MALONEY ROAD MULTI FAMILY DEVELOPMENT CITY OF KNOXVILLE, TENNESSEE

TRAFFIC IMPACT STUDY

MALONEY ROAD KNOXVILLE, TENNESSEE

CCI PROJECT NO. 00269-0024

REV 1

11-D-21-UR TIS Version 2 10/25/2021

PREPARED FOR:

S&ME 6515 Nightingale Lane Knoxville, TN 37909

SUBMITTED BY:

Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, TN 37919 865.670.8555

> REVISED October 25 **2021**

MALONEY ROAD MULTI FAMILY DEVELOPMENT CITY OF KNOXVILLE. TENNESSEE

TRAFFIC IMPACT STUDY

MALONEY ROAD KNOXVILLE, TENNESSEE

CCI PROJECT NO. 00269-0024

REVISION I (10/25/21)

This report replaces the previous version of the traffic impact study dated 09/23/2021 prepared for this project in its entirety. The associated changes are related to comments received from Knoxville-Knox County Planning via an e-mail dated 10/25/21.

PREPARED FOR:

S&ME 6515 Nightingale Lane Knoxville, TN 37909

SUBMITTED BY:

Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, TN 37919 865.670.8555

REVISED October 25

TABLE OF CONTENTS

SECTION I	EXECUTIVE SUMMARY	1
SECTION 2	INTRODUCTION & PURPOSE OF STUDY	2
SECTION 3	EXISTING CONDITIONS	4
SECTION 4	BACKGROUND CONDITIONS	8
SECTION 5	FUTURE CONDITIONS	10
SECTION 6	EVALUATIONS	15
SECTION 7	CONCLUSIONS & RECOMMENDATIONS	17
SECTION 8	APPENDIX	18

TABLE OF CONTENTS

FIGURES

FIGURE 1	LOCATION MAP	2
FIGURE 2	CONCEPTUAL SITE PLAN	3
FIGURE 3	EXISTING SITE CONDITIONS	4
FIGURE 4	2021 EXISTING RAW TRAFFIC VOLUMES	6
FIGURE 5	2021 EXISTING FACTORED TRAFFIC VOLUMES	7
FIGURE 6	2024 BACKGROUND TRAFFIC VOLUMES	9
FIGURE 7	TRIP DISTRIBUTION	12
FIGURE 8	TRIP ASSIGNMENT	13
FIGURE 9	2024 COMBINED TRAFFIC VOLUMES	14

.....

TABLES

TABLE 1	ANNUAL AVERAGE DAILY TRAFFIC COUNT SUMMARY	5
TABLE 2	TRIP GENERATION SUMMARY	10
TABLE 3	CAPACITY ANALYSES SUMMARY	15

APPENDICES

APPENDIX A	TRAFFIC DATA	A-I
APPENDIX B	TRIP GENERATION INFORMATION	B-1
APPENDIX C	CAPACITY ANALYSES	C-1
APPENDIX D	TURN LANE WARRANT EVALUATIONS	D-1

EXECUTIVE SUMMARY

This report provides a summary of a traffic impact study that was performed for a proposed multifamily residential development to be located on Maloney Road in Knoxville, Tennessee. The project site is located on the north side of Maloney Road approximately 400 feet east of the intersection of Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps. The development plan for this project proposes a multi-family residential development with 240 units. The proposed development will have one full access onto Maloney Road between the two southside access points of Sevier Heights Baptist Church.

The purpose of this study was the evaluation of the traffic operational and safety impacts of the proposed development upon roadways in the vicinity of the project site. Comments received from Knoxville-Knox County Planning resulted in the existing intersections of Maloney Road at Alcoa Highway Southbound Ramps and Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps being identified for detailed study. Additionally, the proposed site access intersection on Maloney Road is included in the study. Appropriate intersection evaluations such as capacity analyses and turn lane warrant analyses were conducted at the study intersections for existing and future conditions, both with and without site generated traffic, in order to determine the anticipated impacts and to establish recommended measures to mitigate these impacts.

The primary conclusion of this study is that the traffic generated from the proposed development will not have a significant impact at the study intersections. The intersections of Maloney Road at Alcoa Highway Southbound Ramps and Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps both currently operate at LOS "A", and both intersections will continue to operate at LOS "A" upon full buildout and occupancy of the development. Once complete, the side street approach at the site access intersection is expected to operate at LOS "B" during both peak traffic periods.

The recommendation from this study is to maintain intersection corner sight distance at the site access by ensuring that site grading, landscaping, signage, and other site features to not restrict intersection lines of sight.

INTRODUCTION & PURPOSE OF STUDY

This report provides a summary of a traffic impact study that was performed for a proposed multifamily residential development to be located on Maloney Road in Knoxville, Tennessee. The project site is located on the north side of Maloney Road approximately 400 feet east of the intersection of Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps. FIGURE 1 is a location map showing the major roadways in the project site vicinity.

FIGURE 1 LOCATION MAP

The development plan for this project proposes a multi-family residential development with 240 units. The proposed development will have one full access onto Maloney Road between the two southside access points of Sevier Heights Baptist Church. FIGURE 2 is a Conceptual Site Plan detailing the proposed site.

The purpose of this study was the evaluation of the traffic operational and safety impacts of the proposed development upon roadways in the vicinity of the project site. Comments received from Knoxville-Knox County Planning resulted in the existing intersections of Maloney Road at Alcoa Highway Southbound Ramps and Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps being identified for detailed study. Additionally, the proposed site access intersection on Maloney Road is included in the study. Appropriate intersection evaluations such as capacity analyses and turn lane warrant analyses were conducted at the study intersections for existing and future conditions, both with and without site generated traffic, in order to determine the anticipated impacts and to establish recommended measures to mitigate these impacts.

SECTION 2

INTRODUCTION & PURPOSE OF STUDY

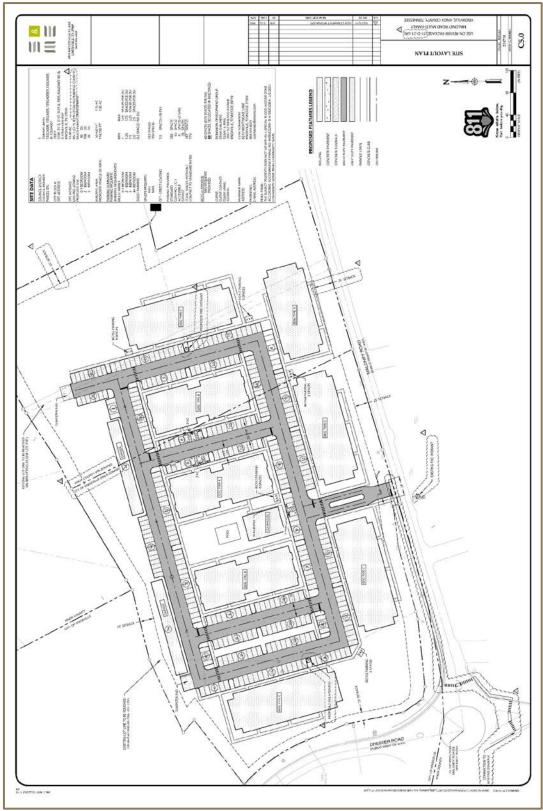


FIGURE 2 CONCEPTUAL SITE PLAN

EXISTING CONDITIONS

EXISTING ROADWAY CONDITIONS

Roadway conditions for the study roadways are summarized as follows:

• Maloney Road is a two-lane undivided roadway with one lane in each direction and is classified as a Major Collector per the Knoxville-Knox County Planning Major Road Plan. Lane widths are approximately ten feet and no curb, gutter, or sidewalk is present. The posted speed limit along this section of Maloney Road is 30 mph.

Traffic control for the study intersection is as follows:

- Maloney Road at Alcoa Highway Southbound Ramps is a four-legged single lane roundabout. Westbound Maloney Road has two lanes approaching the intersection, and the rightmost lane becomes a channelized right turn lane that bypasses the roundabout.
- Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps is a four-legged single lane roundabout. The southbound approach has a right turn channelized island that bypasses the roundabout.

EXISTING SITE CONDITIONS

The project site is located the north side of Maloney Road across from Sevier Heights Baptist Church. The site is relatively flat and wooded, and several single-family residences currently occupy the properties. The site access point on Maloney Road is proposed as a new three-legged intersection. FIGURE 3 provides an aerial view of the project site and the surrounding area.

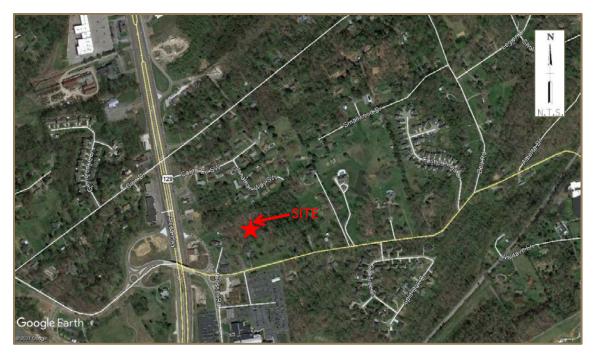


FIGURE 3 EXISTING SITE CONDITIONS

EXISTING TRAFFIC DATA

Two types of existing traffic data were gathered for this study. The Tennessee Department of Transportation (TDOT) collects annual average daily traffic (AADT) data on roadways in the study area. Two count stations were found near the project site that were felt to have particular relevance for this study. The most currently available data from this station is contained in Table 1.

COUNT YEAR	TDOT COUNT STATION 47000529 MALONEY ROAD EAST OF ALOCA HIGHWAY	TDOT COUNT STATION 47000316 ALCOA HIGHWAY (US 129) SOUTH OF MALONEY ROAD
2014	N/A	47,014
2015	N/A	51,562
2016	825	49,655
2017	621	52,590
2018	1,010	49,666
2019	1,089	52,833

TABLE 1: ANNUAL AVERAGE DAILY TRAFFIC COUNT SUMMARY

In addition to the available AADT data, intersection turning movement traffic counts were conducted at the existing study intersections to determine the current peak hour operating volumes. The traffic data were collected on August 31, 2021. During this time, regional traffic volumes and patterns were recovering from COVID-19 pandemic restrictions, including widespread telecommuting or working from home practices. In order to account for potential reductions in traffic volumes due to the pandemic, the August 2021 count data was increased by 20%.

The 2021 raw traffic data is summarized in FIGURE 4 and the factored traffic data is summarized in FIGURE 5. The raw data traffic count summary sheets are contained in APPENDIX A.

EXISTING CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses employing the methods of the *Highway Capacity Manual* were conducted for the existing conditions at the study intersections. These analyses were performed with the 2021 existing factored traffic volumes, shown in FIGURE 5, and existing intersection traffic control and lane configurations. The EVALUATIONS section of this report may be referenced for tabular summaries of these analyses, while more detailed summaries are presented on the computer printouts contained in APPENDIX C. Also contained in APPENDIX C is a section entitled "Capacity and Level of Service Concepts", which provides a description of the utilized procedures.

SECTION 3 EXISTING CONDITIONS

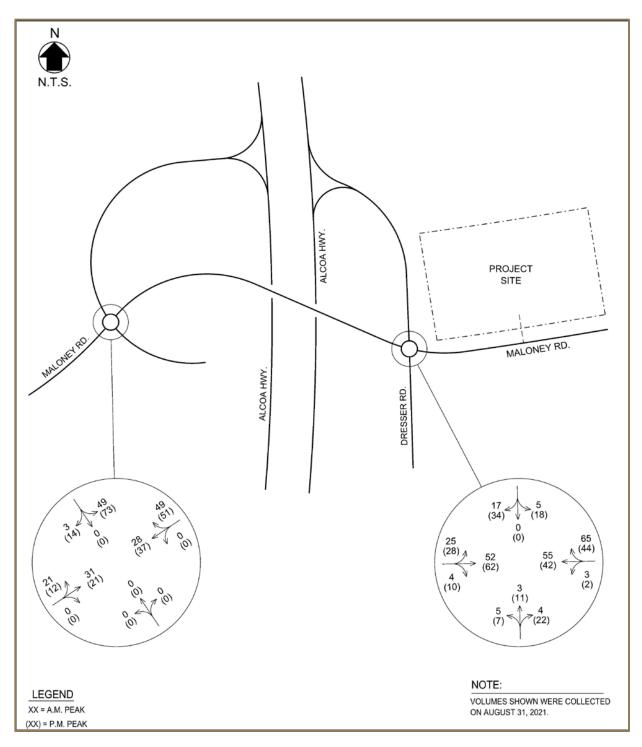


FIGURE 4 2021 EXISTING RAW TRAFFIC VOLUMES

SECTION 3 EXISTING CONDITIONS

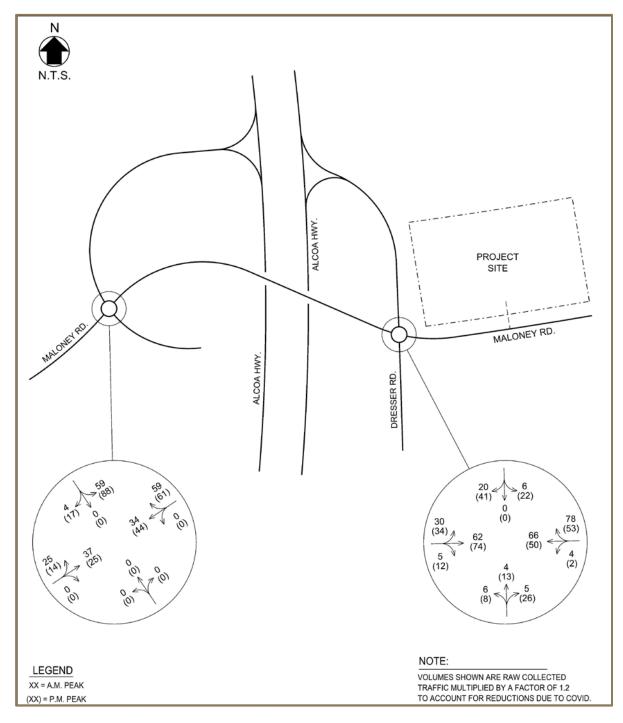


FIGURE 5 2021 EXISTING FACTORED TRAFFIC VOLUMES

BACKGROUND CONDITIONS

BACKGROUND TRAFFIC GROWTH

The proposed development is anticipated to be constructed in one general phase with completion anticipated by 2024. Therefore, year 2024 was established as the appropriate design / analysis year for the study. In order to determine traffic volumes resulting solely from background traffic growth to year 2024, it was necessary to establish an annual growth rate for existing traffic. The TDOT ADT values previously discussed, as well as knowledge of the area, were used to determine an approximate annual growth rate. Based on the available data, a background annual growth rate of 2.5% was assumed. FIGURE 6 contains the background traffic volumes that would result from this annual growth rate from year 2021, when the counts were conducted, to year 2024.

BACKGROUND CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses as described in the EXISTING CONDITIONS section of this report were conducted utilizing the Year 2024 background volumes shown in FIGURE 6 and existing intersection traffic control and lane configurations. The EVALUATIONS section of this report may be referenced for tabular summaries of these analyses, while more detailed summaries are presented on the computer printouts contained in APPENDIX C.

SECTION 4

BACKGROUND CONDITIONS

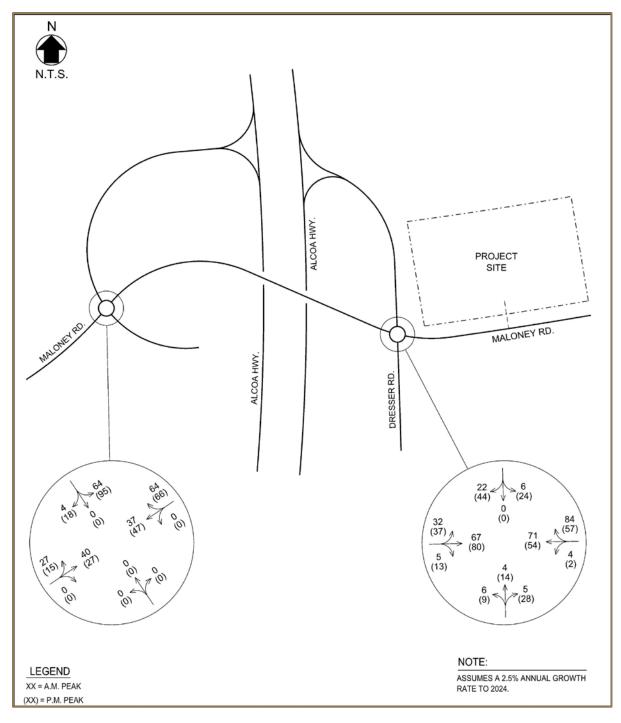


FIGURE 6 2024 BACKGROUND TRAFFIC VOLUMES

FUTURE CONDITIONS

TRIP GENERATION

In order to estimate the expected traffic volumes to be generated by the proposed development, the procedures recommended by the Institute of Transportation Engineers were utilized. The proposed development will include 240 multi-family residential apartment units. Local trip generation rates developed by the Knoxville-Knox County Metropolitan Planning Commission for multi-family apartment type developments within the region were utilized to generate the estimated trips. The generated traffic volumes were determined based on the data for the peak hours of adjacent street traffic. See TABLE 2 for a summary of the traffic generated for this project. More detailed information is contained in APPENDIX B.

LAND USE	ITE Code	SIZE	WEEKDAY (TRIPS/DAY)	AM PEAK HOUR (TRIPS/HOUR)	PM PEAK HOUR (TRIPS/HOUR)
Multi-Family Residential	n/a	240 Dwelling Units	2,096	120	171
Entering Trips Exiting Trips			1,048 (50%) 1,048 (50%)	26 (22%) 94 (78%)	94 (55%) 77 (45%)

TABLE 2: TRIP GENERATION SUMMARY

A.M. Peak Hour trip generation is based on Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. P.M. Peak Hour trip generation is based on Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

TRIP DISTRIBUTION AND ASSIGNMENT

The proposed trip distribution for this development was determined through a review of existing travel patterns, local knowledge of the study area, proposed site location in relation to surrounding roadway network, and engineering judgement. FIGURE 7 provides a summary of how the above site generated trips would be assigned to the study intersections. FIGURE 8 provides the proposed trip assignment volumes to the study intersections.

FUTURE TRAFFIC VOLUMES

Future projected traffic volumes for the study intersections were developed by adding the generated and assigned trips shown in FIGURE 8 to the 2024 background traffic volumes developed in the previous section and shown in FIGURE 6. These combined 2024 volumes reflect the existing traffic, the background traffic growth, and the generated traffic from the proposed development. These future volumes are shown on FIGURE 9 and are the combined volumes used in the analyses of future conditions with the proposed development.

FUTURE CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses, as described in the EXISTING CONDITIONS section of this report, were conducted for future conditions utilizing the traffic volumes shown in the build-out scenario. These analyses were performed with existing geometry and traffic control for the two existing intersections and with proposed geometry and traffic control for the site access intersection. Tabular summaries of the analyses results and associated discussion are also contained in the EVALUATIONS section. In addition, detailed computer printout summaries of the analyses are contained in APPENDIX C.

SECTION 5 FUTURE CONDITIONS

.....

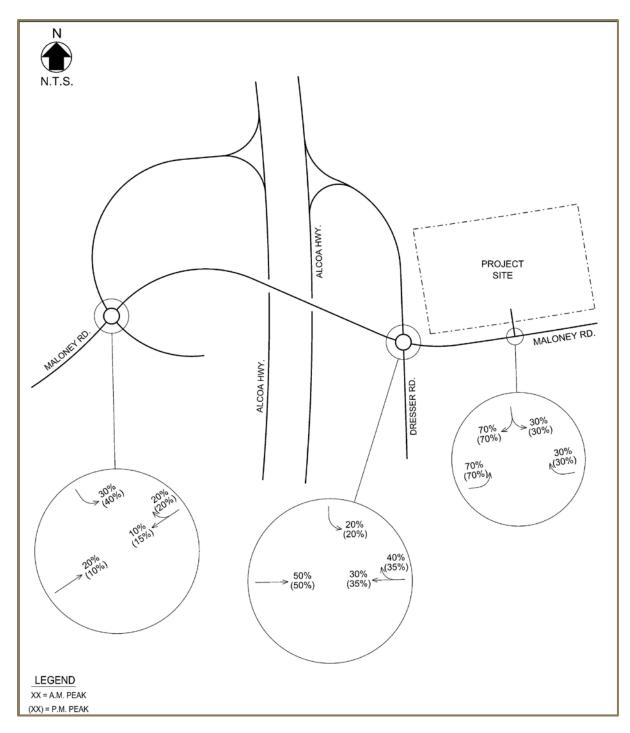


FIGURE 7 TRIP DISTRIBUTION

SECTION 5 FUTURE CONDITIONS

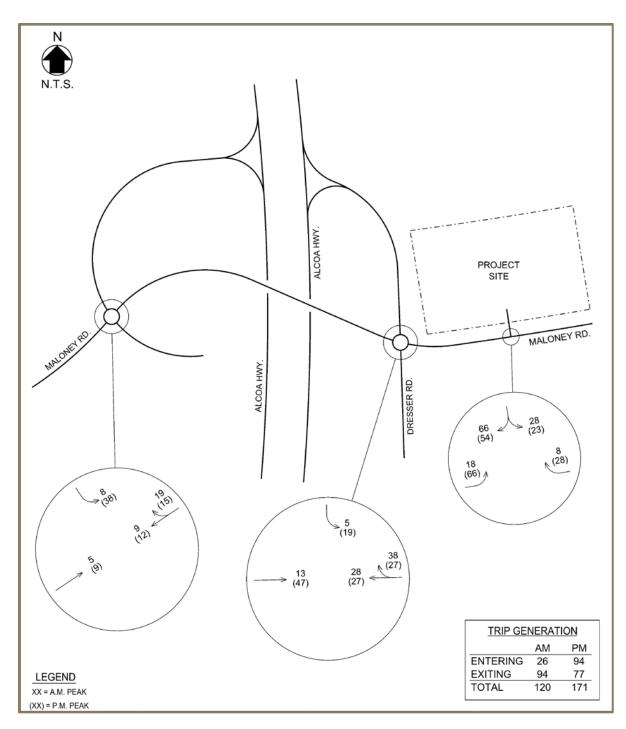


FIGURE 8 TRIP ASSIGNMENT

SECTION 5 FUTURE CONDITIONS

.....

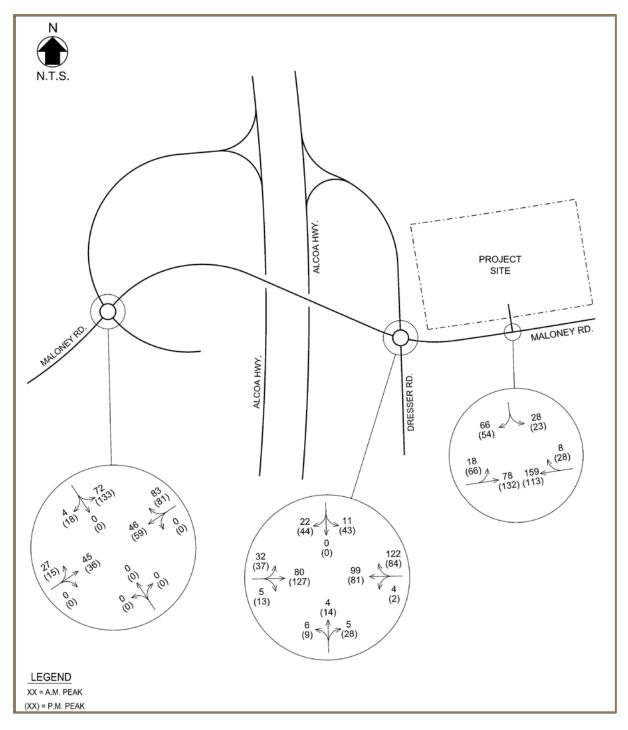


FIGURE 9 2024 COMBINED TRAFFIC VOLUMES

EVALUATIONS

INTERSECTION CAPACITY ANALYSES

As discussed in the preceding sections of this report, capacity analyses employing the methods of the Highway Capacity Manual (HCM 6th Edition) were conducted for the study intersections. These analyses were performed for the previously discussed development scenarios. A summary of the capacity analyses results is shown in TABLE 3, while the resulting conclusions and recommendations are covered in the CONCLUSIONS AND RECOMMENDATIONS section of this report.

INTERSECTION	TIME PERIOD	YEAR 2021 EXISTING (LOS/DELAY)	YEAR 2024 BACKGROUND (LOS/DELAY)	YEAR 2024 COMBINED (LOS/DELAY)
Maloney Rd. at Alcoa Hwy. SB Ramps ¹ ROUNDABOUT CONTROL	A.M. P.M.	A 3.2 A 3.4	A 3.2 A 3.4	A 3.3 A 3.7
Maloney Rd. at Dresser Rd. / Alcoa Hwy. NB Ramps ¹ ROUNDABOUT CONTROL	A.M. P.M.	A 3.7 A 3.6	A 3.8 A 3.6	A 4.2 A 4.1
Maloney Rd. at Dresser Rd. Site Access ² SIDE STREET STOP CONTROL	A.M. P.M.			B 10.5 (SB) B 10.6 (SB)

TABLE 3: CAPACITY ANALYSES SUMMARY

¹ROUNDABOUT CONTROL – Data shown are Level-of-Service and Average Vehicular Delay (seconds) for the complete intersection utilizing HCM methodology.

²SIDE STREET STOP CONTROL – Data shown are Level-of-Service and Average Vehicular Delay (seconds) for the critical side street approach utilizing HCM methodology.

TURN LANE ASSESSMENTS

A turn lane evaluation was conducted for a potential left turn and right turn lane to enter the project site at the proposed site access intersection along Maloney Road. This evaluation, which utilized Knox County turn lane warrants, found that turn lanes are not warranted at the site access intersection. The spreadsheets summarizing this evaluation are contained in APPENDIX D.

SIGHT DISTANCE ASSESSMENT

Intersection sight distance was assessed looking both directions from the proposed site access intersection. Based on Knox County sight distance requirements for 30 mph roadways, 300 feet of sight distance is required for vehicles exiting the project site onto Maloney Road. Field observations indicated that the available sight distance looking in either direction from the proposed site access is well in excess of the required 300 feet. Care should be taken during the site development process to ensure that site features such as building footprints, landscaping, and signage do not restrict sight distances.

.

PEDESTRIAN CONNECTION ASSESSMENT

Sidewalks do not currently exist along Maloney Road in the vicinity of the development; however, sidewalks will be constructed from the development to provide connectivity to Dresser Road.

CONCLUSIONS & RECOMMENDATIONS

The primary conclusion of this study is that the traffic generated from the proposed development will not have a significant impact at the study intersections. The intersections of Maloney Road at Alcoa Highway Southbound Ramps and Maloney Road at Dresser Road / Alcoa Highway Northbound Ramps both currently operate at LOS "A", and both intersections will continue to operate at LOS "A" upon full buildout and occupancy of the development. Once complete, the side street approach at the site access intersection is expected to operate at LOS "B" during both peak traffic periods.

The recommendation from this study is to maintain intersection corner sight distance at the site access by ensuring that site grading, landscaping, signage, and other site features to not restrict intersection lines of sight.

SECTION 8 APPENDIX

.....

APPENDIX

APPENDIX ORDER:

A. TRAFFIC DATA

B. TRIP GENERATION INFORMATION

C. CAPACITY ANALYSES

D. TURN LANE WARRANT EVALUATIONS

APPENDIX A

TRAFFIC DATA

.....

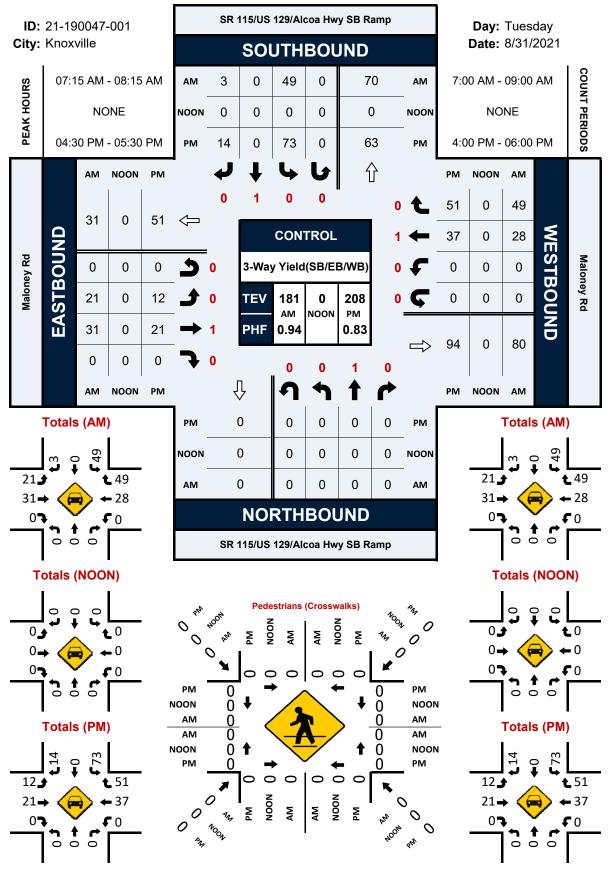
APPENDIX A - TRAFFIC DATA

TRAFFIC GROWTH

Source:	TDOT
Location:	Maloney Road
	East of US-129
Route #:	Maloney Road
Route Type:	
Station:	T47000529
Capacity:	

Count Year	Volume	Growth Rate
		_
2016	825	_
2016	621	-24.73
2017	1010	62.64
2019	1089	7.82
Avg. 1 Voor Bot		15.25

Avg. 1 Year Rate 2016-2019	15.25


Source:	TDOT
Location:	Alcoa Highway
	south of Maloney
Route #:	US-129
Route Type:	
Station:	T47000316
Capacity:	

Count Year	Volume	Growth Rate
1999	44029	
2000	42299	-3.93
2001	45848	8.39
2002	47691	4.02
2003	42935	-9.97
2004	46951	9.35
2005	48064	2.37
2006	48369	0.63
2007	47274	-2.26
2008	46520	-1.59
2009	41273	-11.28
2010	44730	8.38
2011	46131	3.13
2012	41075	-10.96
2013	45691	11.24
2014	47014	2.90
2015	51562	9.67
2016	49655	-3.70
2017	52590	5.91
2018	49666	-5.56
2019	52833	6.38
Avg. 1 Veer Bet	- 4000 0040	1.10

Avg. 1 Year Rate 1999-2019	1.16
Avg. 1 Year Rate 2009-2019	1.46
Avg. 1 Year Rate 2014-2019	2.60

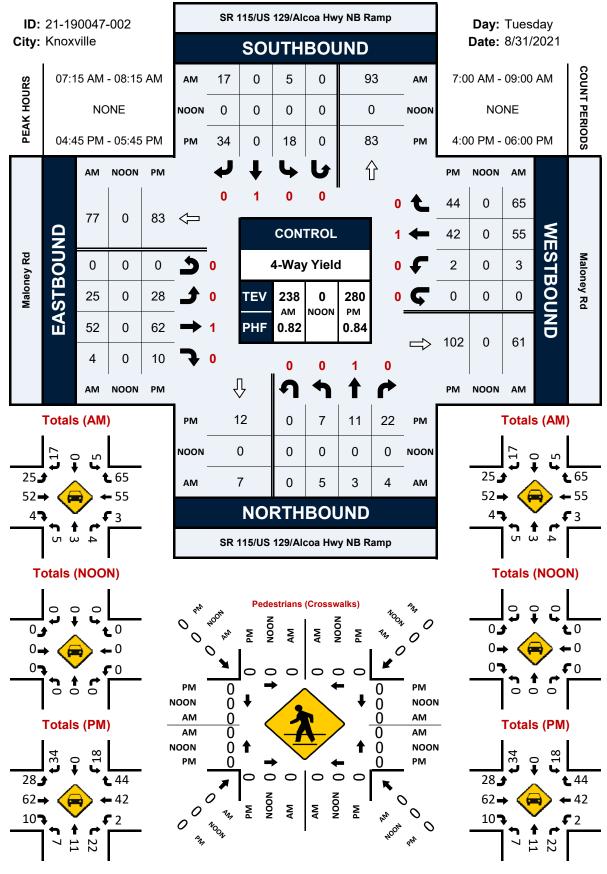
SR 115/US 129/Alcoa Hwy SB Ramp & Maloney Rd

Peak Hour Turning Movement Count

Project ID: 21-190047-001 Location: SR 115/US 129/Alcoa Hwy SB Ramp & Maloney Rd City: Knoxville

Day: Tuesday Date: 8/31/2021

							-						PU, Var	ns - Hea											
	SR	115/US			y SB Ram	р	SR	115/US			y SB Ra	mp				ley Rd					Malone				
			Northb							bound					Eastb					r	Westbo				
Start Time	Left	Thru	-		Peds App	p. Total		Thru	Rgt		Peds			Thru	Rgt		Peds		Left	Thru	Rgt		Peds	App. Total	
7:00 AM	0	0	0	0	0	0	8	0	3	0	0	11	8	3	0	0	0	11	0	3	4	0	0	7	29
7:15 AM	0	0	0	0	0	0	11	0	0	0	0	11	5	8	0	0	0	13	0	2	18	0	0	20	44
7:30 AM	0	0	0	0	0	0	15	0	0	0	0	15	3	8	0	0	0	11	0	7	9	0	0	16	42
7:45 AM	0	0	0	0	0	0	11	0	0	0	0	11	9	9	0	0	0	18	0	9	10	0	0	19	48
Total	0	0	0	0	0	0	45	0	3	0	0	48	25	28	0	0	0	53	0	21	41	0	0	62	163
8:00 AM	0	0	0	0	0	0	12	0	3	0	0	15	4	6	0	0	0	10	0	10	12	0	0	22	47
8:15 AM	0	0	0	0	0	0	12	0	3	0	0	15	5	2	0	0	0	7	0	4	6	0	0	10	32
8:30 AM	0	0	0	0	0	0	4	0	0	0	0	4	3	6	0	1	0	10	0	5	6	0	0	11	25
8:45 AM	0	0	0	0	0	0	17	0	1	0	0	18	2	8	0	1	0	11	0	9	8	0	0	17	46
Total	0	0	0	0	0	0	45	0	7	0	0	52	14	22	0	2	0	38	0	28	32	0	0	60	150
BREAK																									
4:00 PM	0	0	0	0	0	0	20	0	4	0	0	24	4	4	0	0	0	8	0	5	7	0	0	12	44
4:15 PM	0	Ő	Ő	Ő	õ	ő	19	Ő	3	0	Ő	22	1	1	ő	Ő	Ő	2	Ő	6	5	Ő	Ő	11	35
4:30 PM	0	0	0	0	0	0	18	0	2	0	0	20	5	4	0	0	0	9	0	5	11	0	0	16	45
4:45 PM	0	0	0	0	0	0	24	0	4	0	0	28	3	8	0	0	0	11	0	6	12	0	0	18	57
Total	0	0	0	0	0	0	81	0	13	0	0	94	13	17	0	0	0	30	0	22	35	0	0	57	181
5:00 PM	0	0	0	0	0	0	12	0	3	0	0	15	0	3	0	0	0	3	0	14	11	0	0	25	43
5:15 PM	0	0	0	0	0	0	19	0	5	0	0	24	4	6	0	0	0	10	0	12	17	0	0	29	63
5:30 PM	0	0	0	0	0	0	19	0	3	0	0	22	1	8	0	0	0	9	0	4	6	1	0	11	42
5:45 PM	0	0	0	0	0	0	17	0	2	0	0	19	1	0	0	0	0	1	0	7	3	0	0	10	30
Total	0	0	0	0	0	0	67	0	13	0	0	80	6	17	0	0	0	23	0	37	37	1	0	75	178
•																									
Grand Total	0	0	0	0	0	0	238	0	36	0	0	274	58	84	0	2	0	144	0	108	145	1	0	254	672
Apprch %	0.0	0.0	0.0	0.0	0.0		86.9	0.0	13.1	0.0	0.0		40.3	58.3	0.0	1.4	0.0		0.0	42.5	57.1	0.4	0.0		
Total %	0.0	0.0	0.0	0.0	0.0	0.0	35.4	0.0	5.4	0.0	0.0	40.8	8.6	12.5	0.0	0.3	0.0	21.4	0.0	16.1	21.6	0.1	0.0	37.8	
Cars, PU, Vans	0	0	0	0		0	238	0	36	0		274	58	84	0	2		144	0	108	145	1		254	672
% Cars, PU, Vans	0.0	0.0	0.0	0.0		0.0	100.0	0.0	100.0	0.0		100.0	100.0	100.0	0.0	100.0		100.0	0.0	100.0	100.0	100.0		100.0	100.0


Location: City: M	Knoxvi		AICOa	пшу эр	namp	o waton	iey Ru	P	EAP	K HO	DUR	S							Tuesda 8/31/202		
	SR 115/	US 129	/Alcoa	Hwy SB	Ramp	SR 115/l	JS 129/	Alcoa H	wy SB	Ramp		Ma	oney F	d			Ma	aloney F	۲d		
		No	rthbou	nd			Sou	Ithboun	d			Ea	stboun	d			w	estbour	nd		
tart Time	Left	Thru	Rgt	Uturn A	pp. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Int. Tota
eak Hour Analy	sis from	07:00 A	M - 09:0	MA 00																	
eak Hour for En	tire Inter	section	Begins	at 07:15	AM																
7:15 AM		0	0	0	0	11	0	0	0	11	5	8	0	0	13	0	2	18	0	20	
7:30 AM		0	0	0	0	15	0	0	0	15		8	0	0	11	0	7	9	0	16	4
7:45 AM	0	0	0	0	0	11	0	0	0	11	9	9	0	0	18	0	9	10	0	19	4
8:00 AM	0	0	0	0	0	12	0	3	0	15	4	6	0	0	10	0	10	12	0	22	4
Total Volume	0	0	0	0	0	49	0	3	0	52	21	31	0	0	52	0	28	49	0	77	18
% App. Total	0.0	0.0	0.0	0.0	0	94.2	0.0	5.8	0.0	100	40.4	59.6	0.0	0.0	100	0.0	36.4	63.6	0.0	100	1
PHF										0.867					0.722					0.875	0.94
Cars, PU, Vans	0	0	0	0	0	49	0	3	0	52	21	31	0	0	52	0	28	49	0	77	18
Cars, PU, vans	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	100.0	100.0	0.0	0.0	100.0	0.0	100.0	100.0	0.0	100.0	100

FIVI																					
	SR 115	/US 129	/Alcoa	Hwy SE	B Ramp	SR 115/	US 129	/Alcoa	Hwy SE	8 Ramp		Ма	loney F	Rd			М	aloney F	Rd		
		No	rthbou	ind			So	uthbou	nd			Ea	stbour	nd			w	/estboui	nd		1
Start Time	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Int. Total
Peak Hour Analy	sis from	04:00 F	PM - 06:	00 PM																	
Peak Hour for En	tire Inte	rsection	Begins	at 04:3	0 PM																
		100000011	Degino	ut 04.0	01101																

4:30 PM	0	0	0	0	0	18	0	2	0	20	5	4	0	0	9	0	5	11	0	16	45
4:45 PM	0	0	0	0	0	24	0	4	0	28	3	8	0	0	11	0	6	12	0	18	57
5:00 PM	0	0	0	0	0	12	0	3	0	15	0	3	0	0	3	0	14	11	0	25	43
5:15 PM	0	0	0	0	0	19	0	5	0	24	4	6	0	0	10	0	12	17	0	29	63
Total Volume	0	0	0	0	0	73	0	14	0	87	12	21	0	0	33	0	37	51	0	88	208
% App. Total	0.0	0.0	0.0	0.0	0	83.9	0.0	16.1	0.0	100	36.4	63.6	0.0	0.0	100	0.0	42.0	58.0	0.0	100	
PHF										0.777					0.750					0.759	0.825
Cars, PU, Vans	0	0	0	0	0	73	0	14	0	87	12	21	0	0	33	0	37	51	0	88	208
% Cars, PU, Vans	0.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	100.0	100.0	0.0	0.0	100.0	0.0	100.0	100.0	0.0	100.0	100.0

SR 115/US 129/Alcoa Hwy NB Ramp & Maloney Rd

Peak Hour Turning Movement Count

A-6

Project ID: 21-190047-002 Location: SR 115/US 129/Alcoa Hwy NB Ramp & Maloney Rd City: Knoxville

Day: Tuesday Date: 8/31/2021

													PU, Va	ns - Hea	avy Tru	cks									
	SR	115/US			y NB Ra	mp	SR	115/US		coa Hw	/ NB Ra	mp				ney Rd					Malone				
-				bound						bound						oound					Westbo				
Start Time	Left	Thru	Rgt		Peds	App. Total		Thru	Rgt		Peds			Thru	Rgt		Peds /			Thru	3	Uturn		App. Total	Int. Total
7:00 AM	2	1	2	0	0	5	2	1	3	0	0	6	5	4	1	0	0	10	0	2	12	0	0	14	35
7:15 AM	1	2	2	0	0	5	2	0	4	0	0	6	6	13	1	0	0	20	0	16	11	0	0	27	58
7:30 AM	0	1	1	0	0	2	2	0	4	0	0	6	6	17	0	0	0	23	0	11	31	0	0	42	73
7:45 AM	1	0	1	0	0	2	1	0	3	0	0	4	6	9	3	0	0	18	3	16	15	0	0	34	58
Total	4	4	6	0	0	14	-	1	14	0	0	22	23	43	5	0	0	71	3	45	69	0	0	117	224
8:00 AM	3	0	0	0	0	3	0	0	6	0	0	6	7	13	0	0	0	20	0	12	8	0	0	20	49
8:15 AM	0	2	1	0	0	3	3	0	4	0	0	7	5	6	3	0	0	14	2	6	14	0	0	22	46
8:30 AM	0	1	1	0	0	2	0	1	3	0	0	4	2	4	2	0	0	8	1	10	10	0	0	21	35
8:45 AM	2	0	0	0	0	2	1	0	4	0	0	5	12	10	3	1	0	26	1	8	8	0	0	17	50
Total	5	3	2	0	0	10	4	1	17	0	0	22	26	33	8	1	0	68	4	36	40	0	0	80	180
BREAK																									
4:00 PM	0	1	1	0	0	2	2	0	3	0	0	5	8	15	1	0	0	24	0	9	8	0	0	17	48
4:15 PM	ő	1	1	0	0	2	3	ő	1	0	0	4	6	13	1	ő	ő	20	0	10	5	0	Ő	15	41
4:30 PM	Ő	5	1	0	0 0	6	7	ő	4	Ő	Ő	11	13	6	2	Ő	Ő	21	Ő	12	10	0	Ő	22	60
4:45 PM	5	3	3	0	0	11	3	0	5	0	0	8	11	20	2	0	0	33	0	8	11	0	0	19	71
Total	5	10	6	0	0	21	15	0	13	0	0	28	38	54	6	0	0	98	0	39	34	0	0	73	220
5:00 PM	0	5	6	0	0	11	5	0	13	0	0	18		9	1	0	0	15	0	12	10	0	0	22	66
5:15 PM	2	1	8	0	0	11	6	0	13	0	0	19	6	18	1	0	0	25	0	15	13	0	0	28	83
5:30 PM	0	2	5	0	0	7	4	0	3	0	0	7	6	15	6	0	0	27	2	7	10	0	0	19	60
5:45 PM	0	2	1	0	0	3	3	0	5	0	0	8	5	8	4	1	0	18	3	5	9	1	0	18	47
Total	2	10	20	0	0	32	18	0	34	0	0	52	22	50	12	1	0	85	5	39	42	1	0	87	256
-																									
Grand Total	16	27	34	0	0	77	44	2	78	0	0	124	109	180	31	2	0	322	12	159	185	1	0	357	880
Apprch %	20.8	35.1	44.2	0.0	0.0		35.5	1.6	62.9	0.0	0.0		33.9	55.9	9.6	0.6	0.0		3.4	44.5	51.8	0.3	0.0		
Total %	1.8	3.1	3.9	0.0	0.0	8.8	5.0	0.2	8.9	0.0	0.0	14.1	12.4	20.5	3.5	0.2	0.0	36.6	1.4	18.1	21.0	0.1	0.0	40.6	
Cars, PU, Vans	16	27	34	0		77	44	2	78	0		124	109	180	31	2		322	12	159	185	1		357	880
% Cars, PU, Vans	100.0	100.0	100.0	0.0		100.0	100.0	100.0	100.0	0.0		100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0		100.0	100.0

Location: City:	SR 115 Knoxvi		Alcoa	Hwy NE	s Ramp	& Malor	ney Rd	Ρ	EA	K HC	OUR	S							Tuesda 8/31/20:		
	SR 115/	US 129	/Alcoa	Hwy NB	Ramp	SR 115/	US 129/	Alcoa H	wy NB	Ramp		Ma	oney R	d			Ма	loney R	d		1
		No	rthbou	nd	-		Sou	ıthboun	d	-		Ea	stboun	b			W	estbour	d		l
Start Time	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Left	Thru	Rgt	Uturn	App. Total	Int. Tota
eak Hour Analy	sis from	07:00 A																			
Peak Hour for En	itire Inter	section	Begins	at 07:15	5 AM																
7:15 AM	1	2	2	0	5	2	0	4	0	6	6	13	1	0	20	0	16	11	0	27	5
7:30 AM	0	1	1	0	2	2	0	4	0	6	6	17	0	0	23	0	11	31	0	42	7
7:45 AM	1	0	1	0	2	1	0	3	0	4	6	9	3	0	18	3	16	15	0	34	5
8:00 AM	3	0	0	0	3	0	0	6	0	6	7	13	0	0	20	0	12	8	0	20	4
Total Volume	5	3	4	0	12	5	0	17	0	22	25	52	4	0	81	3	55	65	0	123	23
% App. Total	41.7	25.0	33.3	0.0	100	22.7	0.0	77.3	0.0	100	30.9	64.2	4.9	0.0	100	2.4	44.7	52.8	0.0	100	l
PHF					0.600					0.917					0.880					0.732	0.81
Cars, PU, Vans	5	3	4	0	12	5	0	17	0	22	25	52	4	0	81	3	55	65	0	123	23
% Cars, PU, Vans	100.0	100.0	100.0	0.0	100.0	100.0	0.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.

	SR 115	/US 129	/Alcoa	Hwy N	NB Ramp	SR 115	/US 129/	Alcoa	Hwy NB	Ramp		Ma	loney	Rd			M	aloney l	Rd		
		No	rthbou	und			So	uthbou	ind			Ea	stboui	nd			w	estbou	nd		
Start Time	Left	Thru	Rgt	Uturr	App. Total	Left	Thru	Rgt	Uturn #	App. Total	Left	Thru	Rgt	Uturn A	pp. Total	Left	Thru	Rgt	Uturn	App. Total	Int. Total
eak Hour Analys	sis from	04:00 P	M - 06	:00 PM																	
Peak Hour for En	tire Inte	rsection	Begins	s at 04:	45 PM																
4:45 PM	5	3	3	3	0 11	3	0	5	0	8	11	20	2	0	33	0	8	11	0	19	71
5:00 PM	0	5	6	6	0 11	5	0	13	0	18	5	9	1	0	15	0	12	10	0	22	66
5:15 PM	2	1	8	3	0 11	6	0	13	0	19	6	18	1	0	25	0	15	13	0	28	83
	-	-	_							_	-		-				_				

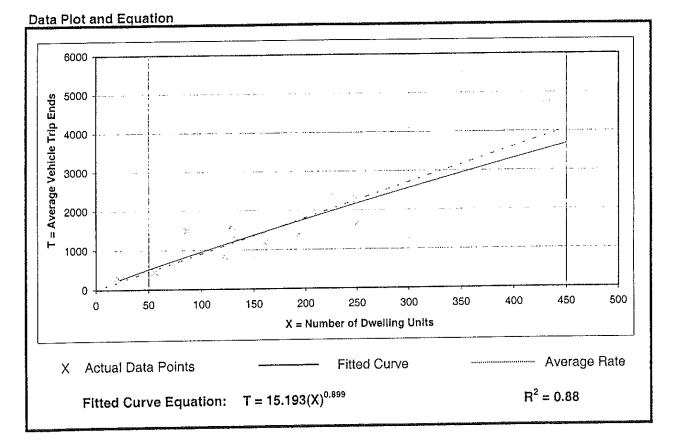
4:45 PM	5	3	3	0	11	3	0	5	0	8	11	20	2	0	33	0	8	11	0	19	71
5:00 PM	0	5	6	0	11	5	0	13	0	18	5	9	1	0	15	0	12	10	0	22	66
5:15 PM	2	1	8	0	11	6	0	13	0	19	6	18	1	0	25	0	15	13	0	28	83
5:30 PM	0	2	5	0	7	4	0	3	0	7	6	15	6	0	27	2	7	10	0	19	60
Total Volume	7	11	22	0	40	18	0	34	0	52	28	62	10	0	100	2	42	44	0	88	280
% App. Total	17.5	27.5	55.0	0.0	100	34.6	0.0	65.4	0.0	100	28.0	62.0	10.0	0.0	100	2.3	47.7	50.0	0.0	100	
PHF					0.909					0.684					0.758					0.786	0.843
Cars, PU, Vans	7	11	22	0	40	18	0	34	0	52	28	62	10	0	100	2	42	44	0	88	280
% Cars, PU, Vans	100.0	100.0	100.0	0.0	100.0	100.0	0.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0

APPENDIX B

TRIP GENERATION INFORMATION

.....

APPENDIX B - TRIP GENERATION INFORMATION

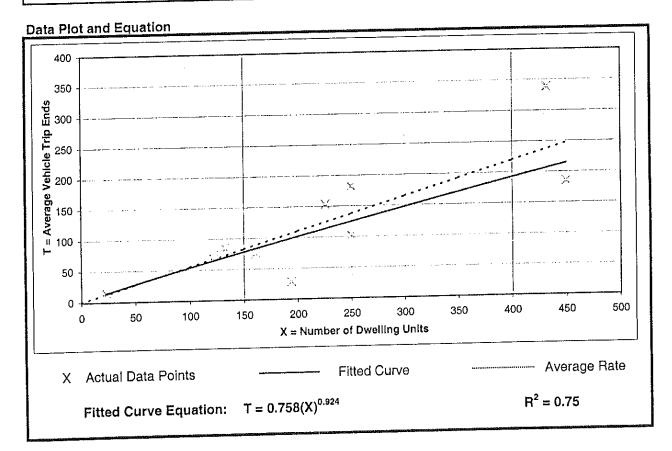

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: Dweiling Units On a: Weekday

Number of Studies:	13 193
Average Number of Dwelling Units: Directional Distribution:	50% entering, 50% exiting
Directional Distribution	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
9.03	6.59 - 17.41	2.47



Local Apartment Trip Generation Study

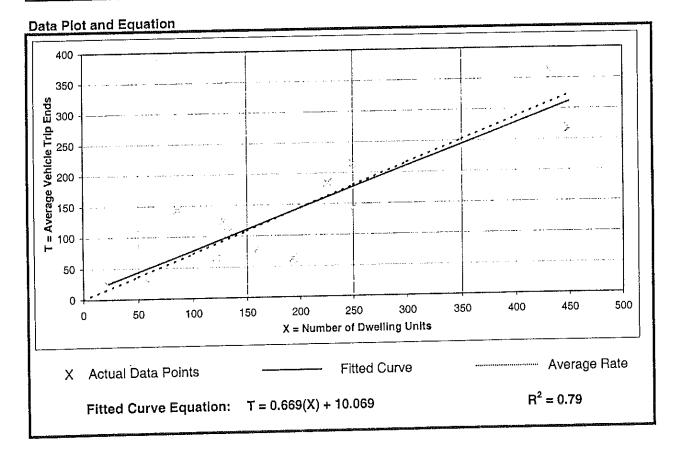
Average Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Number of Studies:	13
Average Number of Dwelling Units:	193
Directional Distribution:	22% entering, 78% exiting

Trip Generation Per Dwelling Unit

,	Trip Generation Fer Dweining	Ranges of Rates	Standard Deviation
l	Average Rate	0.14 - 0.78	0.18
	0.55	0.14 - 0.70	

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: D On a: V


Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 1 Average Number of Dwelling Units: 1 Directional Distribution: 5

13 193 55% entering, 45% exiting

Trip Generation Per Dwelling Unit

I	Average Rate	Ranges of Rates	Standard Deviation
-			0.25
	0.72	0.32 - 1.66	

APPENDIX C

CAPACITY ANALYSES

.....

APPENDIX C - CAPACITY ANALYSES

CAPACITY AND LEVEL-OF-SERVICE CONCEPTS

In a general sense, a roadway is similar to a pipeline or other material carrying conduit in that it has a certain capacity for the amount of material (vehicles) that it can efficiently carry. As the number of vehicles in a given time period gradually increases, the quality of traffic flow gradually decreases. On roadway sections this results in increasing turbulence in the traffic stream, and at intersections it results in increasing stops and delay. As the volumes begin to approach the capacity of the facility, these problems rapidly magnify, with resulting serious levels of congestion, stops, delay, excess fuel consumption, pollutant emissions, etc.

The Transportation Research Board has published the <u>Year 2010 Highway Capacity Manual</u> (HCM2010), which establishes theoretical techniques to quantify the capacity conditions on all types of roadways, intersections, ramps, pedestrian facilities, etc. A basic concept that is applicable to most of these techniques is the idea of level of service (LOS). This concept establishes a rating system that quantifies the quality of traffic flow, as perceived by motorists and/or passengers. The general system is similar to a school grade scale, and is outlined as follows:

Level of Service (LOS)	General Quality of Traffic Flow	Description of Corresponding Conditions
A	Excellent	Roadways – Free flow, high maneuverability Intersections – Very few stops, very low delay
В	Very Good	Roadways – Free flow, slightly lower maneuverability Intersections – Minor stops, low delay
С	Good	Roadways – Stable flow, restricted maneuverability Intersections – Significant stops, significant delay
D	Fair	Roadways – Marginally stable flow, congestion seriously restricts maneuverability Intersections – High stops, long but tolerable delay
Е	Poor	Roadways – Unstable flow*, lower operating speeds, congestion severely restricts maneuverability Intersections – All vehicles stop, very long queues and very long intolerable delay
F	Very Poor	Roadways – Forced flow, stoppages may be lengthy, congestion severely restricts maneuverability Intersections – All vehicles stop, extensive queues and extremely long intolerable delay

*Unstable flow is such that minor fluctuations or disruptions can result in rapid degradation to LOS F.

LOS	CO	NTROL DELAY (S/VEH)	
203	SIGNALIZED	UNSIGNALIZED	ROUNDABOUT
А	≤10	≤10	<u>≤</u> 10
В	>10-20	>10-15	>10-15
С	>20-35	>15-25	>15-25
D	>35-55	>25-35	>25-35
E	>55-80	>35-50	>35-50
F	>80	>50	>50

LOS CRITERIA: SIGNALIZED & UNSIGNALIZED INTERSECTIONS

Another measure of intersection capacity that is often used in the evaluation of intersection operations is the volume to capacity (V/C) ratio. This ratio is defined as "the ratio of flow rate to capacity", and is a good measure of how much of an intersection's available capacity has been used up by the analysis volumes. Conversely, it also provides an indication of the reserve capacity available for future growth in traffic volumes.

The Intersection Capacity Utilization (ICU) is another measure that expresses a value similar to the V/C ratio. Specifically, the ICU method "sums the amount of the time required to serve all movements at saturation for a given cycle length and divides by that reference cycle length." The ICU is considered a more accurate measure of volume to capacity conditions for a signalized intersection, primarily because it accounts for the effects of the signal timing on intersection capacity.

<u> </u>				HCS			C 14									
General Information							Site	e Infoi	rmatio	n						
Analyst	ВЈН					*	-		Inter	section			Malor	ney at A	Alcoa SB	
Agency or Co.	Canno	on & Car	nnon, Ind	c.	1	+			E/W	Street Na	me		Malor	ney Roa	ad	
Date Performed	9/15/	2021			1.				N/S S	Street Nar	ne		Alcoa	Highw	ay SB Ra	amps
Analysis Year	2021				*	w-s	9		Analy	sis Time	Period (h	rs)	0.25			
Time Analyzed	AM P	eak			1			1	Peak	Hour Fac	tor		0.94			
Project Description	2021	Existing					+	1	Juriso	diction			City o	f Knoxv	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			W	/B			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	TR				LT			LT	R				LTR
Volume (V), veh/h	0	25	37	0	0	0	34	59	0	0	0	0	0	59	0	4
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	27	41	0	0	0	37	65	0	0	0	0	0	65	0	4
Right-Turn Bypass		No	one			Yield	ding			No	ne			Ν	lone	
Conflicting Lanes			1			1	1			1					1	
Pedestrians Crossing, p/h		(C			0)			()				0	
Critical and Follow-U	Јр Неа	adway	/ Adju	stmen	t											
Approach				EB				WB			NB		Т		SB	
Lane	Ich Left				Вурая	s Let	ft	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Critical Headway (s)				4.9763			Т	4.9763	4.9763		4.9763		Τ		4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087	·			2.6087	
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB		Т		WB			NB		Т		SB	
Lane			Left	Right	Вураз	s Lei	ft	Right	Bypass	Left	Right	Bypas	; L	eft	Right	Bypas
Entry Flow (v _e), pc/h				68				37	65		0		\top		69	
Entry Volume, veh/h				66				36	63		0				67	
Circulating Flow (v _c), pc/h				65				27			133				37	
Exiting Flow (vex), pc/h				106				41			27				0	
Capacity (c _{pce}), pc/h				1291				1343	1343		1205				1329	
Capacity (c), veh/h				1254				1303	1303		1170		Τ		1290	
v/c Ratio (x)				0.05				0.03	0.05		0.00		Τ		0.05	
Delay and Level of S	ervice	•														
Approach	EB							WB			NB		Τ		SB	
Lane	Left Right			Вурая	s Let	ft	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas	
Lane Control Delay (d), s/veh		Left Right 3.3						3.0	3.1		3.1				3.2	
Lane LOS				A				А	А		A				А	
95% Queue, veh				0.2				0.1	0.2		0.0				0.2	
	0.2															
Approach Delay, s/veh			3.3 A					3.1							3.2	

HCS TM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2021 Existing AM.xro

General Information							Sit	e Info	rmatio	n						
Analyst	ВЈН					*			Inter	section			Malo	ney at A	Alcoa SB	
Agency or Co.	Canno	on & Car	nnon, Ind		1				E/W	Street Na	me		Malo	ney Roa	ad	
Date Performed	9/15/	2021			1.	10			N/S S	Street Nar	ne		Alcoa	Highw	ay SB Ra	amps
Analysis Year	2021				*\ ⁺	W	+ E 8		Analy	sis Time	Period (h	rs)	0.25			
Time Analyzed	PM Pe	eak			1			1	Peak	Hour Fac	tor		0.83			
Project Description	2021	Existing					+ +	1	Juriso	diction			City c	of Knoxv	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			W	٧B			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ſR				LT			LT	R				LTR
Volume (V), veh/h	0	14	25	0	0	0	44	61	0	0	0	0	0	88	0	17
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	17	31	0	0	0	55	76	0	0	0	0	0	109	0	21
Right-Turn Bypass		No	one			Yield	ding			No	ne			Ν	lone	
Conflicting Lanes			1				1			1					1	
Pedestrians Crossing, p/h		(C			(0			()				0	
Critical and Follow-U	Јр Неа	adway	/ Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane	ch Left			Right	Вура	ss Le	eft	Right	Bypass	Left	Right	Bypas	s L	.eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763	4.9763		4.9763				4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087	,			2.6087	
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB				WB			NB		Τ		SB	
Lane			Left	Right	Вурая	ss Le	eft	Right	Bypass	Left	Right	Bypas	5 L	eft	Right	Bypas
Entry Flow (ve), pc/h				48				55	76		0				130	
Entry Volume, veh/h				47				53	74		0		Τ		126	
Circulating Flow (vc), pc/h				109				17			157				55	
Exiting Flow (v _{ex}), pc/h				140				76			17				0	
Capacity (c _{pce}), pc/h				1235				1356	1356		1176				1305	
Capacity (c), veh/h				1199				1317	1317		1142				1267	
v/c Ratio (x)				0.04				0.04	0.06		0.00				0.10	
Delay and Level of S	ervice															
Approach	EB							WB			NB				SB	
Lane	Left Right			Вура	ss Le	eft	Right	Bypass	Left	Right	Bypas	5 L	eft	Right	Bypas	
Lane Control Delay (d), s/veh	Left Right 3.3						3.1	3.2		3.2				3.7		
Lane LOS				А				А	А		A				А	
95% Queue, veh				0.1				0.1	0.2		0.0				0.3	
	0.1														2.7	
Approach Delay, s/veh				3.3				3.1							3.7	

HCSTM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2021 Existing PM.xro

			_		57 Ro	_	_	_		_	_	_				_
General Information							Site	Infor	matio	n						
Analyst	BJH				-	*			Inters	section			Malor	iey at <i>i</i>	Alcoa NE	3
Agency or Co.	Canno	on & Car	nnon, Ind	c.		+			E/W S	Street Na	me		Malor	iey Roa	ad	
Date Performed	9/15/	2021			(N			N/S S	Street Nar	ne		Alcoa	Highw	vay NB R	amps
Analysis Year	2021				▲ ↓	w‡ s			Analy	vsis Time	Period (h	rs)	0.25			
Time Analyzed	AM P	eak			1				Peak	Hour Fac	tor		0.82			
Project Description	2021	Existing				\rightarrow	*		Juriso	liction			City o	f Knox	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			WE	3			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ΓR			I	LTR			LTI	R				LT
Volume (V), veh/h	0	30	62	5	0	4	66	78	0	6	4	5	0	6	0	20
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	38	78	6	0	5	83	98	0	8	5	6	0	8	0	25
Right-Turn Bypass		No	one			Nor	ne			No	ne			Yi	elding	
Conflicting Lanes			1			1				1					1	
Pedestrians Crossing, p/h		(C			0				C)				0	
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	t											
Approach								WB			NB				SB	
Lane			Left	Right	Bypass	Lef	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Critical Headway (s)				4.9763			4	4.9763			4.9763				4.9763	4.976
Follow-Up Headway (s)				2.6087			2	2.6087			2.6087				2.6087	2.608
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB				WB			NB		Γ		SB	
Lane			Left	Right	Bypass	Lef	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Entry Flow (ve), pc/h				122				186			19				8	25
Entry Volume, veh/h				118				181			18				8	24
Circulating Flow (v _c), pc/h				13				51			124				96	
Exiting Flow (vex), pc/h				92				91			141				11	
Capacity (c _{pce}), pc/h				1362				1310			1216				1251	1258
Capacity (c), veh/h				1322				1272			1181				1215	1221
v/c Ratio (x)				0.09				0.14			0.02				0.01	0.02
Delay and Level of S	ervice															
Approach	-							WB			NB				SB	
Lane			Right	Bypass	E Lef	t	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Вура	
Lane Control Delay (d), s/veh			3.4				4.0			3.2				3.0	3.1	
Lane LOS				A				А			A				А	Α
	A 0.3			0.3				0.5			0.0				0.0	0.1
95% Queue, veh														-		
95% Queue, veh Approach Delay, s/veh				3.4				4.0			3.2				3.1	

HCSTM Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2021 Existing AM.xro Generated: 9/15/2021 520:37 PM

	_	_	_		57 Ro	_	_	_		_	_	_	_	_	_	
General Information							Site	e Infor	matio	n						
Analyst	BJH				-	*			Inter	section			Malor	ney at A	Alcoa NE	3
Agency or Co.	Canno	on & Car	nnon, Ind			+			E/W	Street Na	me		Malor	ney Roa	ad	
Date Performed	9/15/	2021		the second					N/S S	Street Nar	ne		Alcoa	Highw	ay NB R	amps
Analysis Year	2021				₹	w+s			Analy	vsis Time	Period (h	rs)	0.25			
Time Analyzed	PM Pe	eak			-				Peak	Hour Fac	tor		0.84			
Project Description	2021	Existing						1	Juriso	diction			City o	f Knox	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			W	В			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ſR				LTR			LT	R				LT
Volume (V), veh/h	0	34	74	12	0	2	50	53	0	8	13	26	0	22	0	41
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	42	91	15	0	2	61	65	0	10	16	32	0	27	0	50
Right-Turn Bypass		No	one			No	ne			No	ne			Yie	elding	
Conflicting Lanes			1			1				1	l				1	
Pedestrians Crossing, p/h		(C			0)			()				0	
Critical and Follow-U	Јр Неа	adway	<mark>⁄ Adj</mark> u	stmen	t											
Approach				EB				WB			NB				SB	
Lane	Dach Left			Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	: L	eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763			4.9763				4.9763	4.9763
Follow-Up Headway (s)				2.6087				2.6087			2.6087	,			2.6087	2.6087
Flow Computations,	Capad	ity ar	nd v/c	Ratios	5											
Approach				EB				WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	; L	eft	Right	Bypas
Entry Flow (ve), pc/h				148				128			58				27	50
Entry Volume, veh/h				144				124			56				26	49
Circulating Flow (v _c), pc/h				29				68			160				73	
Exiting Flow (v _{ex}), pc/h				150				71			123				17	
Capacity (c _{pce}), pc/h				1340				1288			1172				1281	1284
Capacity (c), veh/h				1301				1250			1138				1244	1246
v/c Ratio (x)				0.11				0.10			0.05				0.02	0.04
Delay and Level of S	ervice															
Approach								WB			NB				SB	
Lane			Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas	
Lane Control Delay (d), s/veh							3.7			3.6				3.1	3.2	
Lane LOS				A				А			A				А	A
95% Queue, veh				0.4				0.3			0.2				0.1	0.1
Approach Dolay, chich								3.7			3.6				3.2	
Approach Delay, s/veh	3.7 A												-			

HCS TM Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2021 Existing PM.xro Generated: 9/15/2021-5:22:58 PM

• · · · ·	_	_		HCS							_	_	_			_
General Information							Site	e Info	rmatio	า						
Analyst	BJH					*	-		Inters	ection			Malor	ney at A	lcoa SB	
Agency or Co.	Canno	on & Car	nnon, Ind		1	÷			E/W	Street Na	me			ney Roa		
Date Performed	9/15/	2021								street Nar				Highw	ay SB Ra	amps
Analysis Year	2024				*	w+			<u> </u>	rsis Time		rs)	0.25			
Time Analyzed	AM P	eak								Hour Fac	tor		0.94			
Project Description	2024	Backgro	und					1	Juriso	liction			City o	f Knoxv	ville	
Volume Adjustments	s and S	Site C	harac	teristic	s											
Approach		E	В			W	В			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ſR				LT			LTF	R				LTR
Volume (V), veh/h	0	27	40	0	0	0	37	64	0	0	0	0	0	64	0	4
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	30	44	0	0	0	41	70	0	0	0	0	0	70	0	4
Right-Turn Bypass		No	one			Yield	ling			No	ne			N	lone	
Conflicting Lanes			1			1				1					1	
Pedestrians Crossing, p/h		(C			0				C)				0	
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	t											
Approach				EB				WB			NB		Τ		SB	
Lane	oach Left			Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763	4.9763		4.9763				4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087				2.6087	
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB				WB			NB		Γ		SB	
Lane			Left	Right	Bypas	s Lef	ťt	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Entry Flow (ve), pc/h				74				41	70		0				74	
Entry Volume, veh/h				72				40	68		0		Γ		72	
Circulating Flow (v _c), pc/h				70				30			144		Γ		41	
Exiting Flow (vex), pc/h				114				45			30		Γ		0	
Capacity (c _{pce}), pc/h				1285				1338	1338		1191				1323	
Capacity (c), veh/h				1247				1299	1299		1157				1285	
v/c Ratio (x)				0.06				0.03	0.05		0.00				0.06	
Delay and Level of S	ervice															
Approach								WB			NB		Γ		SB	
Lane			Right	Bypas	s Lef	ťt	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas	
Lane Control Delay (d), s/veh			3.4				3.0	3.2		3.1				3.2		
Lane LOS				A				А	А		A				А	
95% Queue, veh				0.2				0.1	0.2		0.0				0.2	
	3.4															
Approach Delay, s/veh		3.4 A						3.1							3.2	

HCSTM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2024 Background AM.xro

<u> </u>				HCS												
General Information							Sit	e Info	rmatio	n						
Analyst	ВЈН					*			Inter	section			Malor	ney at A	lcoa SB	
Agency or Co.	Canno	on & Car	nnon, Ind		1		-		E/W	Street Na	me		Malor	ney Roa	d	
Date Performed	9/15/	2021			1.	10			N/S :	Street Nar	ne		Alcoa	Highw	ay SB Ra	amps
Analysis Year	2024				*\ ⁺	W	+ E 8		Analy	/sis Time	Period (h	rs)	0.25			
Time Analyzed	PM Pe	eak			1			1	Peak	Hour Fac	tor		0.83			
Project Description	2024	Backgro	und					1	Juriso	diction			City o	f Knoxv	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			W	VВ			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ΓR				LT			LT	R				LTR
Volume (V), veh/h	0	15	27	0	0	0	47	66	0	0	0	0	0	95	0	18
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	19	34	0	0	0	58	82	0	0	0	0	0	118	0	22
Right-Turn Bypass		No	one			Yield	ding			No	ne			N	lone	
Conflicting Lanes			1				1			1	l				1	
Pedestrians Crossing, p/h		(C			(0			()				0	
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	t											
Approach				EB				WB			NB		Т		SB	
Lane	Dach Left			Right	Вурая	ss Le	eft	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763	4.9763		4.9763		Τ		4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087	·			2.6087	
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB				WB			NB		Т		SB	
Lane			Left	Right	Вура	ss Le	eft	Right	Bypass	Left	Right	Bypass	: L	eft	Right	Bypas
Entry Flow (v _e), pc/h				53				58	82		0		\top		140	
Entry Volume, veh/h				51				56	80		0				136	
Circulating Flow (v _c), pc/h				118				19			171				58	
Exiting Flow (vex), pc/h				152				80			19		Τ		0	
Capacity (c _{pce}), pc/h				1224				1354	1354		1159				1301	
Capacity (c), veh/h				1188				1314	1314		1125				1263	
v/c Ratio (x)				0.04				0.04	0.06		0.00				0.11	
Delay and Level of S	ervice															
Approach	E							WB			NB				SB	
Lane				Right	Bypas	ss Le	eft	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Lane Control Delay (d), s/veh	Left Right 3.4						3.1	3.2		3.2				3.7		
Lane LOS				A				А	А		A				А	
95% Queue, veh				0.1				0.1	0.2		0.0				0.4	
	3.4														2.7	
Approach Delay, s/veh		3.4 A						3.2							3.7	

HCSTM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2024 Background PM.xro

			_		57 Ro		_	_	-		_	_	_	_	_	
General Information							Site	e Infor	matio	n						
Analyst	BJH				-	*			Inter	section			Malon	ey at A	Alcoa NE	3
Agency or Co.	Canno	on & Car	nnon, Ind	c.		+			E/W	Street Na	me		Malon	iey Roa	ad	
Date Performed	9/15/	2021		And A local	(N			⊱ N/S	Street Na	ne		Alcoa	Highw	ay NB R	amps
Analysis Year	2024				▲ ↓ *	w‡ s			Anal	ysis Time	Period (h	rs)	0.25			
Time Analyzed	AM P	eak			1				Peak	Hour Fac	tor		0.82			
Project Description	2024	Backgro	und				•	1	Juris	diction			City of	f Knoxv	ville	
Volume Adjustments	s and S	Site C	harac	teristic	S				_							
Approach		E	В			W	В			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ΓR				LTR			LTI	२	······			LT
Volume (V), veh/h	0	32	67	5	0	4	71	84	0	6	4	5	0	6	0	22
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	40	84	6	0	5	89	106	0	8	5	6	0	8	0	28
Right-Turn Bypass		No	one			Nor	ne			No	ne			Yie	elding	
Conflicting Lanes			1			1					l				1	
Pedestrians Crossing, p/h		(C			0				()				0	
Critical and Follow-U	Јр Неа	adway	/ Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane				Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763			4.9763				4.9763	4.976
Follow-Up Headway (s)				2.6087				2.6087			2.6087				2.6087	2.608
Flow Computations,	Capad	city ar	nd v/c	Ratios	5											
Approach				EB				WB			NB		Γ		SB	
Lane			Left	Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Entry Flow (ve), pc/h				130				200			19				8	28
Entry Volume, veh/h				126				194			18				8	27
Circulating Flow (v _c), pc/h				13				53			132				102	
Exiting Flow (v _{ex}), pc/h				98				97			151				11	
Capacity (c _{pce}), pc/h				1362				1307			1206				1244	1250
Capacity (c), veh/h				1322				1269			1171				1207	1214
v/c Ratio (x)				0.10				0.15			0.02				0.01	0.02
Delay and Level of S																
Approach	roach							WB			NB				SB	
Lane	Left R		Right	Bypas	s Lef	ft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Вурая	
Lane Control Delay (d), s/veh			3.5				4.1			3.2				3.0	3.1	
Lane LOS	n 3.5 A			A				А			A				А	A
95% Queue, veh				0.3				0.5			0.0				0.0	0.1
Approach Dolay, s/yoh	ach Delay, s/veh 3.5							4.1			3.2				3.1	
Approach Delay, syven	5.5 A					_										

HCSTM Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2024 Background AM.xro

						undat	_	_								
General Information						S	Site In	forn	natio	า						
Analyst	BJH				-	* •			Inters	ection			Malor	ney at A	Alcoa NE	3
Agency or Co.	Canno	on & Car	nnon, Inc	. .		+			E/W S	Street Na	me		Malor	ney Roa	ad	
Date Performed	9/15/	2021				N)*	N/S S	treet Nar	ne		Alcoa	Highw	ay NB R	amps
Analysis Year	2024				▲ ↓ *	W + E			Analy	sis Time	Period (h	irs)	0.25			
Time Analyzed	PM Pe	eak			-				Peak	Hour Fac	tor		0.84			
Project Description	2024	Backgro	und			$\overrightarrow{\mathbf{v}}$	*		Jurisc	liction			City o	f Knoxv	ville	
Volume Adjustments	and s	Site C	haract	teristic	s											
Approach		E	В			WB				N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			U	ΓR			LTR				LT	R				LT
Volume (V), veh/h	0	37	80	13	0	2	54	57	0	9	14	28	0	24	0	44
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	45	98	16	0	2	66	70	0	11	17	34	0	29	0	54
Right-Turn Bypass		No	one			None	9			No	ne			Yie	elding	
Conflicting Lanes			1			1				1					1	
Pedestrians Crossing, p/h		(C			0				C)				0	
Critical and Follow-U	Јр Неа	adway	/ Adju	stmen	t											
Approach				EB			W	В			NB				SB	
Lane				Right	Bypass	Left	Rig	ht I	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Critical Headway (s)				4.9763			4.97	63			4.9763	;			4.9763	4.9763
Follow-Up Headway (s)				2.6087			2.60	87			2.6087	,			2.6087	2.6087
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB			W	В			NB		Т		SB	
Lane			Left	Right	Bypass	Left	Rig	ht I	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Entry Flow (ve), pc/h				159			13	8			62		Τ		29	54
Entry Volume, veh/h				154			13	4			60		Τ		28	52
Circulating Flow (v _c), pc/h				31			73	3			172				79	
Exiting Flow (v _{ex}), pc/h				161			7	7			132				18	
Capacity (c _{pce}), pc/h				1337			128	31			1158				1273	1276
Capacity (c), veh/h				1298			124	14			1124				1236	1239
v/c Ratio (x)				0.12			0.1	1			0.05				0.02	0.04
Delay and Level of S	ervice															
Approach	-						W	В			NB				SB	
Lane	EB Left Rigl		Right	Bypass	Left	Rig	ht I	Bypass	Left	Right	Bypass	L	eft	Right	Bypas	
Lane Control Delay (d), s/veh				3.7			3.	8			3.7				3.1	3.2
Lane LOS				A			A				A				А	А
		A 0.4				0.	4			0.2				0.1	0.1	
95% Queue, veh	0.4															
95% Queue, veh Approach Delay, s/veh				3.7			3.	8			3.7				3.2	

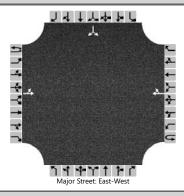
HCSTM Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2024 Background PM.xro Generated: 9/15/2021 5.33:07 PM

				HCS		_	6 24									
General Information							Site	e Info	rmatio	n						
Analyst	BJH					*			Inter	section			Malor	ney at A	lcoa SB	
Agency or Co.	Canno	on & Car	nnon, Inc		1		-		E/W	Street Na	me			ney Roa		
Date Performed	9/23/	2021					N			Street Na			Alcoa	Highw	ay SB Ra	amps
Analysis Year	2024				*		ster s		<u></u>	ysis Time		rs)	0.25			
Time Analyzed	AM P	eak			-					Hour Fac	tor		0.94			
Project Description	2024	Combine	ed				- / *	1	Juris	diction			City o	f Knoxv	ville	
Volume Adjustments	and	Site C	haract	teristic	s											
Approach		E	В			W	VB			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			U	ſR				LT			LT	R				LTR
Volume (V), veh/h	0	27	45	0	0	0	46	83	0	0	0	0	0	72	0	4
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vPCE), pc/h	0	30	49	0	0	0	50	91	0	0	0	0	0	79	0	4
Right-Turn Bypass		Nc	one			Yiel	ding			No	ne			N	lone	
Conflicting Lanes			1				1								1	
Pedestrians Crossing, p/h		()			(0			()				0	
Critical and Follow-U	lp Hea	adway	[,] Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane	n Left R				Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Critical Headway (s)				4.9763				4.9763	4.9763		4.9763				4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087				2.6087	
Flow Computations,	Capad	ity an	ıd v∕c	Ratio	5											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Entry Flow (ve), pc/h				79				50	91		0				83	
Entry Volume, veh/h				77				49	88		0				81	
Circulating Flow (v _c), pc/h				79				30			158				50	
Exiting Flow (v _{ex}), pc/h				128				54			30				0	
Capacity (c _{pce}), pc/h				1273				1338	1338		1175				1311	
Capacity (c), veh/h				1236				1299	1299		1140				1273	
v/c Ratio (x)				0.06				0.04	0.07		0.00				0.06	
Delay and Level of Se	ervice															
Approach			EB				WB			NB				SB		
Lane	Left Right			Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas	
Lane Control Delay (d), s/veh		3.4						3.1	3.3		3.2				3.3	
Lane LOS				A				А	A		A				А	
95% Queue, veh				0.2				0.1	0.2		0.0				0.2	
Approach Delay, s/veh				3.4				3.2							3.3	
		3.4 A				1 B		А		1					А	

HCSTM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2024 Combined AM.xro

							C • •									
General Information							Site	e Info	rmatio	n						
Analyst	BJH					*			Inter	section			Malor	ney at A	lcoa SB	
Agency or Co.	Canno	on & Car	nnon, Ind		1		-		E/W	Street Na	me			ney Roa		
Date Performed	9/23/	2021				10	N			Street Nar			Alcoa	Highwa	ay SB Ra	amps
Analysis Year	2024				*				6	sis Time		rs)	0.25			
Time Analyzed	PM Pe	eak			-					Hour Fac	tor		0.83			
Project Description	2024	Combine	ed				- / *	1	Juris	diction			City o	f Knoxv	rille	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			W	VВ			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ſR				LT			LT	R				LTR
Volume (V), veh/h	0	15	36	0	0	0	59	81	0	0	0	0	0	133	0	18
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	19	45	0	0	0	73	101	0	0	0	0	0	165	0	22
Right-Turn Bypass		Nc	one			Yield	ding			No	ne			N	one	
Conflicting Lanes			1				1			1					1	
Pedestrians Crossing, p/h		()			(0			C)				0	
Critical and Follow-U	р Неа	adway	<mark>⁄ Adj</mark> u	stmen	t											
Approach				EB				WB			NB				SB	
Lane	ch Left				Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypass
Critical Headway (s)				4.9763				4.9763	4.9763		4.9763				4.9763	
Follow-Up Headway (s)				2.6087				2.6087	2.6087		2.6087				2.6087	
Flow Computations,	Capad	ity an	ıd v∕c	Ratios	5											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas
Entry Flow (ve), pc/h				64				73	101		0				187	
Entry Volume, veh/h				62				71	98		0				182	
Circulating Flow (v _c), pc/h				165				19			229				73	
Exiting Flow (v _{ex}), pc/h				210				95			19				0	
Capacity (c _{pce}), pc/h				1166				1354	1354		1093				1281	
Capacity (c), veh/h				1132				1314	1314		1061				1244	
v/c Ratio (x)				0.05				0.05	0.07		0.00				0.15	
Delay and Level of Se	ervice															
Approach			EB				WB			NB				SB		
Lane	Left Right			Bypas	s Le	eft	Right	Bypass	Left	Right	Bypass	Le	eft	Right	Bypas	
Lane Control Delay (d), s/veh		3.6						3.2	3.3		3.4				4.1	
Lane LOS		3.6 A						А	A		A				А	
95% Queue, veh				0.2				0.2	0.2		0.0				0.5	
Approach Delay, s/veh				3.6				3.3							4.1	

HCSTM Roundabouts Version 7.9.5 01_Maloney at Alcoa SB_2024 Combined PM.xro

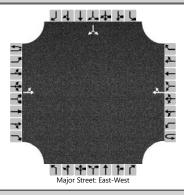

		_	_	HCS			_	_					_			_
General Information							Site	Infor	matio	n						
Analyst	BJH					* ▲			Inters	section			Malon	ey at A	Alcoa NE	}
Agency or Co.	Canno	on & Car	nnon, Inc	:.		+			E/W	Street Na	me		Malon	ey Roa	ıd	
Date Performed	9/23/	2021				N);	N/S S	Street Nar	ne		Alcoa	Highw	ay NB R	amps
Analysis Year	2024				▲ ↓ ↓	w‡ s	•		Analy	sis Time	Period (h	rs)	0.25			
Time Analyzed	AM P	eak			-				Peak	Hour Fac	tor		0.82			
Project Description	2024	Combine	ed				•	1	Juriso	diction			City of	Knox	ville	
Volume Adjustments	and	Site C	haract	teristic	s			<u>.</u>								
Approach		E	В			W	В			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ΓR				LTR			LTI	R				LT
Volume (V), veh/h	0	32	80	5	0	4	99	122	0	6	4	5	0	11	0	22
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	40	100	6	0	5	124	153	0	8	5	6	0	14	0	28
Right-Turn Bypass		Nc	one			Nor	ne			No	ne			Yie	lding	
Conflicting Lanes			1			1				1					1	
Pedestrians Crossing, p/h		()			0				C)				0	
Critical and Follow-U	р Неа	adway	[,] Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane				Right	Bypass	Lef	ft	Right	Bypass	Left	Right	Bypass	Le	ft	Right	Bypas
Critical Headway (s)				4.9763			4	4.9763			4.9763				4.9763	4.9763
Follow-Up Headway (s)				2.6087			á	2.6087			2.6087				2.6087	2.608
Flow Computations,	Capad	ity an	ıd v∕c	Ratio	5											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Lef	ft	Right	Bypass	Left	Right	Bypass	Le	ft	Right	Bypas
Entry Flow (ve), pc/h				146				282			19				14	28
Entry Volume, veh/h				142				274			18				14	27
Circulating Flow (vc), pc/h				19				53			154				137	
Exiting Flow (v _{ex}), pc/h				120				132			198				11	
Capacity (c _{pce}), pc/h				1354				1307			1179				1200	1206
Capacity (c), veh/h				1314				1269			1145				1165	1171
v/c Ratio (x)				0.11				0.22			0.02				0.01	0.02
Delay and Level of Se	ervice															
Approach	roach							WB			NB				SB	
Lane	E Left Rig			Right	Bypass	Lef	ft	Right	Bypass	Left	Right	Bypass	Le	ft	Right	Bypas
Lane Control Delay (d), s/veh	Lent Right 3.6					4.7			3.3				3.2	3.3		
Lane LOS				A				А			A				А	Α
95% Queue, veh				0.4				0.8			0.0				0.0	0.1
	0.4										2.2				3.2	
Approach Delay, s/veh		3.6 A						4.7			3.3				5.2	

HCS T Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2024 Combined AM.xro Generated: 9/23/2021 753:54 AM

				HCS			_									
General Information							Site	Infor	matio	n						
Analyst	BJH				-	*			Inters	section			Malor	ney at A	Alcoa NE	3
Agency or Co.	Canno	on & Car	nnon, Inc	:	1	÷			E/W	Street Na	me		Maloney Road			
Date Performed	9/23/	2021				N		1	N/S S	Street Name A			Alcoa	Highw	ay NB R	amps
Analysis Year	2024				▲ ↓ ↓	w‡ s			Analy	vsis Time	Period (h	rs) 0.25				
Time Analyzed	PM Pe	eak			1		-		Peak	Hour Fac	tor		0.84			
Project Description	2024	Combine	ed				*	1	Juriso	liction			City o	f Knoxv	ville	
Volume Adjustments	and	Site C	harac	teristic	s											
Approach		E	В			WE	3			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ΓR			l	LTR			LT	R				LT
Volume (V), veh/h	0	37	127	13	0	2	81	84	0	9	14	28	0	43	0	44
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (VPCE), pc/h	0	45	156	16	0	2	99	103	0	11	17	34	0	53	0	54
Right-Turn Bypass		No	one			Nor	ne			No	ne			Yie	elding	
Conflicting Lanes			1			1				1	l				1	
Pedestrians Crossing, p/h		(C			0				C)				0	
Critical and Follow-U	lp Hea	adway	/ Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Left	t	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Critical Headway (s)				4.9763			4	4.9763			4.9763				4.9763	4.9763
Follow-Up Headway (s)				2.6087			2	2.6087			2.6087	,			2.6087	2.6087
Flow Computations,	Capad	city ar	nd v/c	Ratio	5											
Approach				EB				WB			NB		Τ		SB	
Lane			Left	Right	Bypass	Left	t	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Entry Flow (ve), pc/h				217				204			62				53	54
Entry Volume, veh/h				211				198			60				51	52
Circulating Flow (v _c), pc/h				55				73			254				112	
Exiting Flow (v _{ex}), pc/h				243				110			165				18	
Capacity (c _{pce}), pc/h				1305				1281			1065				1231	1234
Capacity (c), veh/h				1267				1244			1034				1195	1198
v/c Ratio (x)				0.17				0.16			0.06				0.04	0.04
Delay and Level of So	ervice															
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	E Left	t	Right	Bypass	Left	Right	Bypass	L	eft	Right	Bypas
Lane Control Delay (d), s/veh				4.2				4.2			4.0				3.4	3.4
Lane LOS				A				А			А				А	A
95% Queue, veh				0.6				0.6			0.2				0.1	0.1
													T			
Approach Delay, s/veh				4.2				4.2			4.0				3.4	

HCSTM Roundabouts Version 7.9.5 02_Maloney at Alcoa NB_2024 Combined PM.xro Generated: 9/23/2021 259:01 AM

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	ВЈН	Intersection	Maloney at Site Access
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	City of Knoxville
Date Performed	9/23/2021	East/West Street	Maloney Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	AM Peak	Peak Hour Factor	0.82
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	2024 Combined		
Lanes			



Vehicle Volumes and Adjustments

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		18	78				159	8						28		66
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.13												6.43		6.23
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		22													115	
Capacity, c (veh/h)		1362													770	
v/c Ratio		0.02													0.15	
95% Queue Length, Q ₉₅ (veh)		0.0													0.5	
Control Delay (s/veh)		7.7													10.5	
Level of Service (LOS)		A													В	
Approach Delay (s/veh)		1	.5								10.5					
Approach LOS															В	

Copyright © 2021 University of Florida. All Rights Reserved.

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	ВЈН	Intersection	Maloney at Site Access
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	City of Knoxville
Date Performed	9/23/2021	East/West Street	Maloney Road
Analysis Year	2024	North/South Street	Site Access
Time Analyzed	PM Peak	Peak Hour Factor	0.84
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	2024 Combined		
Lanes			

Vehicle Volumes and Adjustments

					1								1	6		
Approach			ound			_	bound				bound			1	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		66	132				113	28						23		54
Percent Heavy Vehicles (%)		3												3		3
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.13												6.43		6.23
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.23												3.53		3.33
Delay, Queue Length, an	d Leve	l of Se	ervice		<u> </u>						<u> </u>					
Flow Rate, v (veh/h)		79													92	
Capacity, c (veh/h)		1404													735	
v/c Ratio		0.06													0.12	
95% Queue Length, Q ₉₅ (veh)		0.2												Ì	0.4	
Control Delay (s/veh)		7.7													10.6	
Level of Service (LOS)		A													В	
Approach Delay (s/veh)		2	.9							10.6						
Approach LOS										В						

Generated: 9/23/2021 8:01:58 AM

APPENDIX D

TURN LANE WARRANT EVALUATIONS

.....

APPENDIX D - TURN LANE WARRANT EVALUATIONS

Maloney Road at Site Access Combined 2024 AM Volumes Left Turn Lane NOT Warranted

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *									
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399				
100 - 149	300	235	185	145	120	100				
150 - 199	245	200	160	130	110	90				
200 - 249	205	170	140	115	100	80				
250 - 299	175	150	125	105	90	70				
300 - 349	155	135	110	95	80	65				
350 - 399	135	120	100	85	70	60				
400 - 449	120	105	96	75	65	55				
450 - 499	105	90	80	70	60	50				
5(K) - 549	95	\$0	70	65	55	50				
550 - 599	85	70	65	60	50	45				
6(X) - 649	75	65	60	55	45	40				
650 - 699	70	60	55	50	40	35				
700 - 749	65	55	50	45	35	30				
750 or More	60	50	45	40	35	30				

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *									
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600				
100 - 149	100	80	70	60	55	50				
~ 150 - 199	90	75	65	55	50	45				
200 - 249	80	72	460	55	50	45				
250 - 299	70	65	55	50	45	40				
300 - 349	65	60	50	50	45	40				
350 - 399	60	55	50	45	40	40				
400 - 449	55	50	45	45	40	35				
450 - 499	50	45		40	35	35				
500 - 549	50	45	40 40	40	35	35				
550 - 599	45	40		35	35	35				
600 - 649	40	35	35	35	35	30				
650 - 699	35	35	35	30	30	30				
700 - 749	30	30	30	30	30	30				
750 or More	30	30	30	30	30	30				

* Or through volume only if a right-turn lane exists.

Left Turn Volume = 18 Through Volume = 78 Opposing Volume = 167

Maloney Road at Site Access Combined 2024 PM Volumes Left Turn Lane NOT Warranted

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *									
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399				
100 - 149	300	235	185	145	120	100				
150 - 199	245	200	160	130	110	90				
200 - 249	205	170	140	115	100	80				
250 - 299	175	150	125	105	90	70				
300 - 349	155	135	110	95	\$0	65				
350 - 399	135	120	100	85	70	60				
400 - 449	120	105	96	75	65	55				
450 - 499	105	90	80	70	60	50				
5(X) - 549	95	50	70	65	55	50				
550 - 599	85	70	65	60	50	45				
6(X) - 649		65	60	55	45	40				
650 - 699		60	55	50	40	35				
700 - 749	65	55	50	45	35	30				
750 or More	60	50	45	40	35	30				

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *										
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600						
100 - 149	100	80	70	60	55	50						
~ 150 - 199	90	75	65	55	50	45						
200 - 249	80	72	460	55	50	45						
250 - 299	70	65	55	50	45	40						
300 - 349	65	60	50	50	45	40						
350 - 399	60	55	50	45	40	40						
400 - 449	55	50	45	45	40	35						
450 - 499	50	45	45	40	35	35						
500 - 549	50	45	40	40	35	35						
550 - 599	45	40		35	35	35						
600 - 649	40	35	35	35	35	30						
650 - 699	35	35	35	30	30	30						
700 - 749	30	30	30	30	30	30						
750 or More	30	30	30	30	30	30						

* Or through volume only if a right-turn lane exists.

Left Turn Volume = 66 Through Volume = 132 Opposing Volume = 141

Maloney Road at Site Access Combined 2024 AM Volumes Right Turn Lane NOT Warranted

ł

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN	THRO	THROUGH VOLUME PLUS LEFT-TURN VOLUME *									
VOLUME	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399					
Fewer Than 25 25 - 49 50 - 99		No									
100 - 149 150 - 199											
200 - 249 250 - 299						Yes					
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes					
400 - 449 450 - 499			Yes Yes	Yes Yes	Yes Yes	Yes Yes					
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes					
600 or More	Yes	Yes	Yes	Yes	Yes	Yes					

RIGHT-TURN	THRO	UGH VOLUM	E PLUS LEI	T-TURN	VOLUMI	ī *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
Fewer Than 25 25 - 49 50 - 99				5	Yes	Yes Yes
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

Right Turn Volume = 8 Through Volume = 159

Maloney Road at Site Access Combined 2024 PM Volumes Right Turn Lane NOT Warranted

ł

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *									
VOLUME	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399				
Fewer Than 25 25 - 49 50 - 99		No								
100 - 149		1								
150 - 199										
200 - 249 250 - 299						Yes				
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes				
400 - 449 450 - 499			Y'es Y'es	Yes Yes	Y'es Yes	Yes Yes				
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes				
600 or More	Yes	Yes	Yes	Yes	Yes	Yes				

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
Fewer Than 25 25 - 49 50 - 99				5	Yes	Yes Yes
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

Right Turn Volume = 28 Through Volume = 113