SHIPETOWN SQUARE Transportation Impact Analysis Rutledge Pike (US 11-W) Knoxville, TN

A Transportation Impact Analysis for the Shipetown Square

Submitted to

Knoxville – Knox County Planning Commission

Revised February 22, 2021 January 25, 2021 FMA Project No. 588.009

Submitted By:

3-D-21-UR Revised: 2/22/2021

TABLE OF CONTENTS 1 2 TABLE 2.1-1 DOLLAR GENERAL TRIP GENERATION SUMMARY 3 BACKGROUND GROWTH......11 4 TABLE 4-1 SHIPETOWN SQUARE TRIP GENERATION SUMMARY 5 TABLE 5-1 INTERSECTION ANALYSIS LEVEL OF SERVICE (LOS) SUMMARY 6 7 7.1 RUTLEDGE PIKE (US 11W) @ ROBERTS ROAD/SHIPETOWN ROAD......25

FIGURES

1	LOCATION MAP	5
2	Site Plan	6
3	2021 Existing Peak Hour Traffic	. 10
4	2024 Background Peak Hour Traffic	.12
5	AM PEAK HOUR NEW TRIP DISTRIBUTION	. 16
6	PM PEAK HOUR NEW TRIP DISTRIBUTION	.17
7	AM PEAK HOUR PASS-BY TRIP DISTRIBUTION	. 18
8	PM PEAK HOUR PASS-BY TRIP DISTRIBUTION	. 19
9	New Peak Hour Site Trips	. 20
10	Pass-By Peak Hour Site Trips	.21
11	2024 Full Buildout Peak Hour Traffic	. 22

ATTACHMENTS

- 1 AERIAL PHOTO
- 2 TRAFFIC COUNTS
- 3 ADT TRENDS
- 4 TDOT CONCEPT PLAN
- 5 TRIP GENERATION
- 6 INTERSECTION WORKSHEETS EXISTING AM/PM PEAKS
- 7 INTERSECTION WORKSHEETS BACKGROUND AM/PM PEAKS
- 8 INTERSECTION WORKSHEETS FULL BUILDOUT AM/PM PEAKS
- 9 TURN LANE WARRANT ANALYSIS

Executive Summary

Reliance Development, LLC is proposing a commercial development (i.e. Shipetown Square). The full build out of the development will consist of a 4,088 SF convenience market with 10 gas station pump locations and an internal fast food restaurant with a drive-thru window and no indoor seating. The concept plan also shows approximately 3,340 SF of retail shops to be located behind the convenience market. The project is located at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Square in Knox County. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2024.

There are two proposed driveways for the development; a right-in/right-out driveway on Rutledge Pike (US 11W) and a full access driveway on Shipetown Road.

In order to maintain or provide an acceptable level-of-service for each of the intersections studied, some recommendations are presented.

Rutledge Pike (US 11W) at Roberts Road/Shipetown Road

After the completion of the TDOT intersection improvements including the addition of a traffic signal and the full buildout of the Shipetown Square development the traffic conditions for the signalized intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road will operate at a LOS C during the AM peak hour and a LOS B during the PM peak hour. The traffic from the Shipetown Square development will only cause a minor increase in delay to the signalized intersection; therefore there are no recommended improvements.

Rutledge Pike at RIRO Driveway

After the completion of the full buildout of the Shipetown Square development the westbound right turn (driveway) will operate at a LOS A during the AM peak hour and a LOS B during the PM peak hour. A northbound right turn lane is not warranted at the intersection of Rutledge Pike (US 11W) at the right-on/right-out driveway connection per TDOT Roadway Design Guidelines.

Shipetown Road at Driveway Connection

After the completion of the Shipetown Square development the intersection of Shipetown Road at the driveway connection will operate at an acceptable LOS B or better; therefore, there are no recommended improvements. Neither an eastbound left turn lane nor a westbound right turn lane are warranted at the proposed driveway connection.

1 Introduction

1.1 Project Description

This report provides a summary of a traffic impact study that was performed for the Shipetown Square development. The project is located at the northeast corner of the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road in Knox County, Tennessee. The location of the site is shown in Figure 1.

The full build out of the development will consist of a 4,088 SF convenience market with 10 gas station pump locations and an internal fast food restaurant with a drivethru window and no indoor seating. The concept plan also shows approximately 3,340 SF of retail shops to be located behind the convenience market. Construction is proposed to take place this year, and this study assumes full build out for the development will occur in 2024.

There are two proposed driveways for the development; a right-in/right-out driveway on Rutledge Pike (US 11W) and a full access driveway on Shipetown Road. The right-in/right-out driveway is located approximately 150 north of Rutledge Pike (US 11W). The proposed driveway width is 30 feet. The full access driveway is located approximately 180 feet east of the intersection with Rutledge Pike (US 11W) and has a proposed width of 34.72 feet. The convenience market driveway is expected to line up with the existing Dollar General driveway to create a four-way intersection with stop control on the minor approaches. The proposed layout is shown in Figure 2.

The purpose of this study is to evaluate the impacts to the traffic conditions caused by the proposed development.

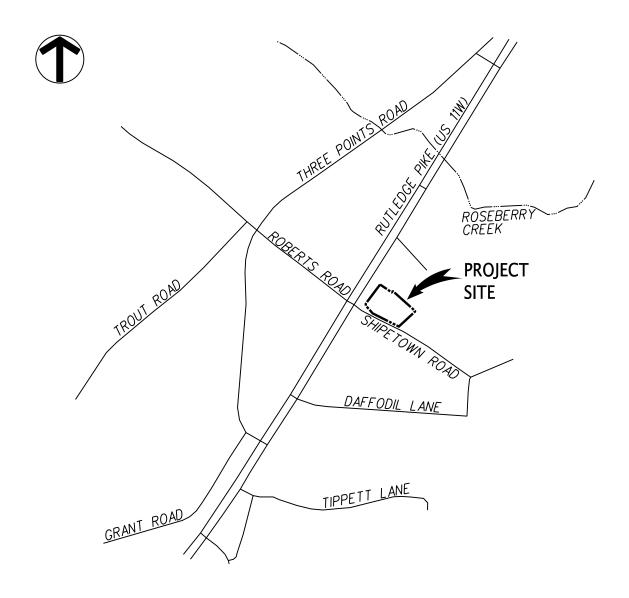


Figure 1: Location Map

Shipetown Square Transportation Impact Analysis February 22, 2021

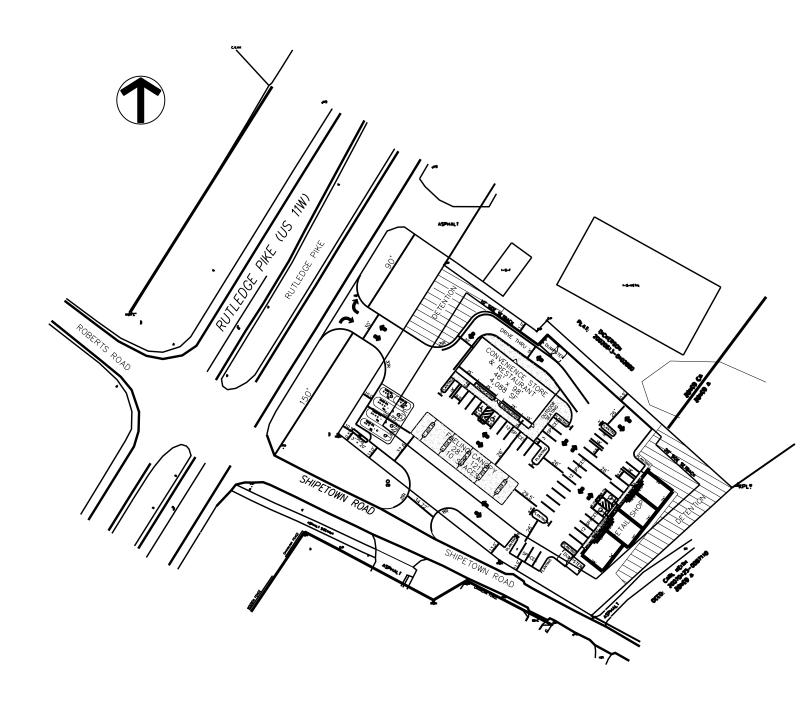


Figure 2: Site Plan

1.2 Existing Site Conditions

Rutledge Pike (US 11W) is a four-lane road. Rutledge Pike (US 11W) at the intersection with Roberts Road/Shipetown Road has an existing 25 foot wide grass median and a 10 foot wide paved shoulder for both northbound and southbound lanes. At the intersection with Roberts Road/Shipetown Road there is an existing northbound left turn lane with an approximate 120 feet storage length and a 235 feet taper length and a southbound left turn lane with an approximate 120 feet storage length and a 200 taper length. The Knoxville-Knox County Planning Commission classifies Rutledge Pike (US 11W) as a Major Arterial with a 112 feet right-of-way per the Major Road Plan. The posted speed limit on Rutledge Pike (US 11W) is 55 mph.

Roberts Road at the intersection with Rutledge Pike (US 11W) is a two-lane road. The Knoxville-Knox County Planning Commission classifies Roberts Road in the vicinity of the proposed development as a Minor Arterial with a 70 feet right-of-way per the Major Road Plan. The posted speed limit on Roberts Road is 40 mph.

Shipetown Road at the intersection with Rutledge Pike (US 11W) is a two-lane road. The Knoxville-Knox County Planning Commission does not classify Shipetown Road; therefore, it is considered a local street per the Major Road Plan. The posted speed limit on Shipetown Road is 25 mph.

There is an existing sidewalk connecting the Dollar General parking lot to Rutledge Pike (US 11W). There are no other sidewalks or designated bike lanes along Rutledge Pike (US 11W) or in the vicinity of the proposed development.

An aerial photo of the existing intersection is included in Attachment 1.

2 Existing Traffic Volumes

Due to the altered traffic patterns from COVID-19 FMA did not collect any new turning movement counts for the Shipetown Square transportation impact analysis.

The Tennessee Department of Transportation Region I Traffic Office conducted a turning movement count at the intersection of Rutledge Pike (US 11W) at Roberts Road/Shipetown Road on Tuesday August 28, 2018 from 7:00 a.m. to 9:00 a.m., 11:00 a.m. to 1:00 p.m. and 2:00 p.m. to 6:00 p.m. The AM peak hour occurred between 7:00 a.m. and 8:00 a.m. with an AM peak volume of 1472 vehicles and an AM peak hour factor of 0.88. The PM peak hour occurred between 4:45 p.m. and 5:45 p.m. with a PM peak hour volume of 1338 vehicles and a PM peak hour factor of 0.94. The TDOT turning movement count is included in Attachment 2.

In order to calculate existing traffic conditions FMA estimated the growth rate from the 2018 turning movement count to the projected existing 2021 traffic conditions. The growth rate was determined by analyzing nearby traffic counts provided by the Tennessee Department of Transportation (TDOT) in the vicinity of the proposed development. Traffic counts located on Rutledge Pike (US 11W) and Roberts Road had an average growth rate of approximately 3%. The ADT trend line growth charts are included in Attachment 3.

2.1 Dollar General Driveway

The existing Dollar General driveway connection is located on Shipetown Road approximately 200 feet east of the existing intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road. The existing retail building size is approximately 9,350 SF and has a driveway width of 37 feet. There are sidewalks that connect the existing Dollar General parking lot to Rutledge Pike (US 11W).

Due to the altered traffic patterns from COVID-19 FMA did not collect any new turning movement counts for the intersection of the Dollar General driveway connection and Shipetown Road. FMA estimated the traffic generated by the Dollar General retail store using the *Trip Generation*, 10th *Edition*, published by the Institute of Transportation Engineers. Variety Store or Land Use 814 was used to calculate site trips for the Dollar General using the average rates. The land use worksheets are included in Attachment 5 and a trip generation summary is shown in Table 2.1-1.

	Table 2.1-1 Trip Generation Summary Dollar General														
Land Use	Density	Daily Trips	AM Peak Hour Enter Exit	PM Peak Hour Enter Exit											
Variety Store (LUC 814)	9350 SF	593	17 13	33 31											

FMA assumed the directional distribution of the traffic generated by the Dollar General using the existing traffic volumes at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road. FMA assumed that 90% of traffic would enter/exit from Rutledge Pike (US 11W) and 10% of traffic would enter/exit from Shipetown Road.

Figure 3 shows the projected 2021 traffic volumes including both the AM and PM peak hour traffic volumes at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road and the intersection or Shipetown Road at the Dollar General driveway connection.

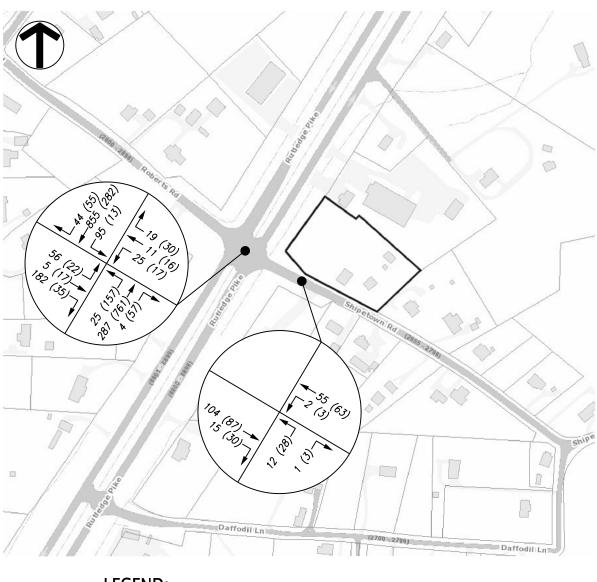
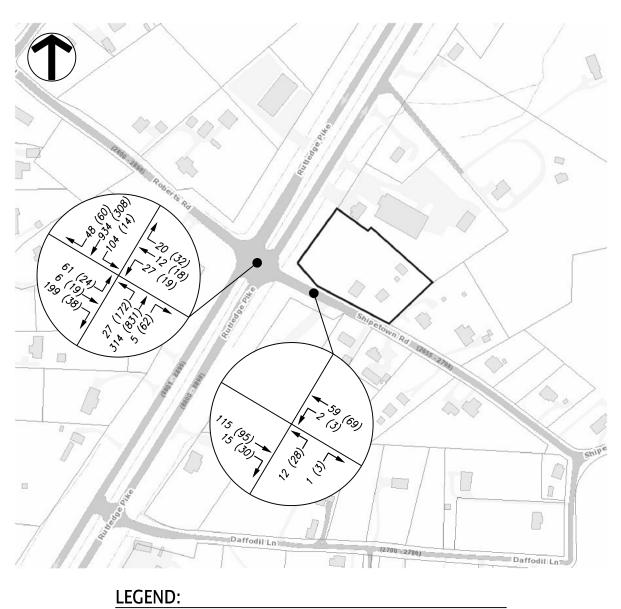


Figure 3: 2021 Existing Peak Hour Traffic

3 Background Growth


The Tennessee Department of Transportation (TDOT) maintains count stations in the vicinity of the proposed development.

TDOT count station ID: 000366 is located on Rutledge Pike (US 11W) south of the intersection with Roberts Road / Shipetown Road. The annual growth rate for this station over the last ten years is approximately 2.53% and the 2018 ADT was 13,249 vehicles per day.

TDOT count station ID: 000302 is located on Roberts Road (Route 01287) west of Rutledge Pike (US 11W) near the Grainger County line. The annual growth rate for this station over the last ten years is approximately 3.40% and the 2018 ADT was 2,482 vehicles per day.

For the purpose of this study, an annual growth rate of 3.0% was assumed for the traffic at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road until full occupancy is reached in 2024. Attachment 3 shows the trend line growth charts for the TDOT count stations.

Figure 4 demonstrates the projected background peak hour volumes at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road after applying the background growth rate to the existing conditions.

— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 4: 2024 Background Peak Hour Traffic

3.1 Rutledge Pike (US 11W) Road Improvements

The Tennessee Department of Transportation is planning an improvement project at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road. Construction is expected to be completed prior to the projected full buildout of the Shipetown Square development in 2024.

Cannon & Cannon, Inc. prepared a preliminary concept plan on May 27, 2020 for the TDOT intersection improvements that includes additional turns lanes on both Rutledge Pike (US 11W) and Roberts Road as well as the installation of a traffic signal.

The preliminary concept plan shows revised lane configurations for Rutledge Pike (US 11W) northbound that include a revised left turn lane with a 250 feet storage length and a 180 taper length and a new right turn lane with a 200 feet storage length and a 180 feet taper length. Rutledge Pike (US 11W) southbound includes a revised left turn lane with a 175 feet storage length and a 180 taper length and a new right turn lane with a 100 feet storage length and a 180 feet taper length. The TDOT preliminary concept plan also shows a new right turn lane on Roberts Road with a 200 feet storage length and a 100 feet taper length.

The preliminary concept plans also shows the location of signal poles and detailed pavement markings that will be installed as a part of the intersection improvements.

The Cannon & Cannon preliminary concept plan is included in Attachment 4.

4 Trip Generation and Trip Distribution

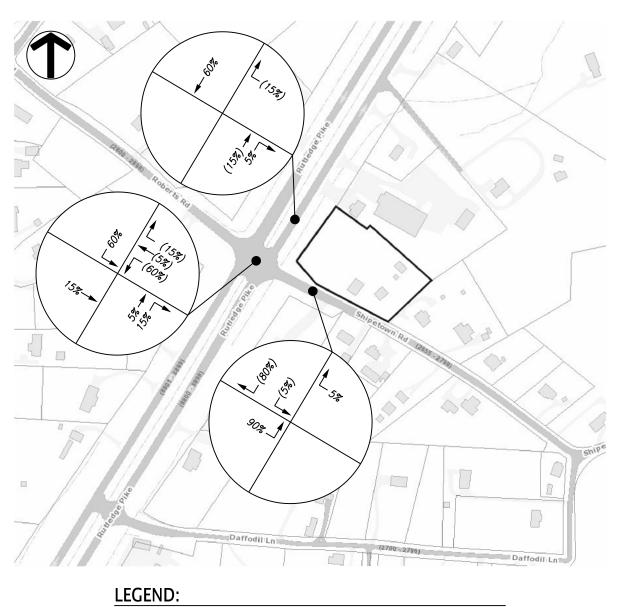
The Shipetown Square development proposes a 4,088 SF convenience market with 10 vehicle fueling positions, an internal 500 SF fast food restaurant with a drivethrough window and no indoor seating and a 3,340 SF retail building. Super Convenience Market/Gas Station or Land Use 960 was used to calculate site trips for the convenience market/gas station using the fitted curve equations from the *Trip Generation*, 10th *Edition*, published by the Institute of Transportation Engineers. Copy, Print, and Express Ship Store or Land Use 920 was used to calculate site trips for the 3,340 SF retail building and Fast-Food Restaurant with Drive-Through Window and No Indoor Searing or Land Use 935 was used for the 500 SF fast food restaurant located inside the convenience market. The land use worksheets are included in Attachment 5.

A pass-by trip occurs when a proposed development diverts traffic that is already traveling on a street adjacent to the site. A pass-by rate reduction of 65% was used for convenience market with an ADT between 10,000 – 20,000 and a pass-by rate reduction of 40% was used for the fast food restaurant per the Knoxville-Knox County Planning Commission pass-by rate Memo.

The total new trips generated by the Shipetown Square development was estimated to be 945 daily trips. The estimated trips are 118 trips during the AM peak hour and 118 trips during the PM peak hour. A trip generation summary is shown in Table 4-1.

T.L.I. 4 4

Land Use	Density	Daily Trips	AM Pe Ente	eak Hour er Exit	PM Pe Ente	eak Hour er Exit
Super Convenience Market/Gas Station (Land Use 960)	10 Vehicle Fueling Positions	2305	140	140	115	115
35% New Trips 65% Pass-By Trips		807 1498	49 91	49 91	40 75	40 75
Fast-Food Restaurant With Drive-Through (LUC 935)	500 SF	230	8	9	11	10
60% New Trips 40% Pass-By Trips		138 92	5 3	6 3	7 4	6 4


Copy, Print, and Express 4,000 SF Ship Store (LUC 920)		7	2	11	14
Total New Trips	945	61	57	58	60
Total Pass-By Trips	1590	94	94	79	79

The existing peak hour trip distribution on Rutledge Pike (US 11W) at the intersection with the driveway connection is approximately 30% northbound and 70% southbound during the AM peak hour and 70% northbound and 30% southbound during the PM peak hour.

The directional distribution of the traffic generated by the Shipetown Square development was estimated based on existing distribution at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road. The entering trip distribution during the AM peak hour is 20% northbound Rutledge Pike (US 11W), 60% southbound Rutledge Pike (US 11W), 5% Shipetown Road and 15% Roberts Road and the exiting trip distribution during the AM peak hour is 30% northbound Rutledge Pike (US 11W), 60% southbound Rutledge Pike (US 11W), 5% Shipetown Road and 5% Roberts Road. The entering trip distribution during the PM peak hour is 65% northbound Rutledge Pike (US 11W), 25% southbound Rutledge Pike (US 11W), 5% Shipetown Road and 5% Roberts Road and 5% Roberts Road and the exiting trip distribution during the PM peak hour is 65% northbound Rutledge Pike (US 11W), 25% southbound Rutledge Pike (US 11W), 10% Shipetown Road and 10% Roberts Road.

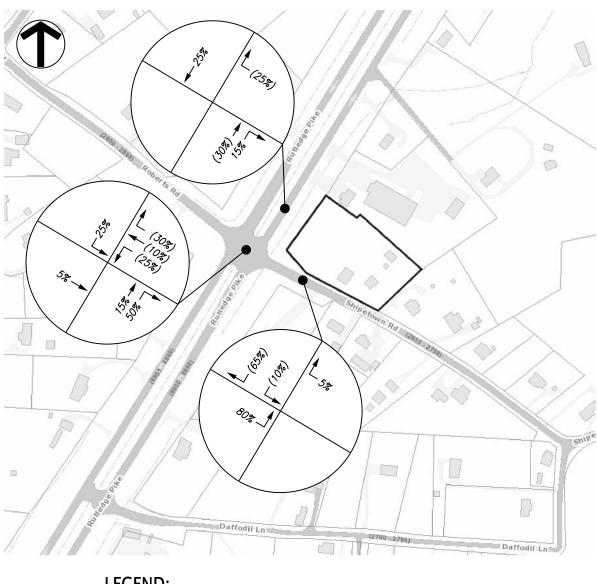

Figure 5 and Figure 6 show the AM and PM peak hour new trip distribution and Figure 7 and Figure 8 show the AM and PM peak hour pass-by trip distribution.

Figure 9 shows the new peak hour site trips and Figure 10 shows the pass-by peak hour site trips. Figure 11 shows the combined 2024 full buildout peak hour traffic after the completion of the Shipetown Square development.

— 50% (50%) TRIP DISTRIBUTION ENTERING (EXITING)

Figure 5: AM Peak Hour New Trip Distribution

LEGEND: ← 50% (50%) TRIP DISTRIBUTION ENTERING (EXITING)

Figure 6: PM Peak Hour New Trip Distribution

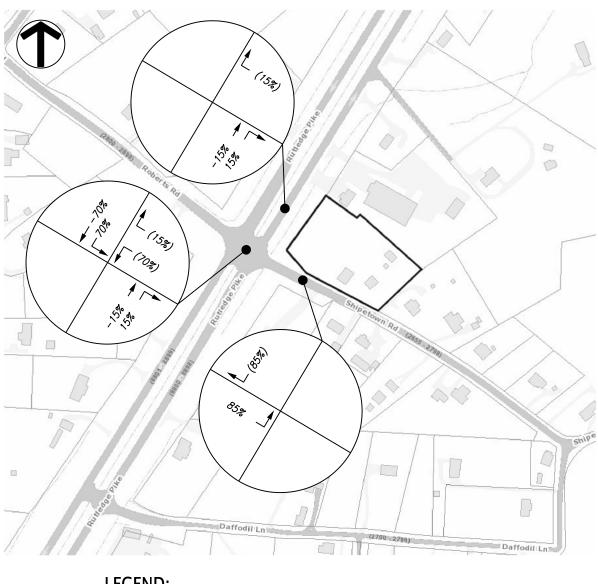
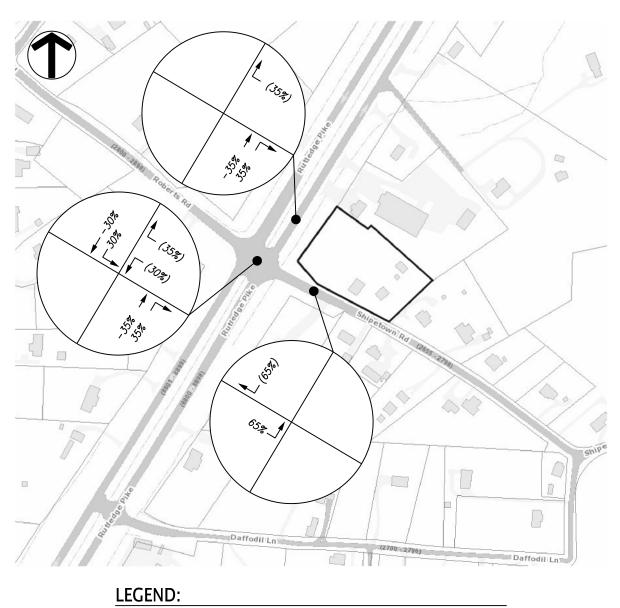
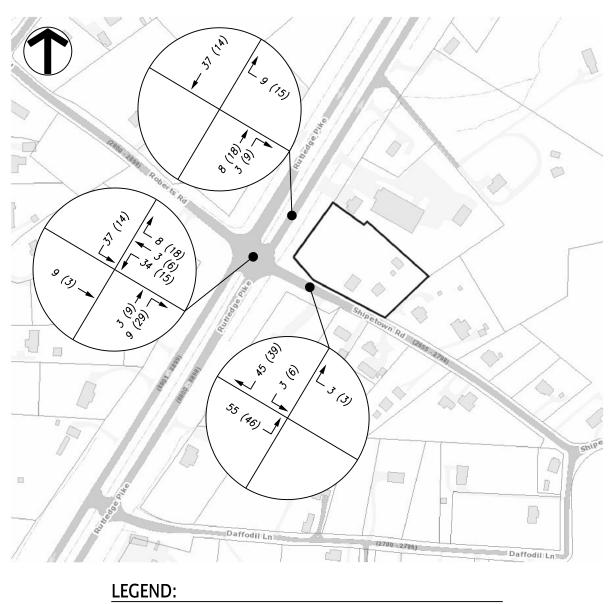




Figure 7: AM Peak Hour Pass-By Trip Distribution

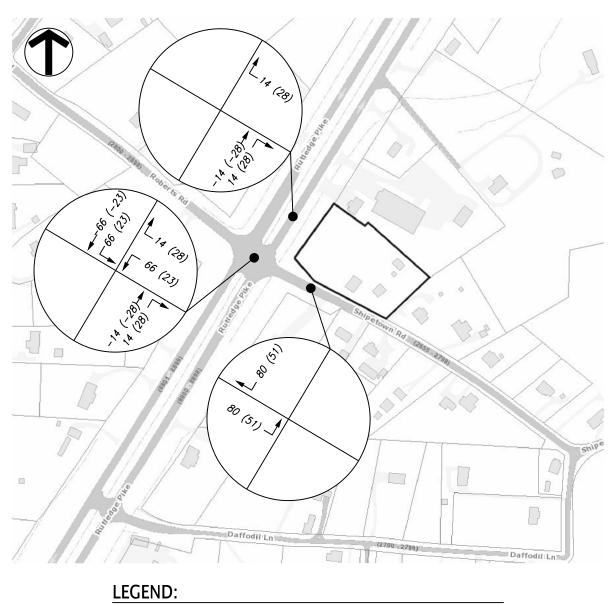

— 50% (50%) TRIP DISTRIBUTION ENTERING (EXITING)

Figure 8: PM Peak Hour Pass-By Trip Distribution

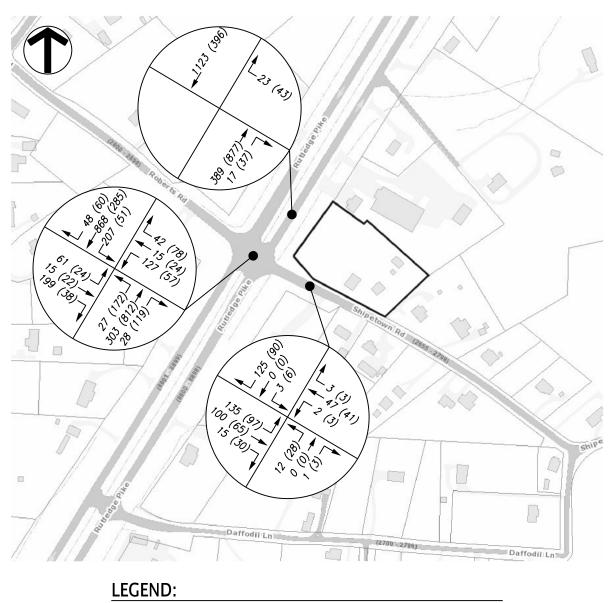

— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 9: New Peak Hour Site Trips

— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 10: Pass-By Peak Hour Site Trips

— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 11: 2024 Full Buildout Peak Hour Traffic

5 **Projected Capacity and Level of Service**

The existing intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road is a two-way stop controlled intersection; however, the intersection will be signalized after the completion of the TDOT roadway improvements. The driveway connection along Rutledge Pike (US 11W) will be right-in/right-out and the full access driveway connection at Shipetown Road will be stop controlled on the minor approaches.

Unsignalized intersection capacity analyses were performed using the Highway Capacity Software (HCS7) for the AM and PM peak hours to evaluate the existing traffic conditions at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road and the full buildout conditions at the driveway connections.

Signalized intersection capacity analyses were performed using Highway Capacity Software (HCS7) with optimized signal timing for the AM and PM peak hours to evaluate the background and full buildout traffic conditions at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road.

The results from the analyses are expressed with a term "level of service" (LOS), which is based on the amount of delay experienced at the intersection. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions with excessive delay. LOS D generally is considered the minimum acceptable condition in urban areas. The existing, background and full buildout HCS7 worksheets are included in Attachment 6, 7 and 8. Table 5-1 shows the results of the capacity analyses.

	Intersect	ble 5-1 ion Analysis e (LOS) Summary
		Delay (sec)/LOS
Rutled	ge Pike @ Roberts Road	I/Shipetown Road (Existing 2021)
AM Peak	EB Approach WB Approach NB Left Turn WB Left Turn	
PM Peak	EB Approach WB Approach NB Left Turn SB Left Turn	33.6 / D 51.2 / F 8.5 / A 9.8 / A

Shipetown Square Transportation Impact Analysis February 22, 2021

Rutledge P	ike @ Roberts Road/S	hipetown Road (Background 2024)
AM Peak	Intersection	16.8 / B
PM Peak	Intersection	11.5 / B
Rutledge	Pike @ RIRO Drivewa	ay Connection (Full Buildout 2024)
AM Peak	EB Right Turn	9.7 / A
PM Peak	EB Right Turn	12.6 / B
Rutledge P	ike @ Roberts Road/S	hipetown Road (Full Buildout 2024)
AM Peak	Intersection	22.0 / C
PM Peak	Intersection	16.1 / B
Shipetov	wn Road @ Driveway	Connection (Full Buildout 2024)
AM Peak	EB Approach WB Approach NB Approach SB Approach	7.6 / A 7.5 / A 14.8 / B 9.2 / A
PM Peak	EB Approach WB Approach NB Approach SB Approach	7.5 / A 7.4 / A 12.7 / B 9.2 / A

6 Turn Lane Warrant Analysis

The intersection of Shipetown Road at the full access driveway connection was evaluated to determine if a right turn lane or a left turn lane are warranted. The Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy," was used to analyze the information.

Neither an eastbound left turn nor a westbound right turn lane on Shipetown Road is warranted for the driveway connection. The turn lane warrant worksheets and analysis are included in Attachment 9.

The intersection of Rutledge Pike (US 11W) at the right-in/right-out driveway connection was evaluated to determine if a right turn lane is warranted. Per the TDOT Roadway Design Guidelines revised March 2, 2020 "As suggested in the 2016 *Highway Capacity Manual,* TRB, page 19-33, exclusive right turn lanes shall be considered when the right-turn volume exceeds 300 vph and the adjacent thru-lane volume also exceeds 300 vphpl." The proposed right turn volumes are 17 vehicles during the AM peak hour and 37 vehicles during the PM peak hour; therefore, an exclusive right turn lane is not warranted at this intersection.

7 Conclusions and Recommendations

7.1 Rutledge Pike (US 11W) @ Roberts Road/Shipetown Road

The existing traffic conditions at the unsignalized intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road and the background and full buildout conditions at the signalized intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road were analyzed using the Highway Capacity Software (HCS7).

The existing traffic conditions for the eastbound approach (Roberts Road) operate at a LOS F, the westbound approach (Shipetown Road) operates at a LOS E, the northbound left turn lane operates at a LOS B and the southbound left turn lane operates at a LOS A during the AM peak hour. The eastbound approach (Roberts Road) operates at a LOS D, the westbound approach operates at a LOS F (Shipetown Road) and both the northbound and southbound left turn lanes operate at a LOS A during the PM peak hour.

The TDOT roadway improvements are expected to be completed by the year 2024 and are therefore included in the background intersection analysis. The background traffic conditions at the signalized intersection of Rutledge Pike (US 11W) at Roberts

Road / Shipetown Road operate at LOS B during both the AM and PM peak hours using the optimized signal timing per the HCS7 software.

After the completion of the full buildout of the Shipetown Square development the signalized intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road will operate at a LOS C during the AM peak hour and a LOS B during the PM peak hour using the optimized signal timing per the HCS7 software.

The average queue length reflects the capacity of the traffic signals and the 95% queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95% queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage.

The signalized intersection capacity analyses shows a 95% queue length at the full buildout at the intersection of Rutledge Pike (US 11W) at Roberts Road / Shipetown Road of 12 feet for the northbound right turn lane and 97 feet for the southbound left turn lane during the AM peak hour and 38 feet for the northbound right turn lane and 19 feet for the southbound left turn lane during the PM peak hour. The TDOT concept plan shows a storage capacity of 200 feet for the northbound right turn lane and 175 feet for the southbound left turn lane; therefore, the queue from the signalized intersection is not expected to exceed the capacity for the newly designed TDOT intersection improvements.

7.2 Rutledge Pike at RIRO Driveway Connection

The traffic conditions at the unsignalized intersection of Rutledge Pike (US 11W) at the right-in/right-out driveway connection were analyzed using the Highway Capacity Software (HCS7). After the completion of the full buildout of the Shipetown Square development the westbound right turn (driveway) will operate at a LOS A during the AM peak hour and a LOS B during the PM peak hour.

After the completion of the Shipetown Square development a northbound right turn lane is not warranted at the intersection of Rutledge Pike (US 11W) at the right-on/right-out driveway connection.

The minimum required intersection sight distance and stopping sight distance were determined using the AASHTO "Geometric Design of Highways and Streets". The required intersection sight distance for a five lane road with a 55 mph speed limit is 566 feet and the minimum required stopping sight distance is 495 feet. FMA measured the sight distance at the proposed intersection of Rutledge Pike (US 11W) at the right-in/right-out driveway connection. At 15 feet from the edge of pavement the sight distance at the proposed intersection is greater than 600 southbound.

7.3 Shipetown Road at Driveway Connections

The full buildout traffic conditions at the unsignalized intersection of Shipetown Road at the proposed driveway connection was analyzed using the Highway Capacity Software (HCS7).

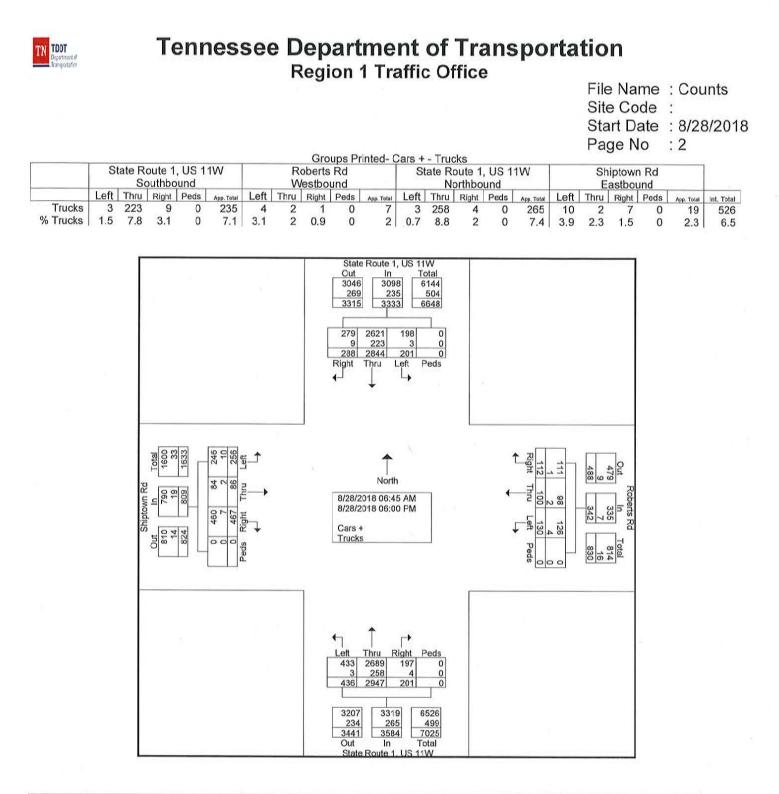
The intersection of Shipetown Road at the driveway connection is a four-way intersection with stop signs located at both the Dollar General driveway and the proposed convenience market driveway connection. After the completion of the full buildout of the Shipetown Square development the northbound approach (Dollar General driveway) operates at a LOS B during both the AM and PM peak hours. All other approaches operate at a LOS A during both the AM and PM peak hours.

After the completion of the Shipetown Square development neither an eastbound left turn lane nor a westbound right turn lane are warranted at the intersection of Shipetown Road at the proposed driveway connection.

The minimum required sight distance for a road with a posted speed limit of 25 mph is 250 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through February 13, 2020. FMA measured the sight distance at the existing intersection of Shipetown Road at the Dollar General driveway connection. At 15 feet from the edge of pavement the sight distance is greater than 250 feet eastbound and 250 feet westbound. FMA recommends any necessary landscaping that may be involved to maintain this sight distance and continue to comply with Knox County Engineering requirements.

Att	achment 1
Ae	rial Photo

Attachment 2
Traffic Counts


Tennessee Department of Transportation Region 1 Traffic Office

Major Road: SR-1, US 11W Minor Road: Roberts and Shipetown Counted by: TW

•

File Name : Counts Site Code : Start Date : 8/28/2018 Page No : 1

	S		oute 1		1W			oberts	Rd	inted- (ate R	oute 1,		1W			iptowi			1
			puthbo					estbou			1	the second s	orthbo					astbo			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. T
07:00 AM	77	128	4	0	209	7	5	4	0	16	5	70	0	0	75	14	0	32	0	46	3
07:15 AM	6	270	15	0	291	4	ō	6	0	10	5	56	Ō	õ	61	8	1	46	ō	55	4
07:30 AM	2	221	10	0	233	7	2	5	0	14	7	89	2	Ō	98	17	3	51	0	71	4
07:45 AM	2	163	11	0	176	5	3	2	0	10	6	48	2	Ō	56	12	1	38	Ō	51	2
Total	87	782	40	0	909	23	10	17	0	50	23	263	4	0	290	51	5	167	0	223	14
8:00 AM	2	124	5	0	131	5	2	0	0	7	6	46	2	0	54	13	2	27	0	42	
8:15 AM	2	121	6	0	129	3	2	0	0	5	3	48	4	0	55	11	3	23	0	37	1
8:30 AM	0	103	2	0	105	3	0	2	0	5	5	40	4	0	49	10	2	21	0	33	
8:45 AM	4	117	5	0	126	9	1	1_	0	11	6	48	3	0	57	8	5	18	0	31	
Total	8	465	18	0	491	20	5	3	0	28	20	182	13	0	215	42	12	89	0	143	
1:00 AM	5	62	9	0	76	3	2	2	0	7	7	50	4	0	61	12	1	13	0	26	
1:15 AM	1	59	9	õ	69	3	4	ō	õ	7	4	67	3	o	74	5	3	7	0	15	
1:30 AM	2	60	4	õ	66	5	4	1	õ	10	3	56	2	õ	61	5	3	8	Ő	16	
1:45 AM	õ	53	3	õ	56	2	3	Ó	õ	5	4	61	3	õ	68	6	3	4	o	13	
Total	8	234	25	0	267	13	13	3	0	29	18	234	12	0	264	28	10	32	0	70	h
2:00 PM	2	63	5	0	70	3	3	2	0	8	6	53	5	0	64	5	3	4	0	12	Î
2:15 PM	6	56	6	0	68	7	0	2	0	9	7	67	1	0	75	6	2	11	0	19	
2:30 PM	13	60	8	0	81	2	2	3	0	7	5	51	11	0	67	2	1	5	0	8	
2:45 PM	0	67	6	0	73	6		1	0	9	13	75	7	0	95	7	3	4	0	14	
Total	21	246	25	0	292	18	7	8	0	33	31	246	24	0	301	20	9	24	0	53	
2:00 PM	2	53	7	0	62	2	2	1	0	5	9	73	6	0	88	6	2	5	0	13	ĩ
2:15 PM	3	82	8	ŏ	93	3	2	3	ŏ	8	9	78	2	ŏ	89	10	4	10	õ	24	
2:30 PM	2	73	6	õ	81	2	4	3	õ	9	12	96	6	õ	114	11	3	6	o	20	
2:45 PM	19	78	11	õ	108	5	6	7	0	18	7	98	6	õ	111	9	3	12	0	24	
Total	26	286	32	0	344	12	14	14	0	40	37	345	20	0	402	36	12	33	0	81	t
3:00 PM	11	86	18	0	115	2	4	2	0	8	10	81	5	0	96	12	1	15	0	28	
3:15 PM	3	76	7	0	86	3	1	7	0	11	14	101	6	0	121	4	3	14	0	21	
3:30 PM	1	73	10	0	84	0	8	4	0	12	16	107	15	0	138	5	5	8	0	18	
3:45 PM Total	6 21	72 307	12 47	0	90 375	5 10	5 18	3 16	0	<u>13</u> 44	<u>30</u> 70	123 412	10 36	0	163 518	<u>8</u> 29	10	12 49	0	21 88	1
:00 PM	4	70	10	0	84	8	5	5	0	18	23	132	9	0	164	7	5	6	0	18	ŀ
1:15 PM	6	67	15	0	88	3	5	4	õ	12	26	147	9	ŏ	182	9	2	9	ŏ	20	
:30 PM	6	64	14	0	84	4	3	9	Ō	16	21	145	11	ō	177	5	3	12	õ	20	
4:45 PM	6	66	9	0	81	3	4	3	Õ	10	31	164	15	ō	210	4	4	9	õ	17	÷.,
Total	22	267	48	0	337	18	17	21	0	56	101	588	44	Ő	733	25	14	36	0	75	
5:00 PM	1	51	12	0	64	3	5	5	0	13	37	172	9	0	218	4	2	6	0	12	ĺ
5:15 PM	4	68	16	0	88	5	3	12	0	20	34	179	13	0	226	8	7	8	0	23	
5:30 PM	1	73	13	0	87	5	3	7	0	15	42	181	15	0	238	4	3	9	0	16	
5:45 PM Total	2	65 257	<u>12</u> 53	0	79 318	<u>3</u> 16	<u>5</u> 16	<u>6</u> 30	0	<u>14</u> 62	23 136	144 676	<u>11</u> 48	0	178 860	9 25	2 14	<u>14</u> 37	0	25 76	1
6:00 PM	0	0	O	0	0	0	0	0	0	o	0	1	0	0	1	0	0	0	0	0	l.
and Total	201	2844	288	0	3333	130	100	112	0	342	436	2947	201	Õ	3584	256	86	467	Ō	809	8
oprch %	6	85.3	8.6	0		38	29.2	32.7	0		12.2	82.2	5.6	0		31.6	10.6	57.7	0		
Total %	2.5	35.3	3.6	0	41.3	1.6	1.2	1.4	0	4.2	5.4	36.5	2.5	0	44.4	3.2	1.1	5.8	0	10	
Cars +	198	2621										2689									
6 Cars +	98.5	92.2	96.9	0	92.9	96.9	98	99.1	0	98	99.3	91.2	98	0	92.6	96.1	97.7	98.5	0	97.7	. 3

	S		oute 1, outhbo	US 1' und	1W			oberts /estbo	1.505.771		S		oute 1 orthbo	, US 1′ und	IW			iptowi astboi			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	n 06:4	5 AM to	o 11:45	AM -	Peak 1	of 1				n sensen tren.					111202/021		the second second second	second distant distant	
Peak Hour fo	or Enti	re Inte	rsectio	n Beg	ins at 0	7:00 A	M														
07:00 AM	77	128	4	0	209	7	5	4	0	16	5	70	0	0	75	14	0	32	0	46	346
07:15 AM	6	270	15	0	291	4	0	6	0	10	5	56	0	0	61	8	1	46	0	55	417
07:30 AM	2	221	10	0	233	7	2	5	0	14	7	89	2	0	98	17	3	51	0	71	416
07:45 AM	2	163	11	0	176	5	3	2	0	10	6	48	2	0	56	12	1	38	0	51	293
Total Volume	87	782	40	0	909	23	10	17	0	50	23	263	4	0	290	51	5	167	0	223	1472
% App. Total	9.6	86	4.4	0	58.65722	46	20	34	0	1982)	7.9	90.7	1.4	0	1808/43702	22.9	2.2	74.9	0	722/02/02	E115450F3
PHF	.282	.724	.667	.000	.781	.821	.500	.708	.000	.781	.821	.739	.500	.000	.740	.750	.417	.819	.000	.785	.882

Tennessee Department of Transportation Region 1 Traffic Office

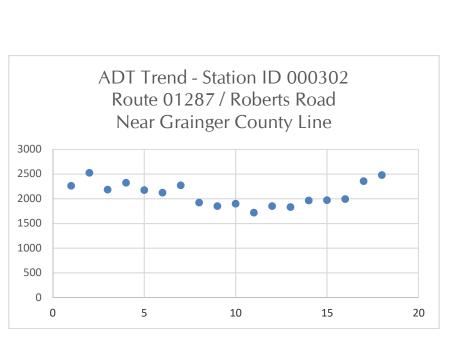
File Name : Counts Site Code : Start Date : 8/28/2018 Page No : 3

	S		oute 1	, US 1 ound	1W			oberts /estbo			S		oute 1 orthbo	, US 1 und	1W			iptow astbo			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	int. Tota
Peak Hour A	nalysi	s Fron	n 12:0	0 PM t	0 06:00	PM - I	Peak 1	of 1	0	/											
Peak Hour fo																					
04:45 PM	6	66	9	0	81	3	4	3	0	10	31	164	15	0	210	4	4	9	0	17	318
05:00 PM	1	51	12	0	64	3	5	5	0	13	37	172	9	õ	218	4	2	6	õ	12	307
05:15 PM	4	68	16	0	88	5	3	12	0	20	34	179	13	õ	226	8	7	ă	õ	23	357
05:30 PM	1	73	13	0	87	5	3	7	0	15	42	181	15	Ō	238	4	3	9	õ	16	356
Total Volume	12	258	50	0	320	16	15	27	0	58	144	696	52	0	892	20	16	32	0	68	1338
% App. Total	3.8	80.6	15.6	0	_	27.6	25.9	46.6	0	900	16.1	78	5.8	Ō	1.1.1.1	29.4	23.5	47.1	õ	00	1000
PHF	.500	.884	.781	.000	.909	.800	.750	.563	.000	.725	.857	.961	.867	.000	.937	.625	.571	.889	.000	.739	.937

Project: Shipetown Square TIA Intersection: Rutledge Pike (US 11W) at Roberts Road / Shipetown Road Date Conducted: August 28, 2018

AM Peak Hour	7:00 AM - 8:00 AM	1472
PM Peak Hour	4:45 PM - 5:45 PM	1338

	Rutledge Pike				Rutledge Pike				Roberts Road				Shipetown Road				
	Northbound			Southbound				Eastbound				Westbound					
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total I	nt. Total
Peak Hour Analysis fro	om 7:00 /	AM to 9:	00 AM														
AM Peak Hour begins	at 7:15 /																
7:00 AM	5	70	0	75	77	128	4	209	14	0	32	46	7	5	4	16	346
7:15 AM	5	56	0	61	6	270	15	291	8	1	46	55	4	0	6	10	417
7:30 AM	7	89	2	98	2	221	10	233	17	3	51	71	7	2	5	14	416
7:45 AM	6	48	2	56	2	163	11	176	12	1	38	51	5	3	2	10	293
Total Volume	23	263	4	290	87	782	40	909	51	5	167	223	23	10	17	50	1472
2021 (3% over 3 yrs)	25	287	4		95	855	44		56	5	182		25	11	19		1608
2024 (3% over 6 yrs)	27	314	5		104	934	48		61	6	199		27	12	20		1758
PHF	0.82	0.74	0.50		0.28	0.72	0.67		0.75	0.42	0.82		0.82	0.50	0.71		0.88
Peak Hour Analysis from 4:00 PM to 6:00 PM																	
PM Peak Hour begins								,									
4:45 PM	31	164	15	210	6	66	9	81	4	4	9	17	3	4	3	10	318
5:00 PM	37	172	9	218	1	51	12	64	4	2	6	12	3	5	5	13	307
5:15 PM	34	179	13	226	4	68	16	88	8	7	8	23	5	3	12	20	357
5:30 PM	42	181	15	238	1	73	13	87	4	3	9	16	5	3	7	15	356
Total Volume	144	696	52	892	12	258	50	320	20	16	32	68	16	15	27	58	1338
2021 (3% over 3 yrs)	157	761	57		13	282	55		22	17	35		17	16	30		1462
2024 (3% over 6 yrs)	172	831	62		14	308	60		24	19	38		19	18	32		1598
PHF	0.86	0.96	0.87		0.50	0.88	0.78		0.63	0.57	0.89		0.80	0.94	0.56		0.94


Attack	nment 3
ADT	Trends

	Adjusted							
	Average Daily							
Year	Traffic							
2001	11360							
2002	11375				Ctot:			
2003	13391		1			on ID 0003	00	
2004	13921					dge Pike		
2005	13128			North	east of	Knoxville		
2006	13449	16000						
2007	12717	14000						
2008	13542	12000	• •	• • •		•	• •	
2009	10577	10000	· · ·		•	• •		
2010	11592	8000						
2011	11745	6000						
2012	10540	4000						
2013	10229	2000						
2014	11367	0		5	1	0	15	20
2015	11622							
2016	13167							
2017	13864							
2018	13249							

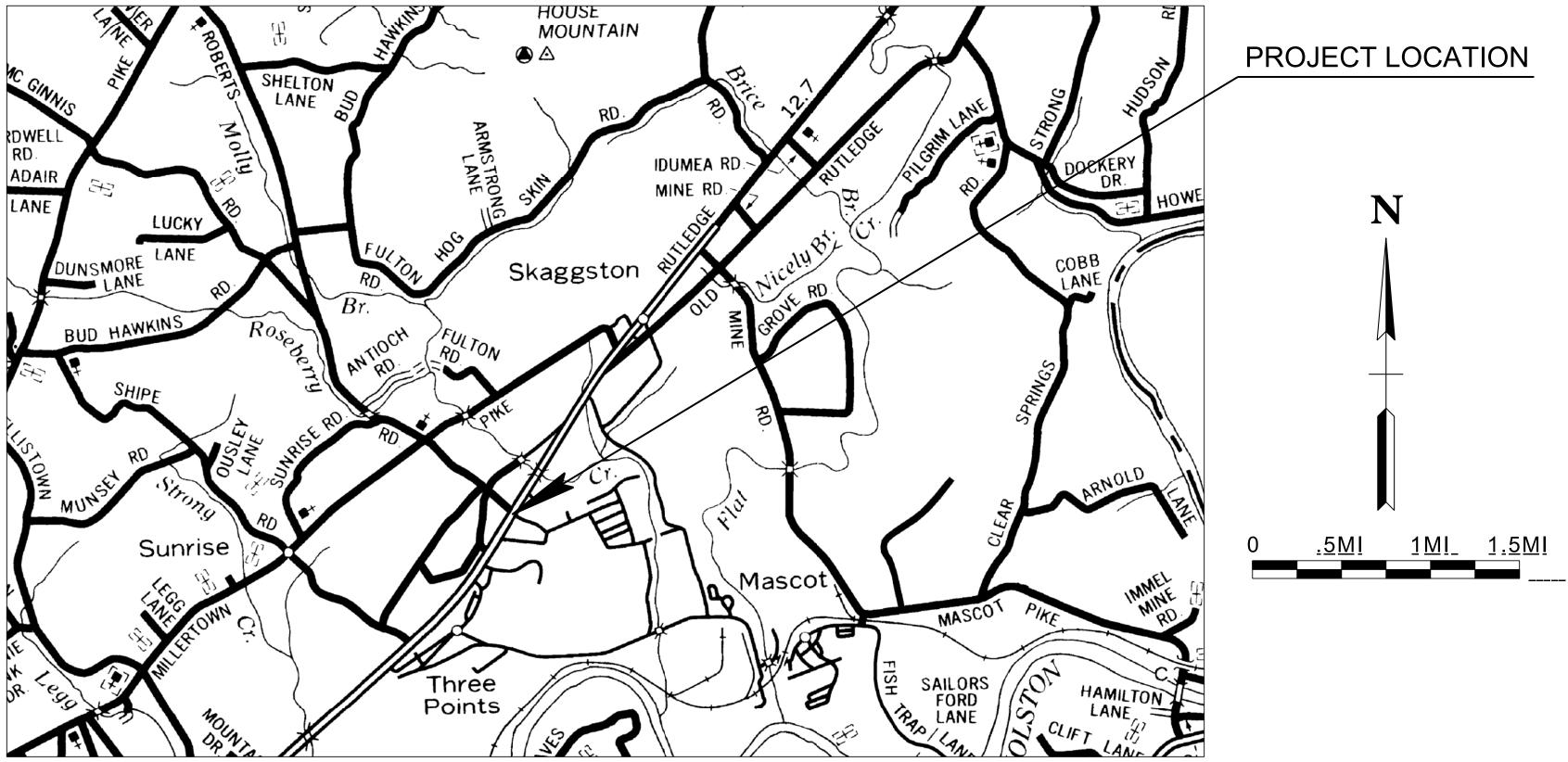
Year	ADT
2009	10577
2018	13249

2.53%

	Adjusted
	Average Daily
Year	Traffic
2001	2265
2002	2526
2003	2186
2004	2326
2005	2175
2006	2124
2007	2274
2008	1924
2009	1852
2010	1902
2011	1719
2012	1853
2013	1834
2014	1966
2015	1973
2016	1993
2017	2358
2018	2482

Most Recent Trend Line Growth Year ADT 2009 1852 2018 2482

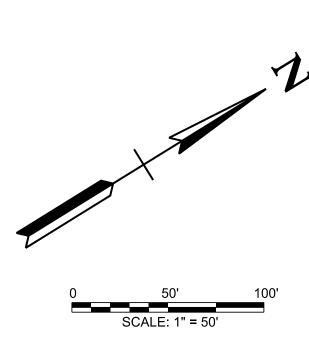
Annual Percent Growth 3.40%

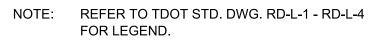

Attachment 4 TDOT Concept Plan

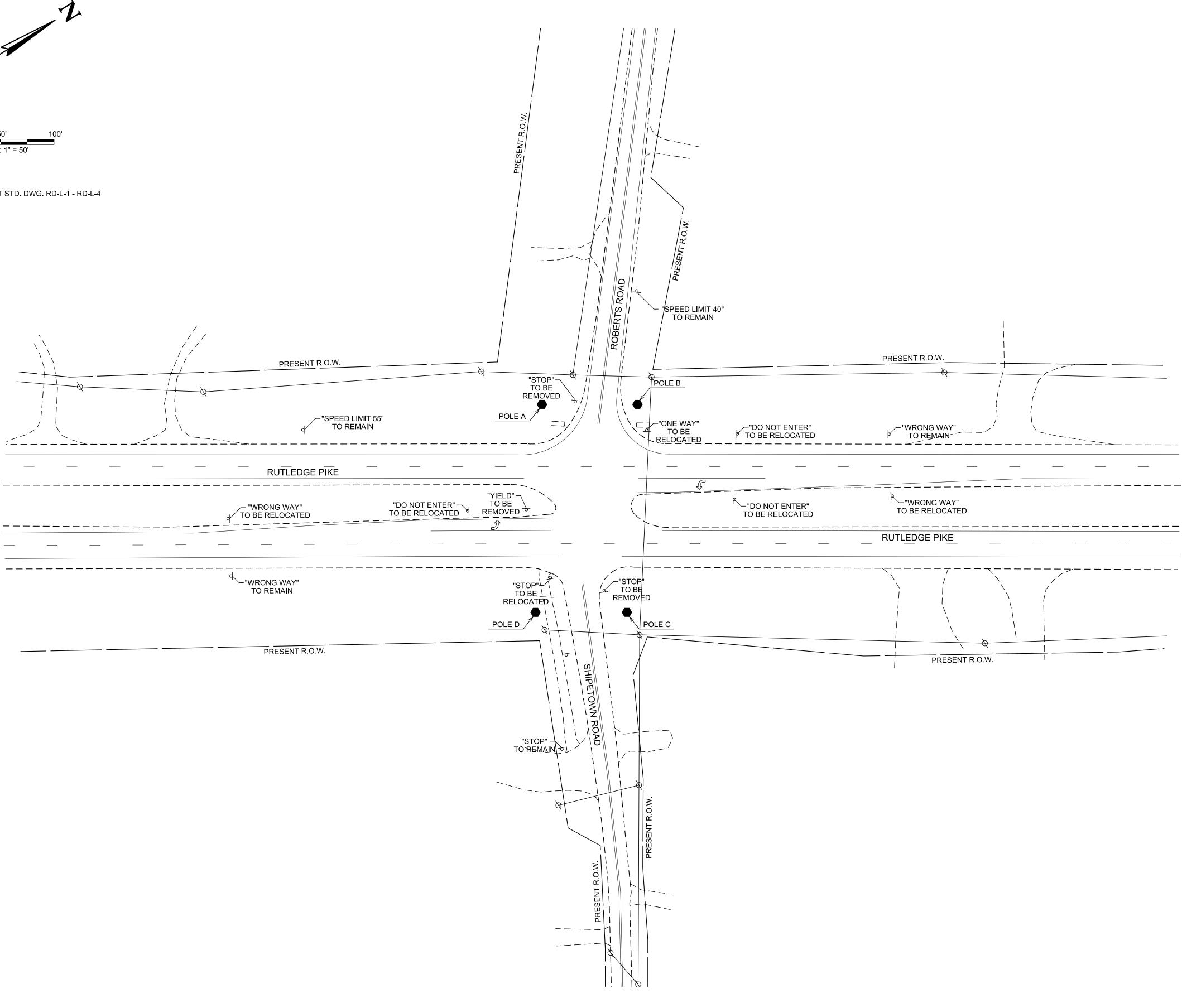
INDEX OF SHEETS

TITLE SHEET	1
PRESENT LAYOUT	2
PROPOSED LAYOUT	3
PROPOSED SIGNAL LAYOUT	4

KNOX COUNTY COMMISSIONERS RANDY SMITH **BRAD ANDERS** CHARLES BUSLER MICHELE CARRINGER CARSON DAILEY **EVELYN GILL** HUGH NYSTROM JOHN SCHOONMAKER JUSTIN BIGGS LARSEN JAY RICHIE BEELER

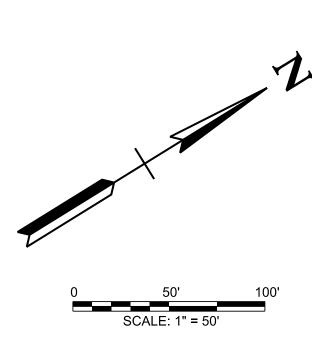


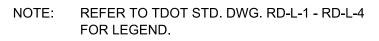


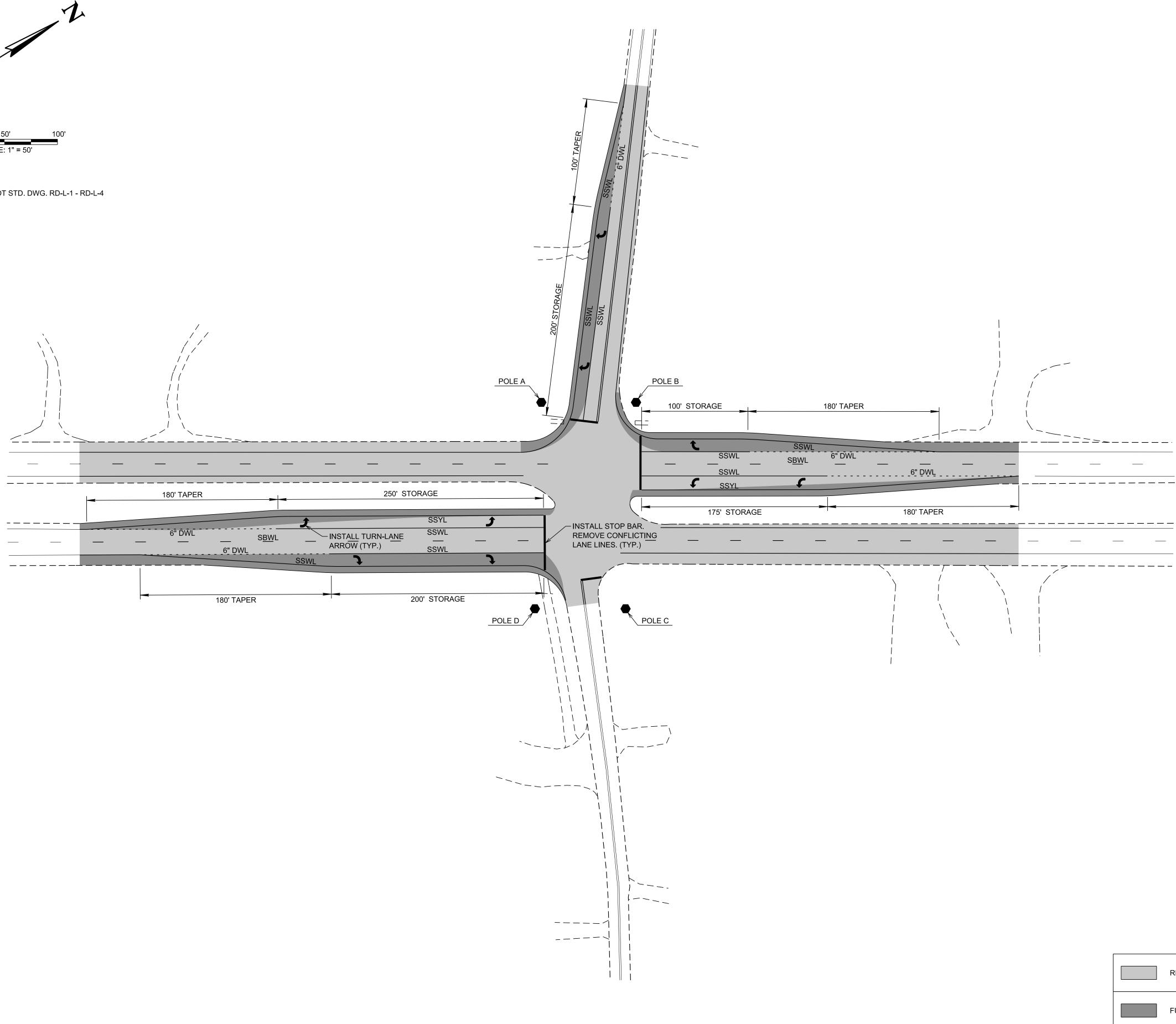

RUTLEDGE PIKE AT ROBERTS ROAD/SHIPETOWN ROAD INTERSECTION CONCEPT PLAN

GLENN JACOBS - MAYOR JIM SNOWDEN - SENIOR DIRECTOR OF ENGINEERING AND PUBLIC WORKS KNOX COUNTY ENGINEERING AND PUBLIC WORKS 205 WEST BAXTER AVENUE KNOXVILLE, TENNESSEE 37917

REVISIONS		DATE	
CONSULTING ENGINEERS · FIELD SURVEYORS TEL 865.670.8555 WWW.CANNON-CANNON.COM			
CLIENT: KNOX COUNTY DEPARTMENT OF ENGINEERING AND PUBLIC WORKS			
PROJECT: RUTLEDGE PIKE AT ROBERTS ROAD/SHIPETOWN ROAD INTERSECTION CONCEPT PLAN			
TITLE SHEET			
1	CCI PROJECT NO.	00263-0096	
$\langle \mathcal{A} \rangle$	DATE	MAY 27, 2020	
	P.M.	ВЈН	
	DRAWN	TSN	
PRELIMINARY	Q.C.	вјн	

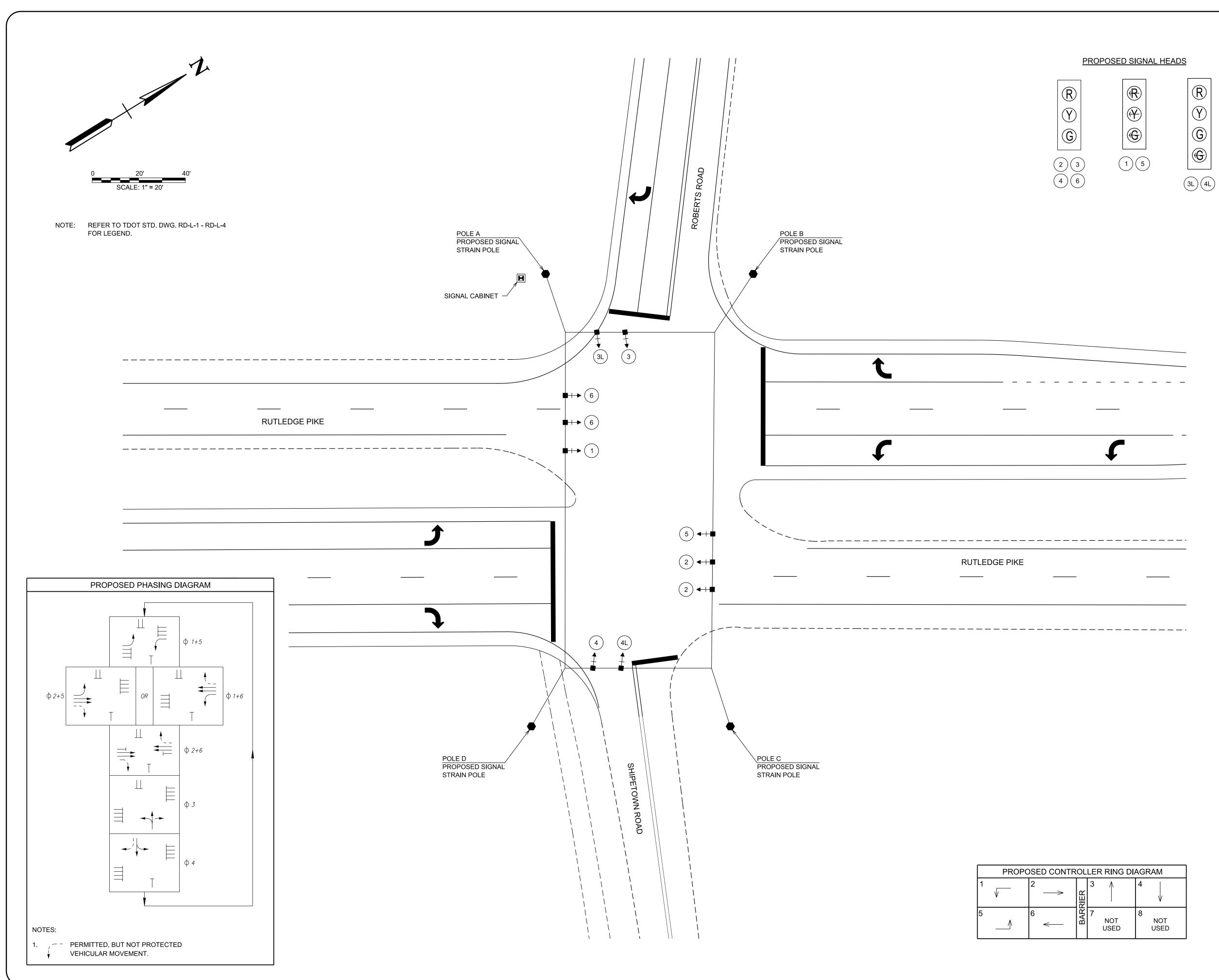






ht

REVISIONS DATE				
CANNON & CANNON INC CONSULTING ENGINEERS · FIELD SURVEYORS TEL 865.670.8555 WWW.CANNON-CANNON.COM				
CLIENT: KNOX COUNTY DEPARTMENT OF ENGINEERING AND PUBLIC WORKS				
RUTLEDGE PIKE AT ROBERTS ROAD/SHIPETOWN ROAD INTERSECTION CONCEPT PLAN				
PRESENT LAYOUT				
	CCI PROJECT NO.	00263-0096		
$\sim \mathcal{A}$	DATE	MAY 27, 2020		
	P.M.	ВЈН		
DRAWN TSN				
L.	Q.C.	ВЈН		
P.M. BJH DRAWN TSN Q.C. BJH 2				



REVISIONS		DATE		
CANNO CONSULTING ENG				
TEL 865.670.8555 8550 Kingston Pike WWW.CANNON-CANNON.COM Knoxville, TN 37919				
DEPARTMEN	X COUNTY T OF ENGIN JBLIC WOR			
RUTLEDGE PIKE AT ROBERTS ROAD/SHIPETOWN ROAD INTERSECTION CONCEPT PLAN				
PROPO	SED LAYOU	JT		
PROPO	SED LAYOU	JT 00263-0096		
PROPO				
PROPO	CCI PROJECT NO.	00263-0096		
LR L	CCI PROJECT NO. DATE	00263-0096 MAY 27, 2020		
PROPO	CCI PROJECT NO. DATE P.M.	00263-0096 MAY 27, 2020 BJH		

RESURFACING	

FULL DEPTH PAVEMENT

5/27/2020 2:32:54 PM Z:\00263-0096\03-Drawings\02-Transportation\004.sht

REVISIONS DATE				
CONSULTING ENGINEERS · FIELD SURVEYORS TEL 865.670.8555 WWW.CANNON-CANNON.COM				
CLIENT: KNOX COUNTY DEPARTMENT OF ENGINEERING AND PUBLIC WORKS				
RUTLEDGE PIKE AT ROBERTS ROAD/SHIPETOWN ROAD INTERSECTION CONCEPT PLAN				
PROPOSED SIGNAL LAYOUT				
	CCI PROJECT NO.	00263-0096		
\sim	DATE	MAY 27, 2020		
P.M. BJH DRAWN TSN				
DRAWN TSN Q.C. BJH 4				

DIAGRAM		
	4	
		V
	8	
		NOT
		USED

Project: Shipetown Square Retail Date Conducted: 1/21/2021

> Variety Store (LUC 814) 9,350 SF Building

Average Daily Traffic

Average Rate = 63.47T = 63.47 * (9.350)T = 593

Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m. Average Rate = 3.18 T = 3.18 * (9.350) T = 30

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Average Rate = 6.84T = 6.84 * (9.350)T = 64

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	593	50%	50%	297	297
AM Peak Hour	30	57%	43%	17	13
PM Peak Hour	64	52%	48%	33	31

Project: Shipetown Square Date Conducted: 1/13/2021

> Super Convenience Market/Gas Station (LUC 960) 10 Vehicle Fueling Positions

Average Daily Traffic

Average Rate = 230.52T = 230.52 * 10T = 2305

Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m.

Average Rate = 28.08 T = 28.08 * 10 T = 281

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Average Rate = 22.96 T = 22.96 * 10 T = 230

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	2305	50%	50%	1153	1153
AM Peak Hour	281	50%	50%	141	141
PM Peak Hour	230	50%	50%	115	115

New Trips 35%

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	807	50%	50%	403	403
AM Peak Hour	98	50%	50%	49	49
PM Peak Hour	81	50%	50%	40	40

Pass-By Trips 65%

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	1498	50%	50%	749	749
AM Peak Hour	183	50%	50%	91	91
PM Peak Hour	150	50%	50%	75	75

Project: Shipetown Square Date Conducted: 1/13/2021

> Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (LUC 935) 500 SF

Average Daily Traffic

Average Rate = 459.20 T = 459.20 * 0.5 T = 230

Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m. Average Rate = 33.76

T = 33.76 * 0.5T = 17

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Average Rate = 42.65T = 42.65 * 0.5T = 21

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	230	50%	50%	115	115
AM Peak Hour	17	48%	52%	8	9
PM Peak Hour	21	51%	49%	11	10

New Trips 60%

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	138	50%	50%	69	69
AM Peak Hour	10	48%	52%	5	5
PM Peak Hour	13	51%	49%	6	6

Pass-By Trips 40%

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	92	50%	50%	46	46
AM Peak Hour	7	48%	52%	3	4
PM Peak Hour	8	51%	49%	4	4

Project: Shipetown Square Retail Date Conducted: 2/19/2021

> Copy, Print, and Express Ship Store (LUC 920) 3,340 SF Building

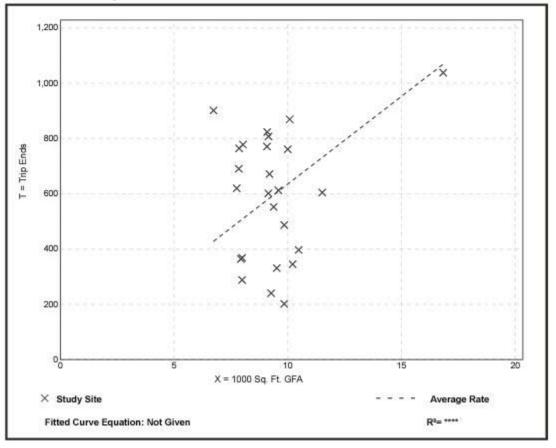
Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Average Rate = 2.78 T = 2.78 * (3.34) T = 9

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m. Average Rate = 7.42T = 7.42 * (3.34)T = 25

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)		50%	50%	0	0
AM Peak Hour	9	75%	25%	7	2
PM Peak Hour	25	44%	56%	11	14

Variety Store (814)

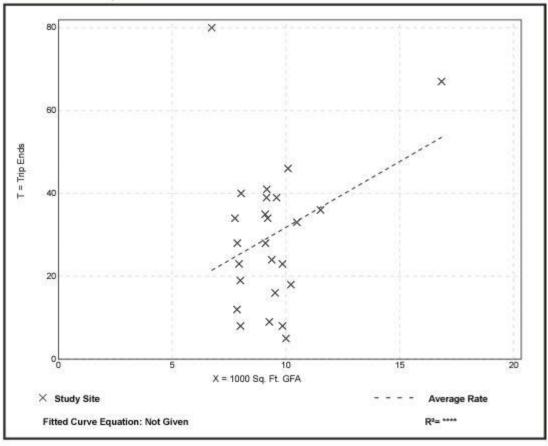

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	25
1000 Sq. Ft. GFA:	9
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
63.47	20.51 - 133.68	25.93

Data Plot and Equation

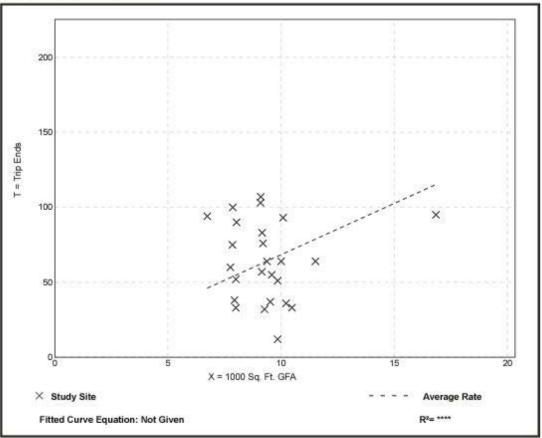

Trip Generation Manual 10th Edition • Volume 2: Data • Retail (Land Uses 800-899) 38

ite=

	ty Store 14)
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	25
1000 Sq. Ft. GFA:	9
Directional Distribution:	57% entering, 43% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Data Plot and Equation


39

Variety Store (814)	
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	25
1000 Sq. Ft. GFA:	9
Directional Distribution:	52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
6.84	1.22 - 13.95	3.19

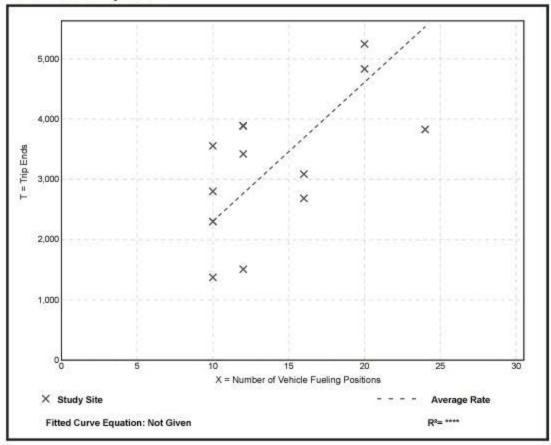
Data Plot and Equation

40 Trip Generation Manual 10th Edition • Volume 2: Data • Retail (Land Uses 800-899)

Super Convenience Market/Gas Station

(960)

Vehicle Trip Ends vs: Vehicle Fueling Positions On a: Weekday


Number of Studies:	13
Avg. Num. of Vehicle Fueling Positions:	14

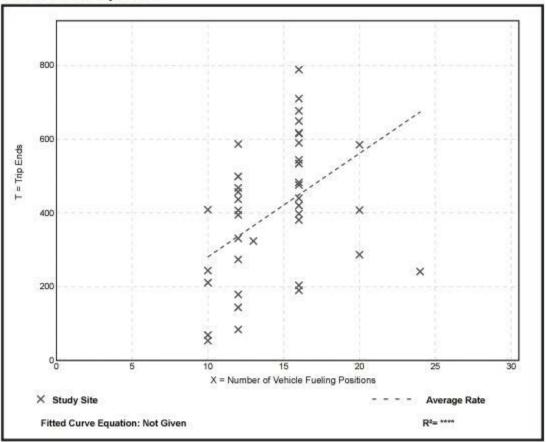
Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
230.52	125.67 - 355.60	71.75

Data Plot and Equation

Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900–999) 419


Super Convenience Market/Gas Station (960)

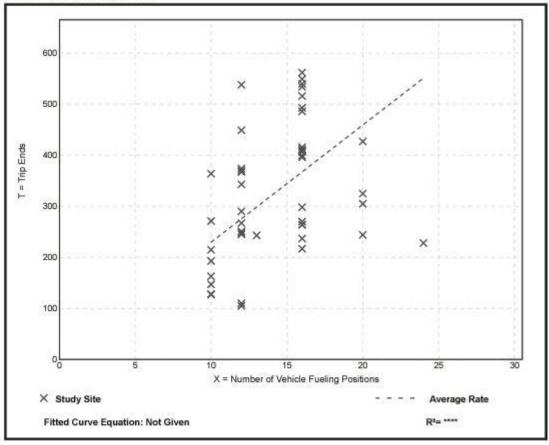
Vehicle Trip Ends vs: On a:	Vehicle Fueling Positions Weekday.
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	39
Avg. Num. of Vehicle Fueling Positions:	14
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
28.08	5.40 - 49.31	11.98

Data Plot and Equation

420 Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900-999)



Super Convenience Market/Gas Station (960)

Vehicle Trip Ends vs:	Vehicle Fueling Positions
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	48
Avg. Num. of Vehicle Fueling Positions:	14
Directional Distribution:	50% entering, 50% exiting

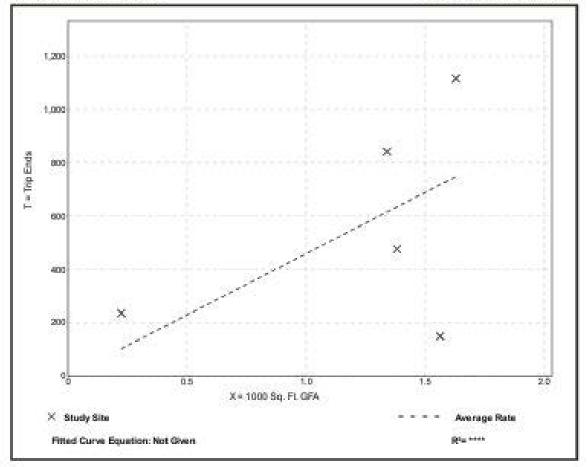
Vehicle Trip Generation per Vehicle Fueling Position

Data Plot and Equation

Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (935)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: 5 1000 Sq. Ft. GFA: 1 Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

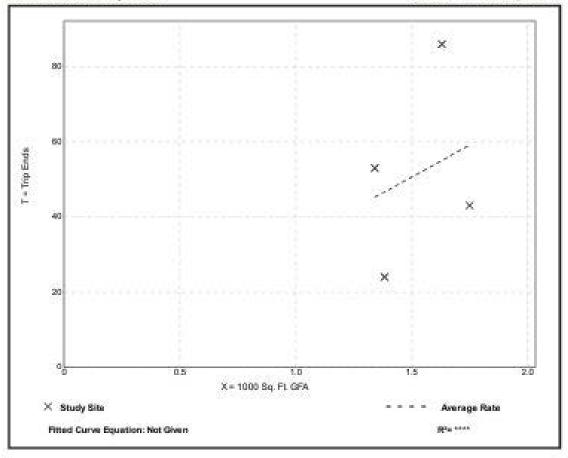
Data Plot and Equation

itte

Caution - Small Sample Size

Trip Generation Manual 10th Edition - Volume 2: Data - Services (Land Uses 900-999) 201

Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (935)


1000 Sq. Ft. GFA Weekday
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
General Urban/Suburban
4
.2
48% entering, 52% exiting

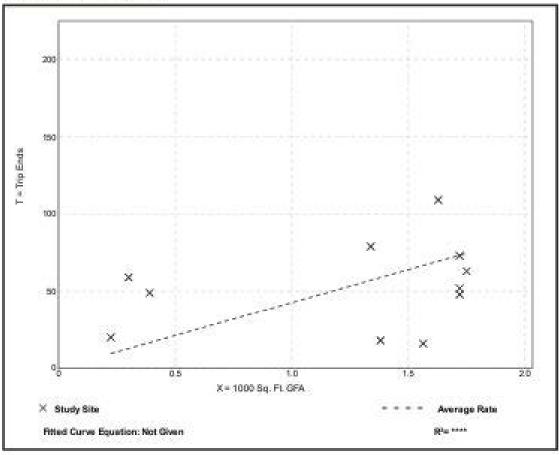
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
33.76	17.37 - 52.79	15.88

Data Plot and Equation

Caution - Small Sample Size

202 Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900–999)


ite=

Fast-Food Restaurant with Drive-Through Window and No Indoor Seating (935)

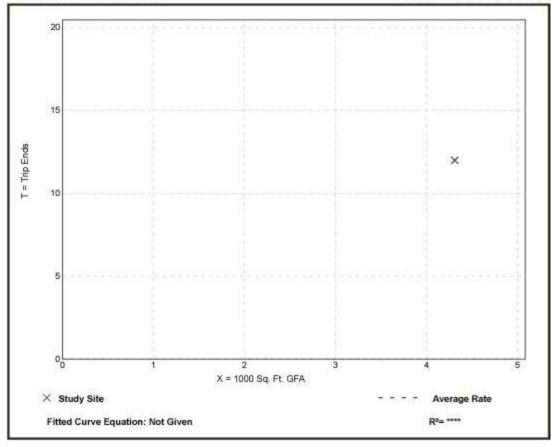
Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	11
1000 Sq. Ft. GFA:	1
Directional Distribution:	51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Data Plot and Equation

Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900–999) 203

Copy, Print, and Express Ship Store (920)


Vehicle Trip Ends vs:	1000 Sq. Ft. GFA
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	1
1000 Sq. Ft. GFA:	4
Directional Distribution:	75% entering, 25% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation	
2.78	2.78 - 2.78		

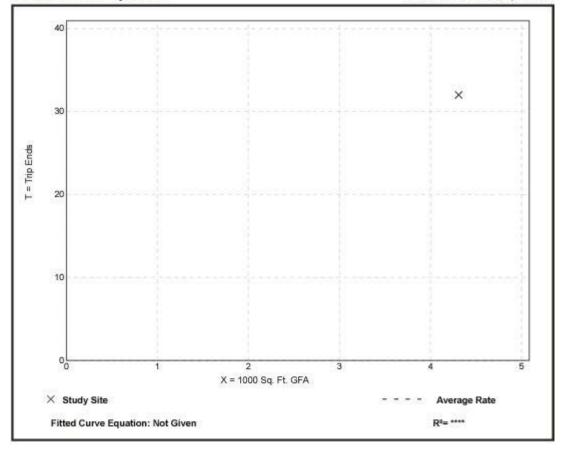
Data Plot and Equation

Caution - Small Sample Size

Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900-999) 46

	(920)
Vehicle Trip Ends v	s: 1000 Sq. Ft. GFA
On	a: Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Locatio	n: General Urban/Suburban
Number of Studie	is: 1
1000 Sq. Ft. GF	A: 4
Directional Distribution	n: 44% entering, 56% exiting

AL .

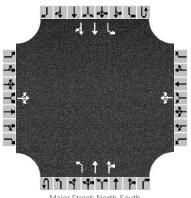

-

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
7.42	7.42 - 7.42	*

Data Plot and Equation

Caution – Small Sample Size



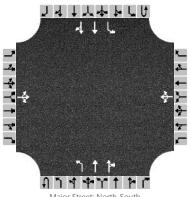
Trip Generation Manual 10th Edition • Volume 2: Data • Services (Land Uses 900–999) 47

	HCS7 Two-W	/ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Rutledge Pike at Roberts
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	1/20/2021	East/West Street	Roberts/Shipetown
Analysis Year	2021	North/South Street	Rutledge Pike
Time Analyzed	Existing AM Peak	Peak Hour Factor	0.88
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	588.009 Shipetown Square		

Lanes

Major Street: North-South

					~											
Vehicle Volumes and Ad	ljustm	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U L T R				U L T R			
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	Т	TR		L	Т	TR
Volume, V (veh/h)		25	11	19		56	5	182		25	287	4		95	855	44
Percent Heavy Vehicles (%)		2	2	2		2	2	2		2				2		
Proportion Time Blocked																
Percent Grade (%)			0				0									
Right Turn Channelized		٩	10			Ν	lo		No				No			
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	ays														
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		7.54	6.54	6.94		7.54	6.54	6.94		4.14				4.14		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.52	4.02	3.32		3.52	4.02	3.32		2.22				2.22		
Delay, Queue Length, ar	nd Leve	el of S	ervic	e												
Flow Rate, v (veh/h)			62				277			28				108		
Capacity, c (veh/h)			102				348			675				1225		
v/c Ratio			0.61				0.80			0.04				0.09		
95% Queue Length, Q ₉₅ (veh)			2.9				6.7			0.1				0.3		
Control Delay (s/veh)			84.5				45.8			10.6				8.2		
Level of Service, LOS			F				E			В				A		
Approach Delay (s/veh)		84	4.5			4	5.8			0	.8			0	.8	
Approach LOS			F				E									


Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.2.1 Existing AM Peak_Rutledge.xtw

	HCS7 Two-Way Stop-Control Report											
General Information		Site Information										
Analyst	Addie Kirkham	Intersection	Rutledge Pike at Roberts									
Agency/Co.	FMA	Jurisdiction	Knox County									
Date Performed	1/20/2021	East/West Street	Roberts/Shipetown									
Analysis Year	2021	North/South Street	Rutledge Pike									
Time Analyzed	Existing PM Peak	Peak Hour Factor	0.94									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	588.009 Shipetown Square											

Lanes

Major Street: North-South

Vehicle Volumes and Ad	justme	ents														
Approach		Eastb	ound			West	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0
Configuration			LTR				LTR			L	Т	TR		L	Т	TR
Volume, V (veh/h)		22	17	35		17	16	30		157	761	57		13	282	55
Percent Heavy Vehicles (%)		2	2	2		2	2	2		2				2		
Proportion Time Blocked																
Percent Grade (%)		0 0														
Right Turn Channelized		Ν	lo			Ν	lo		No				No			
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		7.54	6.54	6.94		7.54	6.54	6.94		4.14				4.14		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.52	4.02	3.32		3.52	4.02	3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	el of S	ervice	e												
Flow Rate, v (veh/h)			78				67			167				14		
Capacity, c (veh/h)			202				142			1196				770		
v/c Ratio			0.39				0.47			0.14				0.02		
95% Queue Length, Q ₉₅ (veh)			1.7				2.2			0.5				0.1		
Control Delay (s/veh)			33.6				51.2			8.5				9.8		
Level of Service, LOS			D				F			А				A		
Approach Delay (s/veh)		33	3.6	-		5:	1.2		1.4				0.4			
Approach LOS			D				F									

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

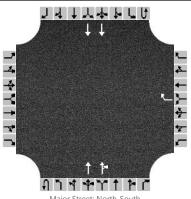
Attachment 7 Intersection Worksheets – Background AM/PM Peaks

HCS7 Signalized Intersection Results Summary

		псэ	7 Sig	nalize	aint	ersec		esu	ts Su	mmar	у				
O an anal lestar										the sector of				4.441	NT.
General Inform	hation								Intersec		- 1	JIII			
Agency		FMA			·		0.0001		Duratior		0.25		-		1.
Analyst		Addie Kirkham		Analysis Date Jar Time Period Bac					Area Typ	be	Other	·			A. 4
Jurisdiction		Knox County				Peak	Background AM Peak		PHF		0.88			W TE	
Urban Street		Rutledge Pike (US	-	Analys	sis Year	· 2024			Analysis	Period	1> 7:0	00		5 t t r	
Intersection	Rutledge Pike at Robert			File Na	ame	Backg	round A	M Pea	ak_Rutle	dge.xus				≤1 ↑ =4= "Y"	F 1
Project Descript	tion	588.009 Shipetown	Square	;											
Demand Inform	nation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			61	6	199	27	12	20	27	314	5	104	934	48
Signal Informa	tion				1 1	1 111		1	5	_					
Cycle, s	90.0	Reference Phase	2	-		92151		R	Ħ		ļ		572		X
Offset, s	0	Reference Point	End		2		- " 1	۳F.	-			1	2	3	
Uncoordinated	No	Simult. Gap E/W	On	Green		2.5	47.2	10.		0.0	_				—
Force Mode	Fixed	Simult. Gap L/W	On	Yellow Red	4.0	0.0	4.0	4.0	4.0	0.0	— – Î	ੇ "⊾		7	¥ .
Force Mode	Fixeu	Simult. Gap N/S	On	Reu	1.5	0.0	1.5	1.5	1.5	0.0	•	5	0	1	0
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SBI	L	SBT
Assigned Phase	e					4			8	5		2	1		6
Case Number						11.0			12.0	1.1		3.0	1.1		3.0
Phase Duration	, S					16.0			10.2	8.7		52.7	11.2	2	55.1
Change Period,	(Y+R	c), S		5		5.5			5.5	5.5 5.5		5.5	5.5		5.5
Max Allow Head	dway(<i>I</i>	<i>MAH</i>), s				3.2			3.3	2.9		0.0	2.9		0.0
Queue Clearan	ce Time	e (g s), s				10.3			5.1 2.7						
Green Extensio	n Time	(<i>g</i> e), s				0.2			0.0	0.0		0.0			0.0
Phase Call Prof	bability					1.00			0.78	0.54	.54		0.95	5	
Max Out Probal	bility					0.17	7		0.00	0.00	0.00		0.00)	
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	T	R
Assigned Move				7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow F), veh/h			76	158		60		31	357	3	118	1061	39
		ow Rate (s), veh/h/l	n		1789	1610		1743	+	1781	1781	1585	1781	1781	1585
Queue Service					3.5	8.3		3.1	1	0.7	4.8	0.1	2.6	17.1	1.0
Cycle Queue C					3.5	8.3		3.1		0.7	4.8	0.1	2.6	17.1	1.0
Green Ratio (g					0.12	0.15		0.05	<u> </u>	0.56	0.52	0.52	0.59	0.55	0.55
Capacity (c), v					208	245		90		324	1866	831	675	1964	874
Volume-to-Capa		tio (X)			0.365	0.645		0.666	;	0.095	0.191	0.004	0.175	0.540	0.044
-	-	/In (95 th percentile))		69.3	143.8		63.6		10.1	74.1	1.3	36.9	245.3	14.1
		eh/In (95 th percent			2.7	5.8		2.5		0.4	2.9	0.1	1.5	9.7	0.6
		RQ) (95 th percent	-		0.00	0.72		0.00		0.04	0.00	0.01	0.15	0.00	0.14
Uniform Delay (36.7	35.9		41.9		10.5	11.3	10.2	8.4	12.9	9.3
Incremental De					0.4	1.1		3.1		0.0	0.2	0.0	0.0	1.1	0.1
Initial Queue De					0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/ve	eh			37.1	36.9		45.0		10.6	11.6	10.2	8.4	14.0	9.4
Level of Service	e (LOS)				D	D		D		В	В	В	А	В	Α
Approach Delay	, s/veh	/ LOS		37.0)	D	45.0)	D	11.5	5	В	13.3	3	В
Intersection Del	lay, s/ve	eh / LOS				16	6.8						В		
Multimodal Re					EB			WB			NB			SB	
Pedestrian LOS				3.0		С	3.0		С	2.1		В	2.3		В
Bicycle LOS Sc	ore / LC	DS		0.9		А	0.6		А	0.8		A	1.5		А

 $\label{eq:copyright} Copyright @ 2021 \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS7 Signalized Intersection Results Summary


		HCS	7 Sig	nalize	a inte	ersec	tion R	kesu	its Su	mmar	у					
	1!													4.441	N T	
General Inform	hation								Duration	ction Inf	1/	-	ΊŢŢŢ	Contract of the local division of the local		
Agency		FMA									0.25					
Analyst		Addie Kirkham		1					Area Ty PHF	pe	Other					
Jurisdiction		Knox County		Time F	eriod	Peak					0.88		14 FY	W TE		
Urban Street		Rutledge Pike (US	,	Analys	is Year			I	-	s Period	1> 7:0	00		5 t t r		
Intersection Rutledge Pike at Robert				File Na	ame	Backg	round F	PM Pe	ak_Rutle	edge.xus	6			1147	14 M	
Project Descrip	tion	588.009 Shipetown	Square	•												
Demand Inform	nation				EB			WE	3		NB			SB		
Approach Move	ement			L	Т	R	L	Т	1	L	Т	R	L	Т	R	
Demand (v), v				24	19	38	19	18		172	831	62	14	308	60	
				li l		<u>.</u>										
Signal Informa	tion				5	<	144	2	5		l				_	
Cycle, s	105.0	Reference Phase	2		20	N 517	2 •	₽Ŕ.	2				Υ.	-	- € ,∣	
Offset, s	0	Reference Point	End	Green	2.2	4.0	66.1	5.4	5.2	0.0				5		
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	4.0	4.0	0.0		<u>く</u> 4			*	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.5	1.5	1.5	0.0	1	5	6	7	8	
Timer Results				EBL		EBT	WBI		WBT	NB		NBT	SBI		SBT	
Assigned Phase	9					4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8	5	-	2	1	-	6	
Case Number	<u> </u>				-	11.0			12.0	1.1		3.0	1.1		3.0	
Phase Duration	S					10.9			10.7	11.7		75.6	7.7		71.6	
Change Period		a) S				5.5			5.5	5.5		5.5	5.5		5.5	
Max Allow Head						3.3			3.1	2.9		0.0	2.9		0.0	
Queue Clearan		· ·		<u> </u>		4.7			6.0	6.0		0.0	2.3		0.0	
Green Extensio				<u> </u>	-	0.0			0.0	0.3		0.0	0.0		0.0	
Phase Call Pro		(90), 3		<u> </u>		0.90			0.86	1.00		0.0	0.37		0.0	
Max Out Proba						0.56			0.00	0.0			0.00			
	,															
Movement Gro	oup Res	sults			EB			WB			NB			SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16	
Adjusted Flow I	,	· · ·			49	31		67		195	944	49	16	350	48	
-		ow Rate (s), veh/h/l	n		1820	1610		1727	·	1781	1781	1585	1781	1781	1585	
Queue Service					2.7	1.8		4.0		4.0	12.6	1.1	0.3	4.2	1.2	
Cycle Queue C		e Time (<i>g c</i>), s			2.7	1.8		4.0		4.0	12.6	1.1	0.3	4.2	1.2	
Green Ratio (g	,				0.05	0.11		0.05		0.69	0.67	0.67	0.65	0.63	0.63	
Capacity (c), v					94	179		86		782	2379	1059	420	2243	998	
Volume-to-Capa		. ,			0.521	0.172		0.781		0.250		0.046	0.038	0.156	0.048	
		/In (95 th percentile)			59.3	33.1		83.9		49.5	174.2	14.1	4.6	62.3	16.4	
	· ·	eh/In (95 th percenti RQ) (95 th percent			2.3 0.00	1.3 0.17		3.3 0.00		1.9 0.20	6.9 0.00	0.6 0.07	0.2	2.5 0.00	0.6	
Uniform Delay					48.5	42.3		49.3		5.7	7.9	6.0	7.0	8.0	7.4	
Incremental De					46.5	42.3		49.3 5.7		0.1	0.5	0.0	0.0	0.1	0.1	
Initial Queue De	• •				0.0	0.2		0.0		0.0	0.0	0.0	0.0	0.1	0.0	
Control Delay (50.2	42.5		55.0		5.7	8.4	6.1	7.0	8.1	7.5	
Level of Service					D	-42.5 D		D		A	A	A	7.0 A	A	7.5 A	
Approach Delay	, ,			47.2	1	D	55.0	<u> </u>	D	7.8		A	8.0		A	
Intersection De							.5		-	1			B			
	,,															
Multimodal Re	sults				EB			WB			NB			SB		
Pedestrian LOS	Score	/ LOS		3.0		С	3.0		С	2.1		В	2.3		В	
Bicycle LOS Sc	ore / LC	DS		0.6		А	0.6		А	1.5		А	0.8		А	

 $\label{eq:copyright} Copyright @ 2021 \ University \ of \ Florida, \ All \ Rights \ Reserved.$

Attachment 8 Intersection Worksheets – Full Buildout AM/PM Peaks

	HCS7 Two-Way Sto	op-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Rutledge Pike at RIRO
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	2/20/2021	East/West Street	RIRO Driveway
Analysis Year	2024	North/South Street	Rutledge Pike
Time Analyzed	Full Buildout AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

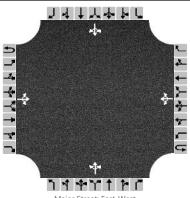
Lanes

Major Street: North-South

Vehicle Volumes and Ad	ljustmo	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	2	0	0	0	2	0
Configuration								R			Т	TR			Т	
Volume, V (veh/h)								23			389	17			1123	
Percent Heavy Vehicles (%)								2								
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			١	٩o	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)								6.9								
Critical Headway (sec)								6.94								
Base Follow-Up Headway (sec)								3.3								
Follow-Up Headway (sec)								3.32								
Delay, Queue Length, ar	nd Leve	el of S	ervic	e												
Flow Rate, v (veh/h)								25								
Capacity, c (veh/h)								784								
v/c Ratio								0.03								
95% Queue Length, Q_{95} (veh)								0.1								
Control Delay (s/veh)								9.7								
Level of Service, LOS								А								
Approach Delay (s/veh)						9	.7									
Approach LOS							A									

HCS7 Signalized Intersection Results Summary

General Information Agency															
								Inter	****	ion Infe				4741	a u
Agency	v										1	on	- 1	JIII	
	FMA			·					ation,		0.25				
Analyst	Addie Kirkham				e Feb 20				а Туре -	e	Other				A 10
Jurisdiction	Knox County		Time F		Peak	uildout A		PHF			0.88		14 M 2	wite	
Urban Street	Rutledge Pike (US	-	Analys	sis Year	r 2024		IL		-	Period	1> 7:0	00		httr	
Intersection	Rutledge Pike at Ro		File Na	ame	Full B	uildout A	AM Pe	ak_F	Rutleo	dge.xus				4147	17 P
Project Description	588.009 Shipetown	Square	;												
Demand Information	n			EB			W	3			NB			SB	
Approach Movement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Demand (v), veh/h			61	15	199	127	15	5	42	27	303	28	207	868	48
Oirmal Information			1				1								
Signal Information	Deference Dhees	0		1 2	9215	< <mark>⊿</mark> ₩	2	H			Ļ		KŤ2		7
Cycle, s 90.0		2	-	25		51	۳R,	2				1		3	➡ ₄
Offset, s 0	Reference Point	End	Green		0.1	36.8	10.		11.9	0.0					<u> </u>
Uncoordinated No	Simult. Gap E/W	On	Yellow	-	4.0	4.0	4.0		4.0	0.0	— — `	\mathbf{Y}			Y
Force Mode Fixed	d Simult. Gap N/S	On	Red	1.5	1.5	1.5	1.5		1.5	0.0	+	5	6	7	8
Timer Results			EBI	-	EBT	WBI	L	WB	BT	NBL	-	NBT	SBI	-	SBT
Assigned Phase					4			8		5		2	1		6
Case Number					11.0			12.0	0	1.1		3.0	1.1		3.0
Phase Duration, s					16.0			17.4	4	8.7		42.3	14.3	3	47.8
Change Period, (Y+	R c), s				5.5			5.5	5	5.5		5.5	5.5		5.5
Max Allow Headway	(<i>MAH</i>), s				3.2			3.3	3	2.9		0.0	2.9		0.0
Queue Clearance Tin	ne (<i>g</i> s), s				10.3			11.7	7	2.9			8.5		
Green Extension Tim	e (g e), s			C				0.3	3	0.0		0.0	0.4		0.0
Phase Call Probabilit	у				1.00			0.99	9	0.54			1.00)	
Max Out Probability					0.07			0.0	0	0.00			0.00)	
Movement Group R	oculte			EB			WB				NB			SB	
Approach Movement			L	T	R	L	T		R	L	T	R	L	T	R
Assigned Movement			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow Rate (v) veh/h		-	-4 86	158	5	194		10	31	344	22	235	986	39
•	Flow Rate (s), veh/h/l	n		1798	1610		1752	,	_	1781	1781	1585	1781	1781	1585
Queue Service Time				4.0	8.3		9.7	-	_	0.9	5.7	0.7	6.5	18.3	1.2
Cycle Queue Clearar				4.0	8.3		9.7	+-	_	0.9	5.7	0.7	6.5	18.3	1.2
Green Ratio (g/C)	ioo mino (g c), s			0.12	0.15		0.13	-		0.9	0.41	0.41	0.53	0.47	0.47
Capacity (<i>c</i>), veh/h				210	246		232			284	1454	647	612	1675	746
Volume-to-Capacity F	Ratio (X)			0.411	0.643		0.837			0.108	0.237	0.033	0.385	0.589	0.052
1 7	ft/ln (95 th percentile))		79	143.7		197.5	_		14.3	97.6	11.6	97.3	276.6	17.9
	veh/In (95 th percentil			3.1	5.7		7.8			0.6	3.8	0.5	3.8	10.9	0.7
	(RQ) (95 th percent	-		0.00	0.72		0.00			0.06	0.00	0.06	0.39	0.00	0.18
Uniform Delay (d 1),				36.9	35.8		38.1			15.4	17.4	16.0	12.0	17.5	12.9
Incremental Delay (0.5	1.0		3.1	+		0.1	0.4	0.1	0.1	1.5	0.1
Initial Queue Delay (0.0	0.0		0.0			0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), s/	· ·			37.3	36.9		41.2	+		15.5	17.8	16.1	12.1	19.0	13.1
Level of Service (LOS				D	D		D	1		B	В	В	В	B	B
Approach Delay, s/ve	,		37.0		D	41.2		D		17.5		B	17.5		B
Intersection Delay, s/					22			-					С		
Multimodal Results				EB			WB				NB			SB	
Pedestrian LOS Scor	e / LOS		3.0		С	3.0		С		2.1		В	2.3		В
	LOS		0.9		А	0.8		Α		0.8		А	1.5		В

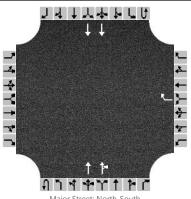

 $\label{eq:copyright} Copyright @ 2021 \ University \ of \ Florida, \ All \ Rights \ Reserved.$

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Shipetown at DG Driveway
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	2/20/2021	East/West Street	Shipetown Road
Analysis Year	2024	North/South Street	Dollar General Driveway
Time Analyzed	Full Buildout AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	588.009 Shipetown Square		

Lanes

/ . l. * . l . . . / . l

. . ..


Major Street: East-West

Approach	T	Fasth	ound			West	bound			North	bound			South	bound	
								P						1		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume, V (veh/h)		135	100	15		2	47	3		12	0	1		3	0	125
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized		N	lo			Ν	lo			Ν	lo			Ν	10	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	el of S	ervice	2												
Flow Rate, v (veh/h)		147				2					14				139	
Capacity, c (veh/h)		1550				1461					380				990	
v/c Ratio		0.09				0.00					0.04				0.14	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.1				0.5	
Control Delay (s/veh)		7.6				7.5					14.8				9.2	
Level of Service, LOS		A				A			Ì		В				А	
Approach Delay (s/veh)		4	.4			. 0	.3		14.8				9.2			
Approach LOS											3		A			

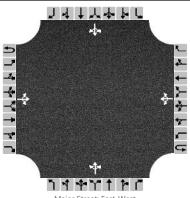
Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Rutledge Pike at RIRO
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	2/20/2021	East/West Street	RIRO Driveway
Analysis Year	2024	North/South Street	Rutledge Pike
Time Analyzed	Full Buildout PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Lanes

Major Street: North-South

Vehicle Volumes and Ad	justme	ents														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	2	0	0	0	2	0
Configuration								R			Т	TR			Т	
Volume, V (veh/h)								43			877	37			396	
Percent Heavy Vehicles (%)								2								
Proportion Time Blocked																
Percent Grade (%)							D									
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			١	10	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)								6.9								
Critical Headway (sec)								6.94								
Base Follow-Up Headway (sec)								3.3								
Follow-Up Headway (sec)								3.32								
Delay, Queue Length, ar	nd Leve	el of S	ervic	e												
Flow Rate, v (veh/h)								47								
Capacity, c (veh/h)								519								
v/c Ratio								0.09								
95% Queue Length, Q ₉₅ (veh)								0.3								
Control Delay (s/veh)								12.6								
Level of Service, LOS								В								
Approach Delay (s/veh)		-		-		12	2.6									
Approach LOS							В									


HCS7 Signalized Intersection Results Summary

		HUS	S7 Sig												
General Inforn	nation								ntersec	tion Inf	ormatic	'n		4741	F L
	nation	FMA							Duration		0.25	//I		7117	
Agency				Analua	ie Dete	Lah O	0.0004				_				
Analyst		Addie Kirkham				Feb 2			Area Typ	e	Other				2
Jurisdiction		Knox County		Time F	riod	Peak	uildout F		PHF		0.88		14 IV 8	w.l.e	
Urban Street		Rutledge Pike (US	11W)	Analys	sis Year	2024		/	Analysis	Period	1> 7:0	00		5 t t r	
Intersection		Rutledge Pike at Ro	obert	File Na	ame	Full B	uildout F	PM Pea	ak_Rutle	dge.xus	6			4147	\$r (*
Project Descrip	otion	588.009 Shipetown	Square)											
Demand Inform	mation				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v				24	22	38	57	24	78	172	812	119	51	285	60
				1		<u> </u>		Ļ							
Signal Informa	1			-	5	~	11	2	£		ι		r †3		
Cycle, s	90.0	Reference Phase	2	-	25	- N S17	7 5 1	₹R.	e			1	\mathbf{Y}_{2}	3	-€ ₄
Offset, s	0	Reference Point	End	Green	4.6	2.2	46.2	5.2	9.8	0.0					ĸ
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.0	4.0	4.0	0.0	^	5 4			Z
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.5	0.0	1.5	1.5	1.5	0.0	1	5	6	7	8
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SBI		SBT
Assigned Phase					_	4			8	5		2	1	-	6
Case Number						11.0			12.0	1.1		3.0	1.1		3.0
Phase Duration						10.7			15.3	12.3		53.9	10.1		51.7
Change Period		a) 6				5.5	<u> </u>		5.5	5.5		5.5	5.5		5.5
Max Allow Head						3.1			3.3	2.9	_	0.0	2.9		0.0
Queue Clearan		· ·				4.5			9.8	6.6		0.0	3.3		0.0
Green Extensio				<u> </u>		0.1	<u> </u>		0.2	0.0		0.0	0.1		0.0
Phase Call Pro		(90), 3				0.87	<u> </u>		0.98	0.99		0.0	0.77		0.0
Max Out Proba						0.00		-	0.00	0.00			0.00		
	J														
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v), veh/h			52	31		152		195	923	94	58	324	48
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	In		1823	1610		1712		1781	1781	1585	1781	1781	1585
Queue Service	Time (g s), s			2.5	1.5		7.8		4.6	14.6	2.6	1.3	4.4	1.4
Cycle Queue C	learanc	e Time (<i>g c</i>), s			2.5	1.5		7.8		4.6	14.6	2.6	1.3	4.4	1.4
Green Ratio (g	· ·				0.06	0.13		0.11		0.59	0.54	0.54	0.56	0.51	0.51
					106	215		186		705	1914	852	385	1827	813
	pacity (c), veh/h				0 400	0 4 40		0.818	1	0.277	0.482	0.111	0.151	0.177	0.059
	lume-to-Capacity Ratio (X)				0.492	0.142									
Back of Queue	(Q), ft	/In (95 th percentile)			51.5	26		158		63.5	218.3	37.5	19.2	68.9	19.8
Back of Queue Back of Queue	(Q), ft (Q), ve	/In (95 th percentile) eh/In (95 th percent	ile)		51.5 2.0	26 1.0		158 6.2		63.5 2.5	218.3 8.6	37.5 1.5	19.2 0.8	2.7	0.8
Back of Queue Back of Queue Queue Storage	(Q), ft (Q), ve e Ratio(/In (95 th percentile) eh/In (95 th percent RQ) (95 th percen	ile)		51.5 2.0 0.00	26 1.0 0.13		158 6.2 0.00		63.5 2.5 0.25	218.3 8.6 0.00	37.5 1.5 0.19	19.2 0.8 0.08	2.7 0.00	0.8 0.20
Back of Queue Back of Queue Queue Storage Uniform Delay	(Q), ft (Q), ve Ratio ((d1), s	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh	ile)		51.5 2.0 0.00 41.1	26 1.0 0.13 34.4		158 6.2 0.00 39.2		63.5 2.5 0.25 8.7	218.3 8.6 0.00 13.0	37.5 1.5 0.19 10.2	19.2 0.8 0.08 10.1	2.7 0.00 11.7	0.8 0.20 11.0
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De	(Q), ft, (Q), ve e Ratio ((d1), s elay (d2	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh :), s/veh	ile)		51.5 2.0 0.00 41.1 1.3	26 1.0 0.13 34.4 0.1		158 6.2 0.00 39.2 3.4		63.5 2.5 0.25 8.7 0.1	218.3 8.6 0.00 13.0 0.9	37.5 1.5 0.19 10.2 0.3	19.2 0.8 0.08 10.1 0.1	2.7 0.00 11.7 0.2	0.8 0.20 11.0 0.1
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De	(Q), ft (Q), ve e Ratio ((d1), s elay (d2 elay (d	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh	ile)		51.5 2.0 0.00 41.1 1.3 0.0	26 1.0 0.13 34.4 0.1 0.0		158 6.2 0.00 39.2 3.4 0.0		63.5 2.5 0.25 8.7 0.1 0.0	218.3 8.6 0.00 13.0 0.9 0.0	37.5 1.5 0.19 10.2 0.3 0.0	19.2 0.8 0.08 10.1 0.1 0.0	2.7 0.00 11.7 0.2 0.0	0.8 0.20 11.0 0.1 0.0
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue De Control Delay ((Q), ft (Q), vo e Ratio ((d1), s elay (d2 elay (d d), s/vo	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh	ile)		51.5 2.0 0.00 41.1 1.3 0.0 42.4	26 1.0 0.13 34.4 0.1 0.0 34.5		158 6.2 0.00 39.2 3.4 0.0 42.6		63.5 2.5 0.25 8.7 0.1 0.0 8.8	218.3 8.6 0.00 13.0 0.9 0.0 13.9	37.5 1.5 0.19 10.2 0.3 0.0 10.5	19.2 0.8 0.08 10.1 0.1 0.0 10.2	2.7 0.00 11.7 0.2 0.0 11.9	0.8 0.20 11.0 0.1 0.0 11.1
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Do Control Delay (Level of Service	(Q), ft (Q), vo e Ratio ((d1), s elay (d2 elay (d d), s/vo e (LOS)	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh	ile)		51.5 2.0 0.00 41.1 1.3 0.0 42.4 D	26 1.0 0.13 34.4 0.1 0.0 34.5 C		158 6.2 0.00 39.2 3.4 0.0 42.6 D		63.5 2.5 0.25 8.7 0.1 0.0 8.8 A	218.3 8.6 0.00 13.0 0.9 0.0 13.9 B	37.5 1.5 0.19 10.2 0.3 0.0 10.5 B	19.2 0.8 0.08 10.1 0.1 0.0 10.2 B	2.7 0.00 11.7 0.2 0.0 11.9 B	0.8 0.20 11.0 0.1 0.0 11.1 B
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Da Control Delay (Level of Service Approach Delay	(Q), ft. (Q), va e Ratio ((d1), s elay (d2 elay (d d), s/va e (LOS) y, s/veh	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh	ile)	39.5	51.5 2.0 0.00 41.1 1.3 0.0 42.4 D	26 1.0 0.13 34.4 0.1 0.0 34.5 C D	42.6	158 6.2 0.00 39.2 3.4 0.0 42.6 D	D	63.5 2.5 0.25 8.7 0.1 0.0 8.8	218.3 8.6 0.00 13.0 0.9 0.0 13.9 B	37.5 1.5 0.19 10.2 0.3 0.0 10.5 B B	19.2 0.8 0.08 10.1 0.1 0.0 10.2 B 11.6	2.7 0.00 11.7 0.2 0.0 11.9 B	0.8 0.20 11.0 0.1 0.0 11.1
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Do Control Delay (Level of Service	(Q), ft. (Q), va e Ratio ((d1), s elay (d2 elay (d d), s/va e (LOS) y, s/veh	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh	ile)	39.5	51.5 2.0 0.00 41.1 1.3 0.0 42.4 D	26 1.0 0.13 34.4 0.1 0.0 34.5 C		158 6.2 0.00 39.2 3.4 0.0 42.6 D		63.5 2.5 0.25 8.7 0.1 0.0 8.8 A	218.3 8.6 0.00 13.0 0.9 0.0 13.9 B	37.5 1.5 0.19 10.2 0.3 0.0 10.5 B B	19.2 0.8 0.08 10.1 0.1 0.0 10.2 B	2.7 0.00 11.7 0.2 0.0 11.9 B	0.8 0.20 11.0 0.1 0.0 11.1 B
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Do Control Delay (Level of Service Approach Delay Intersection De	(Q), ft (Q), va Ratio ((d1), s elay (d2 elay (d d), s/va e (LOS) y, s/veh elay, s/veh	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh	ile)	39.5	51.5 2.0 41.1 1.3 0.0 42.4 D	26 1.0 0.13 34.4 0.1 0.0 34.5 C D		158 6.2 0.00 39.2 3.4 0.0 42.6 D		63.5 2.5 0.25 8.7 0.1 0.0 8.8 A	218.3 8.6 0.00 13.0 0.9 0.0 13.9 B 3	37.5 1.5 0.19 10.2 0.3 0.0 10.5 B B	19.2 0.8 0.08 10.1 0.1 0.0 10.2 B 11.6	2.7 0.00 11.7 0.2 0.0 11.9 B	0.8 0.20 11.0 0.1 0.0 11.1 B
Back of Queue Back of Queue Queue Storage Uniform Delay Incremental De Initial Queue Da Control Delay (Level of Service Approach Delay	(Q), ft (Q), va Ratio ((d1), s elay (d2 elay (d2 d), s/va e (LOS) y, s/veh elay, s/ve	/In (95 th percentile) eh/In (95 th percent <i>RQ</i>) (95 th percent /veh e), s/veh 3), s/veh eh / LOS eh / LOS	ile)	39.5	51.5 2.0 0.00 41.1 1.3 0.0 42.4 D	26 1.0 0.13 34.4 0.1 0.0 34.5 C D		158 6.2 0.00 39.2 3.4 0.0 42.6 D 0 ₩B		63.5 2.5 0.25 8.7 0.1 0.0 8.8 A	218.3 8.6 0.00 13.0 0.9 0.0 13.9 B	37.5 1.5 0.19 10.2 0.3 0.0 10.5 B B	19.2 0.8 0.08 10.1 0.1 0.0 10.2 B 11.6	2.7 0.00 11.7 0.2 0.0 11.9 B 5 SB	0.8 0.20 11.0 0.1 0.0 11.1 B

 $\label{eq:copyright} Copyright @ 2021 \ University \ of \ Florida, \ All \ Rights \ Reserved.$

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Shipetown at DG Driveway
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	2/20/2021	East/West Street	Shipetown Road
Analysis Year	2024	North/South Street	Dollar General Driveway
Time Analyzed	Full Buildout PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	588.009 Shipetown Square		

Lanes

Major Street: East-West

Vehicle Volumes and Ad	justm	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume, V (veh/h)		97	65	30		3	41	3		28	0	3		6	0	90
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			Ν	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	ays														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, ar	nd Leve	el of S	ervice	e												
Flow Rate, v (veh/h)		105				3					33				105	
Capacity, c (veh/h)		1558				1486					502				971	
v/c Ratio		0.07				0.00					0.07				0.11	
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					0.2				0.4	
Control Delay (s/veh)		7.5				7.4					12.7				9.2	
Level of Service, LOS		A				A					В				A	
Approach Delay (s/veh)		4	.0			0	.5		12.7				9.2			
Approach LOS										I	В				Ą	

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.2.1 Full Buildout PM Peak_DG Driveway.xtw

Attachment 9 Turn Lane Warrant Analysis

Attachment 9 Turn Lane Warrant Analysis

Project: Shipetown Square

Shipetown Square at Convenience Market Driveway Connection										
Shipetown Road	VOLUMES									
at Convenience Market Driveway	Connection									
LEFT TURN	Opposing	Thru	LT	LT MAX	Warrant Met					
AM	52	115	135	300	NO					
PM	47	95	97	300	NO					
Shipetown Road	VOLUMES									
at Convenience Market Driveway	Connection									
RIGHT TURN		Thru	RT	RT MAX	Warrant Met					
AM	_	49	3	599	NO					
PM		44	3	599	NO					

Shipetown Road at Convenience Market Driveway

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *											
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399							
100 - 149	300	235	185	145	120	100							
150 - 199	245 AM F	Peak 135 LT	160	130	110	90							
200 - 249	205 PM P	eak 97 LT	140	115	100	80							
250 - 299	175		125	105	90	70							
300 - 349	155	135	110	95	50	65							
350 - 399	135	120	100	85	70	60							
400 - 419	120	105	90	75	65	55							
450 - 499	105	90	80	70	60	50							
500 - 549	95	\$9	70	65	55	50							
550 - 599	85	70	65	60	50	45							
600 - 649	75	65	60	55	45	40							
650 - 699	70	60	55	50	40	35							
700 - 749	65	55	50	45	35	30							
750 or More	60	50	45	40	35	30							

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600	
100 - 149	100	80	70	60	55	50	
150 - 199	90	75	65	55	50	45	
200 - 249	80	72	460	55	50	45	
250 - 299	70	65	55	50	45	40	
300 - 349	65	60	50	50	45	40	
350 - 399	60	55	50	45	40	40	
400 - 449	55	50	45	45	40	35	
450 - 499	50	45	45	40	35	35	
500 - 549	50	45	40	40	35	35	
550 - 599	45	40	40	35	35	35	
600 - 649	40	35	35	35	35	30	
650 - 699	35	35	35	30	30	30	
700 - 749	30	30	30	30	30 ·	30	
750 or Mure	30	30	30	30	30	30	

* Or through volume only if a right-turn lane exists.

Shipetown Road at Convenience Market Driveway

TABLE 4B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *-						
	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399	
Fewer Than 25 25 - 49 50 - 99	AM Peak 3 RT PM Peak 3 RT						
108 - 149 150 - 199							
200 - 249 250 - 299						Yes	
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499			Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600	
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes	
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes	
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

l

* Or through volume only if a left-turn lane exists.