expansion												

Vehicle Volumes and Adj	ustme	ents															
Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		1	0	1	
Configuration		L	Т					TR						L		R	
Volume, V (veh/h)		122	412				613	38						167		1084	
Percent Heavy Vehicles (%)		2												2		2	
Proportion Time Blocked																	
Percent Grade (%)														į	5		
Right Turn Channelized		Ν	10			١	10			Ν	lo			N	lo		
Median Type/Storage				Undi	vided												
Critical and Follow-up Ho																	
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.12												7.42		6.72	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.22											3.52 3.32			3.32	
Delay, Queue Length, an	d Leve	el of S	ervice	•													
Flow Rate, v (veh/h)		122												167		1084	
Capacity, c (veh/h)		935												110		440	
v/c Ratio		0.13												1.52		2.46	
95% Queue Length, Q ₉₅ (veh)		0.4												12.2		85.3	
Control Delay (s/veh)		9.4												343.9		685.6	
Level of Service, LOS		А												F		F	
Approach Delay (s/veh)		2	.2										640.0				
Approach LOS														F			

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway											
Agency/Co.	Ardurra	Jurisdiction	Knox County											
Date Performed	9/23/2022	East/West Street	Church Driveway											
Analysis Year	2025	North/South Street	Emory Church Road											
Time Analyzed	Full Build Peak Entering	Peak Hour Factor	1.00											
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25											
Project Description	391.046.1 - Shoreline Church Expansion													

<i>l</i> ohiclo	Valumas an	d Adjustments	

Approach		Eastbound				West	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0	
Configuration			LR							LT						TR	
Volume, V (veh/h)	60 91						105	112				140	92				
Percent Heavy Vehicles (%)		2		2						2							
Proportion Time Blocked																	
Percent Grade (%)		(0														
Right Turn Channelized	No				No					No				No			
Median Type/Storage	Undiv				ndivided												


Critical and Follow-up Headways

Base Critical Headway (sec)	7.1	6.2			4.1			
Critical Headway (sec)	6.42	6.22			4.12			
Base Follow-Up Headway (sec)	3.5	3.3			2.2			
Follow-Up Headway (sec)	3.52	3.32			2.22			

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)		151				105				
Capacity, c (veh/h)		655				1335				
v/c Ratio		0.23				0.08				
95% Queue Length, Q ₉₅ (veh)		0.9				0.3				
Control Delay (s/veh)		12.1				7.9				
Level of Service, LOS		В				А				
Approach Delay (s/veh)	12	2.1				4	.2			
Approach LOS	В									

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	Addie Kirkham	Intersection	Emory Church at Driveway										
Agency/Co.	Ardurra	Jurisdiction	Knox County										
Date Performed	9/23/2022	East/West Street	Church Driveway										
Analysis Year	2025	North/South Street	Emory Church Road										
Time Analyzed	Full Build Peak Exiting	Peak Hour Factor	1.00										
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25										
Project Description	391.046.1 - Shoreline Church Expansion												

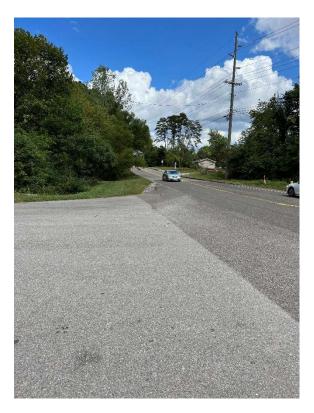
Inhiela '	Valumac	and /	\diuctmontc	

Approach		Eastbound				Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume, V (veh/h)		166 250		0					15	148				108	13	
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized	No				No					N	lo		No			
Median Type/Storage	Undiv				Individed											
- · · -	Critical and Follow-up Headways															

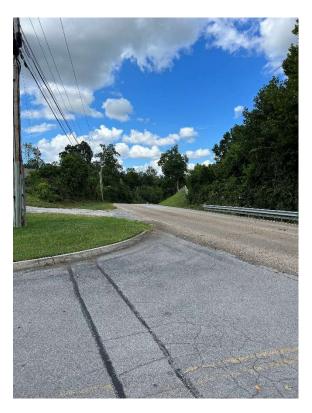
Base Critical Headway (sec)	7.1	6.2			4.1			
Critical Headway (sec)	6.42	6.22			4.12			
Base Follow-Up Headway (sec)	3.5	3.3			2.2			
Follow-Up Headway (sec)	3.52	3.32			2.22			

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)			416							15				
Capacity, c (veh/h)			821							1465				
v/c Ratio			0.51							0.01				
95% Queue Length, Q ₉₅ (veh)			2.9							0.0				
Control Delay (s/veh)			13.8							7.5				
Level of Service, LOS			В							А				
Approach Delay (s/veh)	13.8							0.8						
Approach LOS	В													


Attachment 9 Sight Distance

Westland Drive at Shoreline Church Driveway (Stop Bar) - looking east


Westland Drive at Shoreline Church Driveway (Stop Bar) - looking west

Westland Drive at Shoreline Church Driveway – looking east

Westland Drive at Shoreline Church Driveway – looking west

Emory Church Road at Shoreline Church Driveway – looking north

Emory Church Road at Shoreline Church Driveway – looking south

Westland Drive at Shoreline Church Driveway - 400 ft Sight Triangle

Westland Drive at Shoreline Church Driveway - 400 ft Sight Triangle

Date: September 19, 2022

Project Name: Shoreline Church Expansion

To: Knoxville-Knox County Planning

Subject: Shoreline Church Expansion TIA Comments (10-B-22-SU)

Dear Knoxville-Knox County Planning staff,

The following comment response document is submitted to address comments dated September 15, 2022:

1. Reviewer Comment: It did not appear that all of the initial comments I sent were addressed so I am pasting them below this message for your reference. In the next version of the TIS please include a comment-response section that shows where and how each comment was addressed in the revised TIS as is usually done.

<u>Response:</u> Included initial comments dated August 25, 2022 in the comment-response letter.

2. Reviewer Comment: The TIS states that there are no proposed changes to the site circulation however that does not appear to be true since additional parking aisles are being provided and appear to be in one-way operation. There was also a question raised during site plan review about the one-way notation on the driveway coming in from the northeast corner and why it was designated as such, please clarify.

<u>Response</u>: Updated the statement in Section 1.1 - Project Description to clarify the changes to the existing site circulation. The one-way notation on the driveway coming from the northeast corner was revised on the site plan to show two-way traffic as the gate will be open during Church events.

3. Reviewer Comment: There was apparently a mis-understanding regarding the previous comment about revising trip generation. We were looking for the actual counts to inform the projected trip generation of the expansion rather than relying on the ITE Trip Generation rates. In reviewing the traffic count data that was provided in the revised TIS it is very clear that there are well-defined peak 15-minute periods of entering and exiting traffic and we would like for the TIS to focus on those periods as a worst-case scenario of peak traffic conditions and their effect on the surrounding roadway network. Attached is a spreadsheet showing the traffic volumes (see yellow highlighting) that we would like to be analyzed instead of what was shown in Table 4 in the TIS. There should be separate analyses for (1) the peak

entering traffic and (2) peak exiting traffic. Note that these volumes have been factored up by 2.76 which is the growth factor calculated by the expansion from 450 to 1,243 seats and also by a factor of 4X since we assumed that HCS does not allow you to input a peak hour factor (PHF) by approach so the 15-minute volumes. This means you can set the PHF to 1.0 in the updated analysis using HCS.

<u>Response</u>: Revised Section 4 – Trip Generation to reflect actual church service peak entering and exiting counts. Updated the Figures and the HCS7 capacity reports to show the existing, background and full buildout conditions based on the revised trip generation.

4. Reviewer Comment: A follow-up to the previous comment and related to an original comment is that no information is provided regarding the other uses, i.e. Morning Pointe Assisted Living, in this area that are utilizing these driveways. You can remove traffic volumes associated with those uses from your future-year analysis if you are able to directly attribute any of the existing volumes to them.

<u>Response:</u> Added the following to Section 4 – Trip Generation. "Based on the turning movement counts there was negligible traffic travelling to/from the Morning Pointe Assisted Living during the Sunday peak entering and exiting 15-minute periods; therefore, no volume was removed or directly attributed to the Morning Pointe Assisted Living Facility."

5. Reviewer Comment: Please coordinate with the site design engineer and provide a more definitive proposed striping plan showing the recommended stop bar location for the Westland Drive driveway approach. Please also include sight lines on the site plan showing where the required sight triangles are needed to be cleared to achieve the required sight distance.

<u>Response</u>: The site plan was updated with the recommendation to relocate the stop bar to 15 feet from the edge of pavement. Intersection sight triangles were included in Attachment 9 for the intersection of Westland Drive at the Shoreline Church driveway connection.

Previous Comments Dated August 25, 2022

1. Reviewer Comment: Conduct traffic counts at both existing access points and the intersection of Westland Dr at Emory Church Rd during the Sunday peak hours coinciding with the current service times. The Sunday before Labor Day needs to be avoided for this data collection as attendance may be lower than usual that day.

Response: Completed

2. Reviewer Comment: Use the traffic count data to determine trip distribution and extrapolate it to determine the future trip generation for two services and the additional attendees post-expansion. Not addressed - extrapolate existing counts instead of using ITE rates as described in above new comments.

<u>Response:</u> Updated the Figures to include the recommended entering/exiting 15-minute peak volumes.

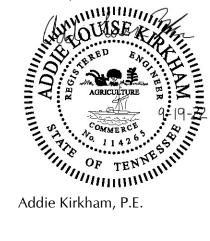
3. Reviewer Comment: Analyze operations at the access points and intersection of Westland Dr at Emory Church Rd and in particular any potential queue storage issues with the EB left turn lane at the Westland Dr access where it might spill back into the ramp intersection. Re-evaluate based on the new trip generation.

<u>Response:</u> Updated the queue storage analysis using the peak 15-minute entering and exiting volumes.

4. Reviewer Comment: Include a site plan that clearly identifies the access points and illustrates the general circulation patterns post-expansion. Expanded site plan showing existing uses should be provided.

Response: Updated the site plan to show access points and include the Morning Pointe Assisted Living Facility.

5. Reviewer Comment: Acknowledge the other existing uses on the site and whether any potential conflicts may occur between peak hour operations of each and their traffic circulation interfaces. See previous comment.


Response: See updated response to Comment 4.

6. Reviewer Comment: Verify the minimum required sight distance is available at each access point. Review the existing stop bar location at the Westland Dr access that is around 50' from the edge of pavement to determine if it is optimally located for operations and sight distance. Provide a more specific recommendation for the stop bar location and show on site plan along with sight triangles.

Mr. Conger September 19, 2022 Page 4 of 4

> Response: The site plan has been updated to show a revised stop bar location at 15 feet from the edge of pavement and intersection sight triangles for the intersection of Westland Drive at the Shoreline Church Driveway were included in Attachment 9.

Sincerely,

