

Transportation Impact Study Innsbruck Farms Knox County, Tennessee

Revised February 2021

3-SB-21-C Revised: 2/26/2021

Prepared for: RC Ruggles, LLC 10710 Murdock Drive Knoxville, TN 37932

EXECUTIVE SUMMARY

Preface:

RC Ruggles, LLC is proposing a residential development north of North Ruggles Ferry Road in East Knox County, TN. The name of this proposed residential development is "Innsbruck Farms", and this development will consist of 482 single-family residential houses on 182.8± acres. This development is anticipated to be fully built-out and occupied by the year 2028. This study's primary purpose is to determine and evaluate the potential impacts of the development on the adjacent transportation system. The study includes a review of the primary access roads and intersections and is a Level 2 study as set forth by Knoxville/Knox County Planning. Recommendations and mitigation measures will be offered where transportation operations have been projected to be below recognized engineering standards.

Study Results:

The findings of this study include the following:

- At full build-out and occupancy, the Innsbruck Farms Subdivision with 482 singlefamily residential houses is calculated to generate 4,420 trips on an average weekday. Of these trips, 348 are estimated to occur during the AM peak hour and 460 trips in the PM peak hour in the year 2028.
- This development will have two entrances. One entrance will be constructed on North Ruggles Ferry Pike and create a new t-intersection, and one will be at an existing intersection that will be modified at North Ruggles Ferry Pike at Blake Lane. These intersections are projected in future conditions to operate with minimal delays. The two intersection ends of North Ruggles Ferry Pike at Asheville Highway and Andrew Johnson Highway were examined in the study. Both have been calculated to operate with high vehicle delays currently. Without modifications at these intersections, they are also projected to operate very poorly in the year 2028.

Recommendations:

The following recommendations are offered based on the study analyses. The recommendations are offered to minimize the traffic impacts of the proposed development on the adjacent road system while attempting to achieve an acceptable traffic flow and safety level. The recommendations marked with an asterisk indicate an existing transportation need and are not associated with the proposed development's projected impacts.

- Due to the existing high vehicle delays and meeting traffic signal warrants based on the existing traffic volumes, it is recommended that the intersection of Asheville Highway at North Ruggles Ferry Pike be signalized.
- It is recommended that the existing sign (R3-2) prohibiting westbound left-turns at the intersection of Asheville Highway at North Ruggles Ferry Pike be replaced with a new sign in the interim and supplemented with additional signage (minimum of 2 additional signs) located on the east side median facing westbound traffic. Once the intersection is re-constructed with a traffic signal, this prohibition can be more pronounced by installing a sign on the span wire (or mast arm).
- It is recommended that the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) be signalized. This recommendation is offered due to the existing high vehicle delays, unfavorable geometric layout of the intersection, and nearly meeting traffic signal warrants for signalization based on the existing traffic volumes. In the year 2022, traffic signal warrants are expected to be fully met, assuming that the subdivision adds approximately 60 homes in the first year of the development.
 - During the planning phase for a traffic signal at the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike, it is recommended that the eastbound approach of North Ruggles Ferry Pike be examined whether an exclusive right-turn lane should be provided.
- It is recommended that the median nose on the north side of the intersection on Andrew Johnson Highway be modified to help facilitate eastbound left turns from North Ruggles Ferry Pike (West Side).
 - It is recommended that Stop Signs (R1-1) and 24" white stop bars be applied to the pavement of the Road "A" and Blake Lane/Road "Q" approaches at North Ruggles Ferry Pike. The stop bars should be applied at a minimum of 4 feet away from the edge of North Ruggles Ferry Pike and should be placed at the desired stopping point that maximizes sight distance.
 - Intersection sight distance at Road "A" and Blake Lane/Road "Q" must not be

impacted by future landscaping or signage. There is an existing utility pole on the eastern side of the proposed location of Road "A" and a hedgerow on the eastern side of Blake Lane/Road "Q" at North Ruggles Ferry Pike. These existing objects could interfere with sight distance looking towards the east. A licensed land surveyor must verify the available sight distance at these subdivision entrances.

- A passing zone is currently delineated on North Ruggles Ferry Pike's centerline at the proposed entrance locations. Knox County Engineering should determine whether these passing zones should be maintained once the development is constructed.
 - The widening of Blake Lane will require consideration of the pavement interface between the lane and the parking area of an existing church. Pavement striping may be necessary to delineate the roadway from the parking area.
 - It is recommended that 25-mph Speed Limit Signs (R2-1) be posted near the front of both streets, Road "A" and Blake Lane/Road "Q", off North Ruggles Ferry Pike. End of roadway signage (OM4-1) should be installed at the western end of Road "B" and the eastern end of Road "R".
 - Stop Signs (R1-1) and 24" white stop bars should be installed on the new internal streets, as shown in the report.
 - Sight distance at the new internal intersections in the development must not be impacted by new signage or future landscaping. With a speed limit of 25-mph in the development, the intersection sight distance requirement is 250 feet. The stopping sight distance required is 155 feet for a level road grade. The road layout designer should ensure that sight distance lengths are met.
 - All drainage grates and covers for the residential development need to be pedestrian and bicycle safe.
 - Sidewalks are not proposed for this development. If this changes, they should have appropriate ADA-compliant curbed ramps at intersection corners, and the sidewalks are recommended to be 5 feet minimum in width.
 - Traffic calming measures might be needed for this development. Several roads within the development have long and straight road segments. The possible need for traffic calming measures inside the development should be coordinated with Knox County Engineering and Public Works during the detailed design phase.
 - All road grade and intersection elements internally and externally should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

DESCRIPTION OF EXISTING CONDITIONS

STUDY AREA:

The proposed location of this new development is shown on a map in Figure 1. The proposed development will be located to the north of North Ruggles Ferry Pike near Burris Road and Blake Lane in East Knox County, TN. The proposed development will comprise twenty-one internal paved roads built for 482 single-family residential houses on 182.8± acres. Transportation impacts associated with the proposed development were analyzed at the following existing roadways and intersections, where the most significant impact is expected and as requested by Knox County Engineering:

- o Asheville Highway (US 11E / US 70 / US 25W / SR 9) at North Ruggles Ferry Pike
- o Andrew Johnson Highway (US 11E / SR 34) at North Ruggles Ferry Pike (West Side)
- o Andrew Johnson Highway (US 11E / SR 34) at North Ruggles Ferry Pike (East Side)
- o North Ruggles Ferry Pike at Burris Road

In addition to these existing intersections, the study also includes the review of two subdivision entrances. One entrance will be constructed approximately 565 feet to the west of Burris Road, creating a new t-intersection on North Ruggles Ferry Pike. The development will have a second subdivision entrance via an improved section of Blake Lane at the existing t-intersection with North Ruggles Ferry Pike, approximately 735 feet to the east of Burris Road.

The proposed development property is in a rural, pastoral area of East Knox County, TN. Near this development, there are many single-family residences, unused/woodland properties, farm properties, churches, and a public 18-hole golf course (Ruggles Ferry Golf Course). The proposed site property is undeveloped and currently consists of forested sections and areas for farm production. The site is adjacent and bounded by the Holston River to the north.

EXISTING ROADWAYS:

Table 1 lists the characteristics of the key existing roadways adjacent to the development property and included in the study:

TABLE 1 STUDY CORRIDOR CHARACTERISTICS

NAME	CLASSIFICATION 1	SPEED LIMIT	LANES	ROAD WIDTH ²	TRANSIT ³	PEDESTRIAN FACILITIES	BICYCLE FACILITIES
Asheville Highway (US 11E / US 70 / US 25W / SR 9)	Major Arterial	55 mph	4 divided	100 feet	None	No sidewalks along roadway	No bike lanes
Andrew Johnson Highway (US 11E / SR 34)	Major Arterial	55 mph	4 divided	100 feet	None	No sidewalks along roadway	No bike lanes
North Ruggles Ferry Pike	Major Collector	40 mph	2 undivided	23.5 feet	None	No sidewalks along roadway	No bike lanes
Burris Road	Local Street	25 mph / 30 mph	2 undivided	12 feet / 16 feet	None	No sidewalks along roadway	No bike lanes
Blake Lane	Local Street	Not Posted	2 undivided	13 feet	None	No sidewalks along roadway	No bike lanes

¹ 2018 Major Road Plan by Knoxville/Knox County Planning

² Edge of curb to edge of curb or edge of pavements near project site

³ According to Knoxville Area Transit System Map

Asheville Highway (US 11E / US 70 / US

25W / SR 9) is a 4-lane major arterial that traverses in a generally east-west direction. According to Wikipedia, US 25W is 145.7 miles in length and runs Newport, between Tennessee, and Corbin, Kentucky. Closer to the study Asheville Highway provides area, convenient access to Knoxville to the west, Jefferson City to the northeast (via Andrew Johnson Highway), and Dandridge to the east. The posted speed limit on Asheville Highway is 55 mph at North Ruggles Ferry Pike.

At the intersection of North Ruggles Ferry Pike, Asheville Highway is a divided highway with a 30-foot grass median. A separate left-turn lane is provided for eastbound traffic on Asheville Highway for turns onto North Ruggles Ferry Pike. Grooved pavement rumble strips are located just outside the white edge lines on Asheville Highway in both directions. North Ruggles Ferry Pike is controlled by a Stop Sign (R1-1) on the intersection's north side. A private driveway/parking lot area for the Knox Farmers Cooperative is located to the south and directly across Asheville Highway from North Ruggles Ferry Road. The private parking lot spans nearly 300 feet along the south side of Asheville Highway. There are utility street lights on Asheville Highway at the intersection with North Ruggles Ferry Pike. Westbound left-turn movements are prohibited. This prohibition is designated with signage (R3-2) at the end of the west side median at the intersection.

Andrew Johnson Highway (US 11E / SR

<u>34</u>) is a 4-lane road classified as a major arterial that traverses in a general northeast-southwest direction. US 11E is 120.9 miles in length and runs between Knoxville, TN, and Bristol, Virginia. At the intersection with North Ruggles Ferry Pike, Andrew Johnson Highway is a divided highway with a 30-foot grass median and has a posted speed limit of 55 mph. There are no utility street lights on Andrew Johnson Highway at the intersection with North Ruggles Ferry

Pike. Utility lights, however, are provided in the adjacent shopping center parking lot.

A separate left-turn lane is provided for northbound traffic on Andrew Johnson Highway for turning vehicles onto North Ruggles Ferry Pike (West Side). A third northbound lane on Andrew Johnson Highway is provided between the East Side and West Side of North Ruggles Ferry Pike. This extra lane is provided for temporary refuge and room for motorists to accelerate and merge into northbound traffic on Andrew Johnson Highway from North Ruggles Ferry Pike (West Side).

Grooved pavement rumble strips are located just outside the white edge lines on Andrew Johnson Highway in both directions. North Ruggles Ferry Pike on the East side and West side are

controlled by Stop Signs (R1-1). A private driveway/parking lot area for a Family Dollar store is located to the southeast and directly across from North Ruggles Ferry Road (West Side). Andrew Johnson Highway bisects North Ruggles Ferry Pike at a sharp skewed angle with the East Side and West Side approaches of North Ruggles Ferry Pike being separated by approximately 250'.

North Ruggles Ferry Road is a 2-lane major collector and traverses in an indirect east-west direction between Asheville Highway on the west side to Andrew Johnson Highway on the east side. Past Andrew Johnson Highway on the East Side, North Ruggles Ferry Pike continues for an additional 1,125 feet before terminating at a t-intersection with Strawberry Plains Pike. North Ruggles Ferry Pike has a total length of 5.7 miles between Asheville Highway and Andrew Johnson Highway and primarily provides access to single-family homes, farms, and undeveloped properties. The posted speed limit on North Ruggles Ferry Pike is 40 mph, and the roadway is delineated with some sections of passing zones designated with centerline pavement markings. Utility roadway lighting is not provided along North Ruggles Ferry Pike in the vicinity of the proposed development. One of the proposed subdivision entrances for Innsbruck Farms will tie onto North Ruggles Ferry Pike at a t-intersection, approximately 565 feet west of the existing 4-way intersection with Burris Road. Both approaches of Burris Road are controlled by a Stop Sign (R1-1) at the intersection with North Ruggles Ferry Pike.

Burris Road is a narrow 2-lane local road and has a posted speed limit of 30 mph to the south of Ruggles Ferry Pike and 25 mph to the north of Ruggles Ferry Pike. Burris Road traverses in a north-south direction and is 0.7 miles in length between North Ruggles Ferry Pike and Pleasant Hill Road to the south. To the north of North Ruggles Ferry Pike, Burris Road narrows in width and provides access to a few single-family homes and vacant properties.

<u>Blake Lane</u> is a narrow local road that runs nearly due north and south and is nearly 2,700 feet in length. It officially ends at a field entrance to a vacant agricultural property. Blake Lane serves access to a handful of properties, including a few single-family homes and large undeveloped properties. Blake Lane is only 13 feet in width, and it intersects North Ruggles Ferry Pike at a t-intersection 735 feet to the east of the intersection of Burris Road. A small church is located on the northwest corner of the intersection of North Ruggles Ferry Pike at Blake Lane, and a portion of the church parking area abuts Blake Lane. Blake Lane is controlled with a Stop Sign (R1-1) at the intersection with North Ruggles Ferry Pike.

In addition to a new subdivision entrance off North Ruggles Ferry Pike to the west of Burris Road, the proposed development will also have a second entrance at North Ruggles Ferry Pike to the east of Burris Road via an improved and widened section of Blake Lane.

Figures 2a and 2b show the lane configurations of the roadways and intersections examined in the study, the study traffic count locations, and traffic signage in the near vicinity. The traffic signage shown only includes warning and regulatory signage. This information is split into two figures due to the large distances between the reviewed intersection locations. The pages following Figures 2a and 2b give an overview of the site study area with photographs.

PHOTO EXHIBITS

Asheville Highway at North Ruggles Ferry Pike

Andrew Johnson Highway at North Ruggles Ferry Pike

Blake Lane/Road "Q" (Looking West)

Transportation Impact Study Innsbruck Farms

North Ruggles Ferry Pike at Road "A" Proposed Subdivision Entrance Location

EXISTING TRANSPORTATION VOLUMES PER MODE:

There are four permanent vehicular traffic count locations near the development site. Three of the count locations are conducted by the Tennessee Department of Transportation (TDOT) every year, and one is conducted every other year by the Knoxville Regional Transportation Planning Organization (TPO). The count location data is the following:

- Existing vehicular roadway traffic:
 - TDOT reported an Average Annual Daily Traffic (AADT) on Asheville Highway to the west of Meadow Trace Way and nearly due south of the project site at 23,115 vehicles per day in 2018. From 2008 – 2018, this count station has indicated a 0.1% average annual growth rate.
 - TDOT reported an Average Annual Daily Traffic (AADT) on Andrew Johnson Highway at Pleasant Hill Road and southeast of the project site at 19,610 vehicles per day in 2018. From 2008 2018, this count station has indicated a -0.3% average annual growth rate.
 - TDOT reported an Average Annual Daily Traffic (AADT) on North Ruggles Ferry Pike to the east of the project site at 628 vehicles per day in 2018. From 2008 2018, this count station has indicated a 1.2% average annual growth rate.
 - Knoxville TPO reported an Average Daily Traffic (ADT) on the western end of North Ruggles Ferry Pike just to the north of Asheville Highway at 2,480 vehicles per day in 2019. The counts at this location are conducted every odd year. Based on the limited data at this location, the average annual growth rate was calculated to be 1.8%.

All the researched historical traffic count data for this report can be viewed in Appendix A.

o Existing bicycle and pedestrian volumes:

The average daily pedestrian and bicycle traffic along and around the study corridor is not known. Only a couple of pedestrians were observed at the intersections during the manual traffic counts. No bicyclists were observed during the manual traffic counts.

• <u>ON-STREET PARKING</u>:

Currently, on-street parking is not allowed on any of the studied roadways adjacent to the project site. Off-street parking is permitted adjacent to the south approach of Asheville Highway at North Ruggles Ferry Pike. This parking is provided for the Knox Farmer Cooperative immediately to the south of the intersection. Off-street parking is also provided for the Family Dollar store just to the east of the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (West Side).

PEDESTRIAN AND BICYCLE FACILITIES:

Bicycle facilities (lanes) are not currently available within the project site study area or any studied roadways. Sidewalks are not provided either. Even though bicycle facilities are not provided on Andrew Johnson Highway or Asheville Highway, TDOT has published mapping illustrating the Bicycle Level of Service (BLOS) for state routes in Knox County. BLOS is a nationally used measure of bicyclist comfort based on a roadway's geometry and traffic conditions. BLOS A designates the route as most suitable for bicyclists

and BLOS F as the least suitable. The BLOS for Asheville Highway in the study area is shown with A, D, and F grades. Andrew Johnson Highway is given A, B, and C grades.

Andrew Johnson Highway, just to the north of North Ruggles Ferry Pike, is marked as a Bike Route with signage. TDOT designates both Asheville Highway and Andrew Johnson Highway as Bike Routes, and both are proposed to be a part

of an established statewide system of state highway bicycle routes. The statewide route proposed for Asheville Highway and Andrew Johnson Highway in the study area will run between Chattanooga, TN, and Mountain City, TN.

■ WALK SCORE:

A private company offers an online website at walkscore.com that grades and gives scores to locations within the United States based on "walkability", "bikeability", and transit availability. According to the website, the numerical values assigned for the Walk Score and the Bike Score are based on the distance to the closest amenity in various relevant categories (businesses, schools, parks, etc.) and are graded from 0 to 100. The Transit Score measures how well a location is served by public transit based on distance and type of nearby transit. The Transit Score is also graded from 0 to 100.

Appendix B shows maps and other information for the Walk Score, Bike Score, and Transit Score at the approximate property site address (8607 North Ruggles Ferry Pike). The project location is graded with a Walk Score of 1. This Walk Score indicates that the site is entirely dependent on vehicles for errands and travel. The site is graded with a Bike Score of 10, which means there is minimal bike infrastructure but is somewhat bikeable. The site is not given a transit score.

TRANSIT SERVICES:

The City of Knoxville has a network of public transit opportunities offered by Knoxville Area Transit (KAT). Bus service is not available in this area of Knox County. The overall KAT bus system map is in Appendix C. The closest public transit bus service is 7 miles away to the southwest (by roadway) near the intersection of East Magnolia Avenue at South Chilhowee Drive. This KAT service is Route 31, "Magnolia Avenue". It operates on weekdays and weekends, and this route map is also included in Appendix C. Other transit services include the East Tennessee Human Resource Agency (ETHRA) and the Community Action Committee (CAC), which provides transportation services when requested. Private taxis and ride-sharing opportunities are also available in the study area.

PROJECT DESCRIPTION

LOCATION AND SITE PLAN:

The proposed plan layout given by Norvell & Poe is shown in Figure 3. As shown in the figure, twenty-one new streets will be constructed for the subdivision. The total length of the new streets in the subdivision will be 27,526 feet (5.21 miles).

One of the subdivision entrances, Road "A", will intersect North Ruggles Ferry Pike at a tintersection approximately 565 feet to the west of the existing intersection with Burris Road. Road "A" will be built with a boulevard typical road section with a 12-foot raised median flanked by 18-foot road lanes on each side for a length of 563 feet up to Road "B" inside the subdivision.

The second subdivision entrance will be at the intersection of Blake Lane at North Ruggles Ferry Pike. Road "Q" in the subdivision will have a road width of 26 feet and will incorporate a portion of Blake Lane, which will be improved and widened. Blake Lane is currently only 13 feet wide. As part of this road improvement, a short 55' section of Blake Lane will be re-aligned to tie into Road "Q". A 200-foot section of roadway in between Road "Q" and Blake Lane will transition from 26 feet to 20 feet. To the south of the transition, Blake Lane will be

widened to 20 feet past this transition section the entire length to North Ruggles Ferry Pike. This widening of Blake Lane will be just over 1,000 feet.

The 182.8-acre residential development will incorporate nine common areas, with many used to contain stormwater facilities. The layout and location of homes in the subdivision along the Holston River will abide by the 500-year flood limits. Adjacent to the intersection of Road "G" at Road "J", the development will have a centralized area with ten parking spaces for mail delivery and pickup for residents and a small area dedicated to a dog park. The development property is

currently composed of five separate parcels, and these will be consolidated accordingly. Two of these existing parcels currently have right-of-way access to North Ruggles Ferry Pike, one parcel currently has right-of-way access to Blake Lane to the east of the project site, and one parcel has access to Burris Road. However, no access is being proposed for the subdivision to Burris Road.

As shown in Figure 3, Road "B" and Road "R" will terminate abruptly at the project property limits. These abrupt road terminations indicate that future residential development may occur on the adjacent vacant properties, but a determination has not been made at this time. This decision will be dependent on the willingness of the adjacent property owners, the future real estate market, and other market forces. Nevertheless, Road "B" and Road "R" will be constructed as if future development may occur sometime in the future.

The single-family residential detached lots will average between 10,000 -15,000 square feet (~0.25 acre - 0.33 acre) in size. Several of the lots along the Holston River will be over an acre in size, with the largest being 3.2 acres. Each home will have a garage and driveway.

The schedule for completion of this new residential development is dependent on economic factors and construction timelines. This project is also contingent on permitting, design, and other issues. However, for this study, it was assumed that the total construction build-out of the development and full occupancy would occur within the next seven years (2028).

PROPOSED USES AND ZONING REQUIREMENTS:

All five existing property parcels that comprise the proposed development are zoned as Low Density Residential (RA). The most recent published zoning map is provided in Appendix D. The Low Density Residential (RA) zone provides for low population densities for various land uses within the residential realm. Uses permitted in this zone include single-family dwellings, churches, public golf courses, and schools. The existing adjacent surrounding land uses are the following:

- The entire development property is surrounded by properties in the Agricultural (A) zone except for Holston River to the north and three small parcels to the southwest along North Ruggles Ferry Road. The three small parcels are zoned as Low Density Residential (RA), and the Holston River is listed under the Floodway (F) zone.
- All the surrounding properties' land uses are listed as vacant, agricultural, or consist of stand-alone single-family residences.

DEVELOPMENT DENSITY:

The Innsbruck Farms Subdivision's proposed density is based on a maximum of 482 houses on 182.8 acres. These amounts compute to 2.6 dwelling units per acre.

• ON-SITE CIRCULATION:

The total length of the twenty-one new streets within the development will be 27,526 feet (5.21 miles) and will be designed and constructed to Knox County, TN specifications. The new streets shown in Figure 3 are labeled Road "A" thru Road "U". The development will have asphalt paved internal roadways and include 8" extruded concrete curbs. The lane widths internally will be 13 feet each for a total 26-foot pavement width except for the beginning of Road "A". Road "A" will be a boulevard section and have 18-foot lanes with a raised 12-foot median. The street right-of-way within the development will be 50 feet. Concrete sidewalks are not being proposed along the internal roads. Knox County will maintain the streets in the subdivision after construction, and these will be dedicated public roads.

SERVICE AND DELIVERY VEHICLE ACCESS AND CIRCULATION:

Besides residential passenger vehicles, the new streets will also provide access for service, delivery, maintenance, and fire protection/rescue vehicles. None of these other types of vehicles will impact roadway operations other than when they occasionally enter and exit the development. It is expected that curbside garbage collection services will be available for this residential subdivision. The new roads will be designed and constructed to Knox County specifications and expected to be adequate for fire protection and rescue vehicles. The subdivision's internal roadways are anticipated to accommodate the larger vehicle types and standard passenger vehicles.

TRAFFIC ANALYSIS OF EXISTING AND PROJECTED CONDITIONS

EXISTING TRAFFIC CONDITIONS:

Over the past year, the Covid-19 pandemic has not only closed schools and eliminated schoolrelated traffic, but overall general traffic has been affected due to stay-at-home orders, work layoffs, job furloughs, and general anxiety with travel outside the home. More recently, while overall travel has noticeably increased and returned closer to pre-pandemic levels in the area, there is still a reduction in overall travel. This reduction can be attributed to some school-age children and families choosing to learn virtually online and due to professions and jobs that have transitioned to at-home work for the time being. Knox County Planning recently compiled traffic count data over Fall 2020 and determined that overall traffic volumes are still reduced compared to Fall 2019. A few of the Fall 2020 traffic counts compiled by Knox County Planning showed slight increases, but most count locations in the County have shown decreases ranging from 5% up to 30%.

For this study, traffic counts were conducted at the following existing unsignalized intersections as requested by Knox County Engineering:

- o Asheville Highway at North Ruggles Ferry Pike
- o Andrew Johnson Highway at North Ruggles Ferry Pike (West Side)
- o Andrew Johnson Highway at North Ruggles Ferry Pike (East Side)
- o North Ruggles Ferry Pike at Burris Road

Manual traffic counts were obtained on Wednesday, January 13, 2021, for a total of eight hours at each studied intersection. The counts were conducted to tabulate the morning and afternoon peak periods. Local county public schools were in session when the traffic counts were conducted and had been open for a week since returning from the Christmas break. Providing a week buffer before counting allowed for school-related traffic to normalize to more established and solidified patterns. Based on the traffic volumes counted, the AM and PM peak hour of traffic were observed at the following times:

o Asheville Highway at North Ruggles Ferry Pike 7:00 – 8:00 AM / 4:45 – 5:45 PM

- o Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) 7:15 – 8:15 AM / 4:45 – 5:45 PM
- Andrew Johnson Highway at North Ruggles Ferry Pike (East Side)
 7:15 8:15 AM / 4:45 5:45 PM
- North Ruggles Ferry Pike at Burris Road
 7:15 8:15 AM / 4:15 5:15 PM

The manual tabulated traffic counts can be reviewed in Appendix E, and some observations are listed below.

It should be noted that even though westbound left-turn movements are prohibited at the intersection of Asheville Highway at North Ruggles Ferry Pike, several motorists were observed turning left into the Knox Farmers Cooperative parking lot during the manual traffic count.

During the manual traffic counts, other vehicle maneuvers included motorists on North Ruggles Ferry Pike (East Side) illegally entering the Family Dollar shopping center. These illegal maneuvers involved entering Andrew Johnson Highway in the wrong direction of travel and entering the shopping center's first private driveway (northernmost). This illegal maneuver is done to avoid entering, crossing, and traveling Iohnson southbound Andrew on Highway to the private driveway across

North Ruggles Ferry Pike (West Side). Five of these illegal traffic movements were observed during the 8-hour traffic count.

For this study, the West Side and East Side skewed intersections of North Ruggles Ferry Pike at Andrew Johnson Highway are treated as two distinct intersections since they are separated by approximately 250 feet. The eastbound and westbound left-turning movements and the northbound and southbound right-turning movements at each of these intersections were tabulated as separate movements, but many of these movements on North Ruggles Ferry Pike

could be designated as "thru" travel across Andrew Johnson Highway. This "thru" travel was mainly observed in the morning for vehicles traveling from the West Side of North Ruggles Ferry Pike to the East Side of North Ruggles Ferry Pike. The opposite direction "thru" travel was observed from East to West, but it was considerably less pronounced. Specifically, the observations indicated that 40% of eastbound left turns from the North Ruggles Ferry Pike (West Side) in the AM Peak Hour were immediately

followed by subsequent northbound right turns onto North Ruggles Ferry Pike (East Side). These same movements were observed during the PM Peak Hour at 20%. The opposite "thru" travel was observed at 50% in the AM Peak Hour and 30% in the PM Peak Hour.

It is speculated that these "thru" movements in the morning are related to Carter Middle and High School traffic from residents along and off North Ruggles Ferry Pike to the west of Andrew Johnson Highway. These schools are located just one mile to the south of North Ruggles Ferry Pike (East Side) at Strawberry Plains Pike intersection. Strawberry Plains Pike provides convenient access to the schools to the south of North Ruggles Ferry Pike (East Side).

Many Knox County school buses were observed during the traffic counts. However, most of the traffic observed during the traffic counts were typical passenger vehicles with some large trucks and heavy vehicles. Large trucks and heavy vehicles were mostly observed in the thru movements on Asheville Highway and Andrew Johnson Highway. No bicyclists were observed during the traffic counts at any of the intersections. One pedestrian was observed walking eastbound on the south side of Asheville Highway at North Ruggles Ferry Pike. Three pedestrians were observed walking along North Ruggles Ferry Pike at Burris Road.

As discussed earlier, Knox County Planning has determined that traffic volumes in the area are still reduced due to the ongoing pandemic. At the direction of Knox County Planning, to account for potentially reduced traffic volumes due to the pandemic, this study has increased the tabulated traffic volumes at the intersections by a factor of 20%. This percentage is an average

value based on the local area sampling of traffic volumes comparing Fall 2019 traffic volumes with the recently obtained Fall 2020 traffic volumes.

Figures 4a and 4b show the volumes from the existing traffic counts during the AM and PM peak hours observed at the studied intersections. Figures 4c and 4d show the volumes from the existing traffic counts during the AM and PM peak hours observed at the studied intersections increased with the 20% factor.

A final note on the existing traffic volumes: the volumes shown at the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (East Side) includes a small amount of right-turn exiting traffic from the first private driveway (northernmost) at the Family Dollar store. These are not included in the volumes at Andrew Johnson Highway at North Ruggles Ferry Pike (West Side).

Capacity analyses were undertaken to determine the Level of Service (LOS) for the studied intersections for both the existing year 2021 traffic volumes shown in Figures 4a and 4b and Figures 4c and 4d with a 20% factor increase. The capacity analyses were calculated by following the Highway Capacity Manual (HCM) methods and Synchro Traffic Software (Version 8).

<u>Methodology</u>:

LOS is a qualitative measurement developed by the transportation profession to express how well an intersection or roadway performs based on a driver's perception. LOS designations include LOS A through LOS F. The designation of LOS A signifies a roadway or intersection operating at best, while LOS F signifies road operations at worst. This grading system provides a reliable, straightforward means to communicate road operations to the public. The HCM lists level of service criteria for unsignalized intersections and signalized intersections.

LOS is defined by delay per vehicle (seconds), and roadway facilities are also characterized by the volume-to-capacity ratio (v/c). For example, a delay of 20 seconds at an unsignalized intersection would indicate LOS C, and this delay would represent the additional delay a motorist would experience traveling through the intersection. Also, for example, a v/c ratio of 0.75 for an approach at an unsignalized intersection would indicate that it is operating at 75% of its available capacity. LOS designations, which are based on delay, are reported differently for unsignalized and signalized intersections. This difference is primarily due to motorists having different expectations between the two road facilities. Generally, for most instances, the LOS D / LOS E boundary is considered the upper limit of acceptable delay during peak periods in urban and suburban areas.

For unsignalized intersections, LOS is measured in terms of delay (in seconds). This measure is an attempt to quantify delay that includes travel time, driver discomfort, and fuel consumption. For unsignalized intersections, the analysis assumes that the mainline thru and right-turn traffic does not stop and is not affected by the traffic on the minor side

streets. Thus, the LOS for a two-way stop (or yield) controlled intersection is defined by the delay for each minor approach and major street left-turn movements. Table 2 lists the level of service criteria for unsignalized intersections. The analysis results of unsignalized intersections using the HCM methodologies are conservative due to the more significant vehicle gap parameters used in the method. More often, in normal road conditions, drivers are more willing to accept smaller gaps in traffic than what is modeled using the HCM methodology. The unsignalized intersection methodology also does not account for more significant gaps sometimes produced by nearby upstream and downstream signalized intersections. For unsignalized intersections, in most instances, the upper limit of acceptable delay during peak hours is the LOS D/E boundary at 35 seconds.

Capacity calculations from the existing peak hour traffic at the intersections are shown in Tables 3a and 3b for the intersections. Table 3a shows the results based on the existing tabulated traffic counts. Table 3b shows the results based on the existing tabulated traffic counts with a 20% factor increase. The intersections in the tables are shown with a LOS designation, delay (in seconds), and v/c ratio (volume/capacity) for the AM and PM peak hours. Appendix F includes the worksheets from the capacity analyses for the existing peak hour vehicular traffic.

The minor North Ruggles Ferry Pike approaches at the intersections on Asheville Highway and Andrew Johnson Highway are calculated to operate very poorly during the existing AM and PM peak hours. When the traffic volumes are increased by 20%, the results indicate LOS F with considerable vehicle delays. The intersection of North Ruggles Ferry Pike at Burris Road has low traffic volumes, and all reportable traffic movements are calculated to be LOS A.

TABLE 2 LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY (seconds/vehicle)	
А	Little or no delay	0 - 1 0	
В	Short Traffic Delays	>10 -15	
С	Average Traffic Delays	>15 - 25	
D	Long Traffic Delays	>25 - 35	
E	Very Long Traffic Delays	>35 - 50	
F	Extreme Traffic Delays	>50	

Source: Highway Capacity Manual, 6th Edition

TABLE 3a2021 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -EXISTING TRAFFIC CONDITIONS

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	DELAY ^b	v/c °	LOS ^a	DELAY ^b	v/c °
				(seconds)			(seconds)	
Asheville Highway at	zed	Eastbound Left	С	15.5	0.310	В	11.6	0.230
North Ruggles Ferry Pike	STOP TE	Westbound Left	-	0.0	0.000	А	0.4	0.010
	in the second se	Northbound Left/Thru/Right	Α	0.0	0.000	E	47.0	0.120
	n	Southbound Left/Thru/Right	D	32.5	0.650	В	14.6	0.150
Andrew Johnson Highway at	zed	Eastbound Left/Thru/Right	E	46.5	0.470	Е	49.3	0.410
North Ruggles Ferry Pike	STOP E	Westbound Left/Thru/Right	Α	0.0	0.000	D	28.9	0.160
(West Side)	in the second se	Northbound Left	В	10.7	0.020	А	9.1	0.020
	Un	Southbound Left	Α	0.2	0.010	А	1.0	0.030
Andrew Johnson Highway at	zed	Westbound Left/Right	С	19.3	0.060	D	34.2	0.190
North Ruggles Ferry Pike	STOP HE	Southbound Left	Α	0.1	0.010	-	0.0	0.000
(East Side)	igi gi							
	Un							
North Ruggles Ferry Pike at	zed	Eastbound Left/Thru/Right	-	0.0	0.000	А	0.4	0.000
Burris Road	STOP P	Westbound Left/Thru/Right	Α	0.8	0.000	А	1.5	0.010
		Northbound Left/Thru/Right	Α	8.9	0.020	А	9.2	0.010
	L n	Southbound Left/Thru/Right	Α	0.0	0.000	А	8.5	0.000

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections * Level of Service

^b Average Delay (sec/vehicle)

° Volume-to-Capacity Ratio

TABLE 3b 2021 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -EXISTING TRAFFIC CONDITIONS (+20%)

	TRAF	FIC	APPROACH/		AM PEAK			PM PEAK	
INTERSECTION	CONT	ROL	MOVEMENT	LOS ^a	DELAY ^b	v/c ^c	LOS ^a	DELAY ^b	v/c ^c
					(seconds)			(seconds)	
Asheville Highway at	zed		Eastbound Left	С	22.4	0.480	В	13.8	0.330
North Ruggles Ferry Pike	STOP T		Westbound Left	-	0.0	0.000	А	0.5	0.020
		0	Northbound Left/Thru/Right	А	0.0	0.000	F	90.8	0.260
	L, L		Southbound Left/Thru/Right	F	96.8	1.010	С	17.3	0.220
Andrew Johnson Highway at	zed		Eastbound Left/Thru/Right	F	128.9	0.860	F	142.4	0.810
North Ruggles Ferry Pike	STOP "	OP un N	Westbound Left/Thru/Right	А	0.0	0.000	F	51.0	0.300
(West Side)		D	Northbound Left	В	12.0	0.030	А	9.7	0.030
	5		Southbound Left	А	0.2	0.010	А	1.4	0.050
Andrew Johnson Highway at	zed		Westbound Left/Right	D	25.6	0.090	F	60.9	0.330
North Ruggles Ferry Pike	STOP T		Southbound Left	А	0.2	0.010	-	0.0	0.000
(East Side)		0							
	5								
North Ruggles Ferry Pike at	zed		Eastbound Left/Thru/Right	-	0.0	0.000	А	0.3	0.000
Burris Road	STOP "		Westbound Left/Thru/Right	А	0.9	0.000	А	1.6	0.010
	STOP Lig	þ	Northbound Left/Thru/Right	А	9.0	0.020	А	9.4	0.020
	L L		Southbound Left/Thru/Right	А	0.0	0.000	А	8.5	0.000

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections * Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

• OPENING YEAR TRAFFIC CONDITIONS (WITHOUT THE PROJECT):

Opening year traffic volumes represent the future condition the proposed study area is potentially subject to even without the proposed project being developed (no-build option). As previously stated, the build-out and full occupancy for this proposed development is assumed to occur in 2028. This horizon year corresponds to seven years for this extensive residential development to reach full capacity and occupancy.

Vehicular traffic on Asheville Highway, Andrew Johnson Highway, and North Ruggles Ferry Pike has shown flat to minimal growth over the past few years, according to the permanent traffic count stations and as Appendix shown in А. To conservatively account for potential traffic growth in the study area, an average annual growth rate of 1.5% was used to calculate future growth up

to 2028 for the studied intersections. This growth rate is applied on top of the 20% factor applied to the tabulated existing traffic counts to account for reduced traffic levels from the current pandemic. The results of this growth rate applied to the existing 2021 traffic volumes from Figures 4c and 4d (with 20% factor) are shown in Figures 5a and 5b. Figures 5a and 5b show the projected opening year traffic volumes at the studied intersections in 2028 during the AM and PM peak hours without the project.

Capacity analyses were conducted for the future projected conditions at the studied intersections in the year 2028 without the project being developed. The results from the 2028 projected opening year traffic conditions (without the project) can be seen in Table 4 for the intersections. Appendix F contains the LOS capacity worksheets for the opening year conditions (without the project) in 2028. It is important to point out that these projected calculated LOS designations for the intersections could exist in the future, even without the proposed residential project being constructed and developed. The minor North Ruggles Ferry Pike approaches at the intersections of Asheville Highway and Andrew Johnson Highway are shown to operate even worse during the projected AM and PM peak hours without the project in the year 2028.

TABLE 4 2028 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -**OPENING YEAR (2028 WITHOUT THE PROJECT)**

	TRAF	FIC	APPROACH/		AM PEAK		PM PEAK			
INTERSECTION	CONT	ROL	MOVEMENT	LOS ^a	DELAY ^b	v/c °	LOS ^a	DELAY ^b	v/c °	
					(seconds)			(seconds)		
Asheville Highway at	zed		Eastbound Left	D	31.7	0.620	С	16.0	0.400	
North Ruggles Ferry Pike	STOP		Westbound Left	-	0.0	0.000	Α	0.7	0.020	
)	Northbound Left/Thru/Right	А	0.0	0.000	F	219.0	0.520	
	្រភ		Southbound Left/Thru/Right	F	200.2	1.290	С	19.9	0.270	
			·							
Andrew Johnson Highway at	zed		Eastbound Left/Thru/Right	F	277.4	1.250	F	325.7	1.260	
North Ruggles Ferry Pike	STOP The Base	Westbound Left/Thru/Right	А	0.0	0.000	F	77.6	0.430		
(West Side))	Northbound Left	В	13.0	0.040	В	10.1	0.040	
	ង		Southbound Left	А	0.2	0.010	А	1.8	0.060	
Andrew Johnson Highway at	zed		Westbound Left/Right	D	31.5	0.130	F	96.9	0.490	
North Ruggles Ferry Pike	STOP		Southbound Left	А	0.2	0.010	-	0.0	0.000	
(East Side)	l and list)								
	5									
North Ruggles Ferry Pike at	zed		Eastbound Left/Thru/Right	-	0.0	0.000	Α	0.3	0.000	
Burris Road	STOP		Westbound Left/Thru/Right	А	0.8	0.000	А	1.7	0.010	
			Northbound Left/Thru/Right	А	9.1	0.020	А	9.6	0.020	
Uns			Southbound Left/Thru/Right	А	0.0	0.000	Α	8.6	0.000	

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections

^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

TRIP GENERATION:

The estimated amount of traffic generated by the proposed residential development was calculated based upon rates and equations for peak hour trips provided by <u>Trip Generation</u> <u>Manual, 10th Edition</u>, a publication of the Institute of Transportation Engineers (ITE). A generated trip is a single or one-direction vehicle movement that is either entering or exiting the study site. The <u>Trip Generation Manual</u> is the traditional and most popular resource for determining trip generation rates when traffic impact studies are produced. The Manual lists and includes data for various land uses and correlates trips generated based on different variables such as dwelling units, square footage, etc. The data from ITE for the proposed land use is shown in Appendix G. A summary of this information is presented in the following table:

TABLE 5TRIP GENERATION FOR INNSBRUCK FARMS SUBDIVISION482 Single-Family Detached Houses

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GE AM 1	NERAT FRAFFIC PEAK H	ED : OUR	GI PM 1	ENERATI TRAFFIC PEAK HO	ED : DUR
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
1.11	Single-Family		4,420	25%	75%		63%	37%	-
#210	Detached Housing	482 Houses		87	261	348	290	170	460
Tot	al New Volume Site	e Trips	4,420	87	261	348	290	170	460

ITE Trip Generation Manual, 10th Edition

Trips calculated by using Fitted Curve Equation

For the proposed residential subdivision, with 482 single-family detached houses, it is estimated that 87 vehicles will enter and 261 will exit, for a total of 348 generated trips during the AM Peak Hour in the year 2028. Similarly, it is estimated that 290 vehicles will enter and 170 will exit, for a total of 460 generated trips during the PM Peak Hour in the year 2028. The calculated trips generated for an average weekday are expected to be 4,420 vehicles for the proposed development in 2028. No trip reductions were included in the analysis.

TRIP DISTRIBUTION AND ASSIGNMENT:

Figures 6a and 6b show the projected distribution for traffic entering and exiting at the studied intersections. The percentages shown only pertain to the trips generated by the new proposed residential dwellings in the development calculated from the ITE <u>Trip Generation Manual</u> and shown in Table 5.

Typically, trip distribution and future traffic assignments are based on assuming likely traffic routes based on outside destinations and "attractors" and the resulting inbound and outbound traffic flows. However, Knox County Engineering directed that this study assume that all traffic generated by the subdivision will travel either east or west on North Ruggles Ferry Pike the entire length to its ends without deviation. This assumption results in all generated traffic by the subdivision being added to the volumes of North Ruggles Ferry Pike at Asheville Highway and Andrew Johnson Highway. This directive was requested to test a worst-case scenario of the two intersections' capacity at each end of North Ruggles Ferry Pike.

In reality, not all traffic generated by the subdivision will travel the full length of North Ruggles Ferry Pike, especially to and from the west. Several roads currently exist between North Ruggles Ferry Pike and Asheville Highway, which provides shorter travel times and distances, especially for travel to the west and also the south towards Strawberry Plains

Pike and Interstate 40. In particular, Cash Road and North Patty Road off North Ruggles Ferry Pike are sensible routes that would result in travel time reductions instead of traveling the full length of North Ruggles Ferry Pike to the west. Obtaining directions from popular travel route applications, such as Waze and Google Maps, all recommend using Cash Road and North Patty Road in between Asheville Highway and North Ruggles Ferry Pike for travel to and from the proposed development site. Both roads are reasonably wide enough and appropriate for

residential passenger-vehicle travel.

Knox County Engineering's directives were followed by distributing and assigning the generated traffic volumes to each end of North Ruggles Ferry Pike. The assumed distribution of east and west travel (65% / 35% splits) was discerned and assumed based on the existing volumes during the AM and PM peak hours. The assumed distribution of traffic at each of the intersections is based on the existing observed turning movements at the intersection.

Various outside developments will "attract" potentially the projected generated traffic to and from the new residential subdivision. In addition to employment centers and commercial development, some traffic will travel to and from various public and private elementary, middle, and high schools. site development property is This currently zoned for Carter Elementary School, Carter Middle School, and Carter

High School. All these public schools are to the south and east of the subdivision in the vicinity of the intersection of Asheville Highway and Andrew Johnson Highway.

The distribution of generated traffic entering the two subdivision entrances is based on the same assumed 65% / 35% directional east and west split of traffic on North Ruggles Ferry Pike. It is also further assumed that the generated trips will be split among the two entrances based on the internal lot distribution and road layout. A division line is shown in Figure 6b, which illustrates the assumed internal split of the generated traffic by the subdivision at the two entrances. This division line corresponds to the subdivision with a 65%/35% split based on 428 house lots. Based on this assumption, most of the traffic generated by the development will enter and exit at Road "A".

Figures 7a and 7b show the Traffic Assignment of the computed trips generated by the subdivision (from Table 5) and the application of the intersection turning movements volumes based on the assumed distribution of trips shown in Figures 6a and 6b.

• OPENING YEAR TRAFFIC CONDITIONS (WITH PROJECT):

Overall, several additive steps were taken to estimate the <u>total</u> opening year projected traffic volumes at the studied intersections when the Innsbruck Farms Subdivision is entirely constructed and occupied by 2028. The steps are illustrated below for clarity:

To calculate the total future projected traffic volumes at the studied intersections, the calculated peak hour traffic (from ITE Trip Generation) generated by the new Innsbruck Farms Subdivision was added to the 2028 opening year traffic (Figures 5a and 5b) by following the predicted directional distributions and assignments (Figures 6a, 6b, 7a, and 7b). This procedure was completed to obtain the total projected traffic volumes when the development is fully built-out and occupied in 2028. Figures 8a and 8b show the projected AM and PM peak hour volumes at the studied intersections for 2028 with the development traffic.

All the above assumptions are based on the directive that all generated trips by the development were to be assigned and distributed to each end of North Ruggles Ferry Pike. The thru volumes

at the intersection of North Ruggles Ferry Pike at Blake Lane were determined based on the volumes from the intersection of North Ruggles Ferry Pike at Burris Road. The entering and exiting volumes on Blake Lane during the AM and PM peak hours were assumed to be the same as collected on the north side of Burris Road since there are a similar number of homes and properties on each road. This assumption was necessary since a traffic count was not conducted at the intersection of North Ruggles Ferry Pike at Blake Lane.

Capacity analyses were conducted to determine the projected Level of Service for vehicles at the existing and proposed intersection with the development traffic in the year 2028. Appendix F includes the worksheets for these capacity analyses.

As expected, the additional traffic generated from the proposed residential subdivision increased the already calculated extreme vehicle delays in the year 2028 (without the project). It resulted in intolerable vehicle delays for the minor approaches off North Ruggles Ferry Pike at Asheville Highway and Andrew Johnson Highway. However, the subdivision entrances, Road "A" and Blake Lane/Road "Q" are calculated to operate very well with respect to Level of Service and will have minimal vehicle delays. The projected 2028 peak hour vehicular traffic results at the studied intersections can be seen in Table 6 for the AM and PM peak hours.

Summaries of the intersection analysis results are presented in Tables 7a thru 7d. Graphs of the results follow the tables highlighting the LOS results. These tables provide a side-by-side summary of each intersection: for the 2021 existing conditions (+ 20%), the projected conditions in the year 2028 without the project, and the projected conditions in the year 2028 with the project. (Note: The North Ruggles Ferry Road at Road "A" and the North Ruggles Ferry Road at Blake Lane/Road "Q" intersection are not included in the summary tables since these intersections only occur in the analysis of the projected 2028 conditions.)

TABLE 62028 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -OPENING YEAR (2028 WITH PROJECT)

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK			
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	DELAY ^b	v/c °	LOS ^a	DELAY ^b	v/c °	
				(seconds)			(seconds)		
Asheville Highway at	zed	Eastbound Left	Е	42.3	0.750	D	31.4	0.780	
North Ruggles Ferry Pike	STOP	Westbound Left	-	0.0	0.000	А	0.7	0.020	
	10 IS	Northbound Left/Thru/Right	А	0.0	0.000	F	Err	12.350	
	'n	Southbound Left/Thru/Right	F	600.6	2.230	F	167.1	1.100	
Andrew Johnson Highway at	zed	Eastbound Left/Thru/Right	F	Err	3.690	F	Err	5.400	
North Ruggles Ferry Pike	STOP TE	Westbound Left/Thru/Right	Α	0.0	0.000	F	192.6	0.740	
(West Side)	Side)	Northbound Left	С	15.1	0.160	В	11.4	0.150	
	'n	Southbound Left	Α	0.2	0.010	А	1.8	0.060	
Andrew Johnson Highway at	zed	Westbound Left/Right	F	59.0	0.490	F	336.5	1.270	
North Ruggles Ferry Pike	orth Ruggles Ferry Pike	Southbound Left	Α	0.2	0.010	-	0.0	0.000	
(East Side)	Isi g								
	'n								
North Ruggles Ferry Pike at	zed	Eastbound Left/Thru/Right	-	0.0	0.000	А	0.1	0.000	
Burris Road	STOP	Westbound Left/Thru/Right	А	0.2	0.000	А	0.8	0.010	
	Tsig	Northbound Left/Thru/Right	В	10.9	0.030	В	11.9	0.030	
	n	Southbound Left/Thru/Right	А	0.0	0.000	А	9.1	0.000	
	1								
North Ruggles Ferry Pike at	zed	Eastbound Left/Thru	А	2.1	0.020	Α	4.0	0.090	
Road "A"	STOP E	Southbound Left/Right	В	10.3	0.220	В	13.3	0.220	
	lai g								
	'n								
North Ruggles Ferry Pike at	zed	Eastbound Left/Thru	А	0.6	0.010	А	2.7	0.050	
Blake Lane/Road "Q"	STOP TE	Southbound Left/Right	Α	10.0	0.120	В	11.9	0.110	
	laigi								
	C.								

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections

^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

TABLE 7a INTERSECTION CAPACITY ANALYSIS SUMMARY ASHEVILLE HIGHWAY AT NORTH RUGGLES FERRY PIKE

LOCATION / PEAK	2021	EXISTING (-	+20%)	2028 WIT	HOUT THE	PROJECT	2028	WITH PRO	JECT
HOUK MOVEMENT	LOS ^a	Delay ^b	v/c ^c	LOS ^a	Delay⁵	v/c ^c	LOSª	Delay ^b	v/c ^c
Asheville Highway at North Ru	OP								
AM Peak									
Eastbound Left/Thru/Right	С	22.4	0.480	D	31.7	0.620	Е	42.3	0.750
Westbound Left/Thru/Right	-	0.0	0.000	-	0.0	0.000	-	0.0	0.000
Northbound Left/Thru/Right	Α	0.0	0.000	Α	0.0	0.000	А	0.0	0.000
Southbound Left/Thru/Right	F	96.8	1.010	F	200.2	1.290	F	600.6	2.230
PM Peak									
Eastbound Left	В	13.8	0.330	С	16.0	0.400	D	31.4	0.780
Westbound Left	А	0.5	0.020	А	0.7	0.020	А	0.7	0.020
Northbound Left/Thru/Right	F	90.8	0.260	F	219.0	0.520	F	Err	12.350
Southbound Left/Thru/Right	С	17.3	0.220	С	19.9	0.270	F	167.1	1.100

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections ^a Level of Service

^b Average Delay (sec/vehicle) ° Volume-to-Capacity Ratio

TABLE 7b INTERSECTION CAPACITY ANALYSIS SUMMARY ANDREW JOHNSON HIGHWAY AT NORTH RUGGLES FERRY PIKE (WEST SIDE)

LOCATION / PEAK	2021	EXISTING (-	⊦20%)	2028 WITI	HOUT THE	PROJECT	2028	2028 WITH PROJECT			
HOUR MOVEMENT	LOS ^a	Delay ^b	v/c ^c	LOS ^a	Delay⁵	v/c ^c	LOS ^a	Delay ^b	v/c ^c		
Andrew Johnson Highway at No	(West Side)	STOP									
AM Peak											
Eastbound Left	F	128.9	0.860	F	277.4	1.250	F	Err	3.690		
Westbound Left	А	0.0	0.000	А	0.0	0.000	А	0.0	0.000		
Northbound Left/Thru/Right	В	12.0	0.030	В	13.0	0.040	С	15.1	0.160		
Southbound Left/Thru/Right	А	0.2	0.010	А	0.2	0.010	А	0.2	0.010		
PM Peak											
Eastbound Left	F	142.4	0.810	F	325.7	1.260	F	Err	5.400		
Westbound Left	F	51.0	0.300	F	77.6	0.430	F	192.6	0.740		
Northbound Left/Thru/Right	Α	9.7	0.030	В	10.1	0.040	В	11.4	0.150		
Southbound Left/Thru/Right	А	1.4	0.050	А	1.8	0.060	А	1.8	0.060		

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections * Level of Service

^b Average Delay (sec/vehicle)

° Volume-to-Capacity Ratio

TABLE 7c INTERSECTION CAPACITY ANALYSIS SUMMARY ANDREW JOHNSON HIGHWAY AT NORTH RUGGLES FERRY PIKE (EAST SIDE)

LOCATION / PEAK	2021	EXISTING (+20%)	2028 WI1	HOUT THE	PROJECT	2028 WITH PROJEC			
HOCK MOVEMENT	LOS*	Delay	v/c°	LOS*	Delay	v/c ^c	LOS*	Delay ^b	v/c ^c	
Andrew Johnson Highway at 1	North Ruggle	s Ferry Pike	(East Side)	STOP						
Westbound Left/Right	D	25.6	0.090	D	31.5	0.130	F	59.0	0.490	
Southbound Left	A	0.2	0.010	A	0.2	0.010	A	0.2	0.010	
PM Peak										
Westbound Left/Right	F	60.9	0.330	F	96.9	0.490	F	336.5	1.270	
	1	0.0	0.000		0.0	0.000		0.0	0.000	

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections * Level of Service

^b Average Delay (sec/vehicle)

Volume-to-Capacity Ratio

TABLE 7d INTERSECTION CAPACITY ANALYSIS SUMMARY NORTH RUGGLES FERRY PIKE AT BURRIS ROAD

LOCATION / PEAK	2021	EXISTING (+20%)	2028 WI1	HOUT THE	PROJECT	2028	2028 WITH PROJECT			
HOUR MOVEMENT	LOS*	Delay ^b	v/c ^c	LOS*	Delay ^b	v/c ^c	LOS*	Delay ^b	v/c ^c		
North Ruggles Ferry Pike at Bu	rris Road		STOP								
AM Peak											
Eastbound Left	-	0.0	0.000		0.0	0.000	-	0.0	0.000		
Westbound Left	A	0.9	0.000	A	0.8	0.000	A	0.2	0.000		
Northbound Left/Thru/Right	A	9.0	0.020	A	9.1	0.020	В	10.9	0.030		
Southbound Left/Thru/Right	A	0.0	0.000	A	0.0	0.000	A	0.0	0.000		
PM Peak											
Eastbound Left	A	0.3	0.000	A	0.3	0.000	A	0.1	0.000		
Westbound Left	A	1.6	0.010	A	1.7	0.010	A	0.8	0.010		
Northbound Left/Thru/Right	A	9.4	0.020	A	9.6	0.020	B	11.9	0.030		
Southbound Left/Thru/Right	A	8.5	0.000	A	8.6	0.000	А	9.1	0.000		

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for unsignalized intersections * Level of Service

^b Average Delay (sec/vehicle)

° Volume-to-Capacity Ratio

POTENTIAL SAFETY ISSUES:

The study area was investigated for potential existing and future safety issues. A couple of features of the adjacent transportation system are discussed in the following pages.

EVALUATION OF TURN LANE THRESHOLDS

An evaluation of the need for separate turn lanes for entering vehicles into the development in 2028 was conducted at the subdivision entrances on North Ruggles Ferry Pike at Road "A" and Blake Lane/Road "Q". The design policy used for these turn lane evaluations is based on "Knox County's Access Control and Driveway Design Policy". This design policy relates vehicle volume thresholds based on prevailing speeds for two-lane and four-lane roadways. This Knox County policy is based on TDOT and nationally accepted guidelines for unsignalized intersections.

Based on the projected 2028 AM and PM Peak Hour traffic volumes at the subdivision entrance intersections on North Ruggles Ferry Pike and the posted speed limit of 40-mph, the need for separate eastbound left-turn lanes or westbound right-turn lanes on North Ruggles Ferry Pike is not warranted. The worksheets for these evaluations are in Appendix H.

Based on KGIS mapping, the right-of-way width on North Ruggles Ferry Pike at the proposed entrance, Road "A", is 50 feet. This width appears to be sufficient for constructing an additional entering turn lane if required in the future. This may be necessary in the future if additional development phases are proposed for this subdivision, and a turn lane is warranted based on the increased traffic volumes. While property acquisition may not be necessary, the adjacent property's driveways would likely require re-construction to construct an entering turn lane.

EVALUATION OF SIGHT DISTANCE

For intersections, sight distance evaluations have two categories: Stopping Sight Distance (SSD) and Intersection Sight Distance (ISD).

<u>Methodology</u>:

SSD is the distance required for a motorist to perceive, react, and the vehicle to come to a complete stop before colliding with an object in the road. For evaluating intersections, this object would be another vehicle entering the intersection from a minor street. SSD

can be considered the <u>minimum</u> visibility distance standard for evaluating the safety of an intersection.

ISD is based on the time required to perceive, react, and complete the desired traffic maneuver once a motorist on a minor street perform a decides to traffic Three traffic maneuver. available maneuvers are for vehicles stopped on a minor street at a 4-way intersection: left-turn

from the minor road, right-turn from the minor road, and a crossing maneuver from the minor road across the major road. For turns from the minor street, ISD is needed to allow a stopped motorist on a minor street to turn onto a major street without being overtaken by an approaching vehicle. The most critical (longest) ISD is for left-turns from the minor street. The ISD for this maneuver includes the time to turn left and to clear half of the intersection without conflicting with the oncoming traffic from the left and accelerating to the road's operating speed without causing the approaching vehicles from the right to reduce their speed substantially. SSD can be considered the <u>desirable</u> visibility distance standard for evaluating the safety of an intersection. SSD is generally more critical than ISD; however, the ISD must be at least the same distance or greater than SSD to provide safe operations at an intersection.

Based on a posted speed limit of 40-mph on North Ruggles Ferry Pike, the required intersection sight distance (ISD) is 400 feet looking each direction at the intersection of North Ruggles Ferry Pike at Road "A" and Blake Lane/Road "Q" based on Knox County policy of requiring 10 feet of sight distance per 1-mph of speed. Based on an existing 4% grade on North Ruggles Ferry Pike at Road "A" and a posted speed limit of 40-mph, the SSD is calculated to be 325 feet for eastbound and 285 feet for westbound vehicles. Based on an existing 4% grade on North Ruggles Ferry Pike at Blake Lane/Road "Q" and a posted speed limit of 40-mph, the SSD is calculated to be 285 feet for eastbound and 285 feet for westbound vehicles. Based on an existing 4% grade on North Ruggles Ferry Pike at Blake Lane/Road "Q" and a posted speed limit of 40-mph, the SSD is calculated to be 285 feet for eastbound and 325 feet for westbound vehicles.

A cursory examination of the sight distances on North Ruggles Ferry Pike was undertaken. Based on visual observation, it appears that the intersection sight distances from the proposed Road

"A" location and Blake Lane/Road "Q" at North Ruggles Ferry Pike looking to the east and west are adequate. Using a Nikon Laser Rangefinder at the proposed location of Road "A", the intersection sight distance was estimated to be more than 999^+ feet (limit of laser rangefinder) to the east. To the west, the intersection sight distance was estimated to be 600 feet. At Blake Lane/Road "Q", the intersection sight distance was estimated to be more than 999+ feet (limit of laser rangefinder) to the west and 700 feet to the east. There is an existing utility pole on the eastern side of the proposed Road "A" location at North Ruggles Ferry Pike. This pole could interfere with sight distance looking towards the east. This pole may be removed or relocated to construct Road "A". At Blake Lane/Road "Q", a hedgerow to the east could interfere with sight distance if it is not maintained. A licensed land surveyor should verify sight distances at Road "A" and Blake Lane/Road "Q".

Images of the existing sight distances are presented below with each intersection's respective required ISD and SSD.

View of Sight Distance on North Ruggles Ferry Pike at Proposed Entrance - Road "A" Intersection (Looking East)

View of Sight Distance on North Ruggles Ferry Pike at Proposed Entrance - Road "A" Intersection (Looking West)

View of Sight Distance on North Ruggles Ferry Pike at Proposed Entrance - Blake Lane/Road "Q" Intersection (Looking East)

View of Sight Distance on North Ruggles Ferry Pike at Proposed Entrance - Blake Lane/Road "Q" Intersection (Looking West)

CONCLUSIONS & RECOMMENDATIONS

The following is an overview of recommendations to minimize the traffic impacts of the proposed development on the adjacent road system while attempting to achieve an acceptable traffic flow and safety level. Overall, North Ruggles Ferry Pike's minor approaches at Asheville Highway and Andrew Johnson Highway currently operate with high vehicle delays. The requirement of increasing the tabulated traffic volumes by 20% and distributing all generated trips to each end of North Ruggles Ferry Pike at Asheville Highway and Andrew Johnson Highway resulted in worse Levels of Service and extreme vehicle delays in the projected conditions.

Asheville Highway at North Ruggles Ferry Pike: This intersection was calculated to operate poorly in the existing conditions and worse in the projected conditions in 2028. As an investigation into potential remediation for this intersection, this intersection was examined with respect to traffic signal warrants.

<u>Methodology</u>:

The Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD) presents nine different warrants that have been developed by the traffic engineering profession to determine whether a traffic signal is warranted. These warrants cover a broad range of minimum elements required to indicate whether a traffic signal is justified for any particular location. These elements consist of traffic volumes, pedestrian volumes, crash history, and other factors. The MUTCD explicitly states that a traffic control signal should not be installed unless one or more of the manual's signal warrants are met. However, the satisfaction of a warrant does not entirely in itself justify the need for a traffic signal. Sometimes further engineering studies and judgments also need to be applied before justifying the need for a traffic signal installation. These additional studies are a significant step in ensuring that a traffic signal's installation will not bring about degradations in safety and efficiencies.

The MUTCD defines nine different warrants, two of which are potentially applicable for this intersection at this time and are explained below:

Warrant #1, Eight-Hour Vehicular Volume:

Warrant #1 is comprised of 2 conditions – A and B. The Minimum Vehicular Volume, Condition A, is intended for application where the volume of intersecting traffic is the principal reason for consideration of signal installation. The Interruption of Continuous Traffic, Condition B, is intended for use at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Warrant #2, Four-Hour Vehicular Volume:

The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal.

Even though nine warrants are offered to justify a traffic signal, according to the TDOT Traffic Signal Manual, the agency gives precedence to Warrant #1 (Eight Hour Vehicular Volume) and Warrant #7 (Crash Experience). Warrant #7 is based on Crash Experience. Even though Warrant #2 is not a primary warrant used by TDOT, it is included in this study. Furthermore, TDOT does not allow installing a traffic signal on a state route based on speculative developments or unrealized traffic volumes.

The intersection of Asheville Highway at North Ruggles Ferry Pike was evaluated for justification for a traffic signal based on the MUTCD Warrants listed above and the existing (+20% adjusted) traffic count volumes. North Ruggles Ferry Pike was used as the minor side street for the warrant analysis, and Asheville Highway was the major street. Warrant #7 was not analyzed at the intersections for this study. Warrant #7 was not included because one of the primary criteria for an intersection to meet the warrant is that an "Adequate trial of alternatives with satisfactory observance and enforcement has failed to reduce the crash frequency..." It is not believed that any specific alternatives have been implemented and observed at these intersections; therefore, this warrant was not included in this study.

According to the Federal Highway Administration (FHWA), the traffic signal warrants are intentionally written in a manner that provides a large amount of flexibility to engineers in terms of how they determine the number of moving lanes and the volume of approaching traffic used in the analysis. The decisions about which approach lanes on the major and minor streets and the corresponding traffic volumes are determined by the engineer's judgment conducting the study or by the methods established by local and state agencies. Ultimately, it is up to the reviewing agency to determine whether right-turn volumes from the minor street should be included.

This intersection currently meets Warrant #2 and nearly meets Warrant #1, Condition B, based on the existing traffic volumes with a 20% increase. This determination was made with the analysis including southbound right-turn volumes from North Ruggles Ferry Pike (the minor street approach). Since nearly all southbound traffic volumes from North Ruggles Ferry Pike comprise right-turn movements, it is deemed appropriate to include these traffic movements in the warrant analysis. Furthermore, Warrant #1, Condition B, is satisfied 7 out of the required 8 hours. Only an additional 11 right-turns would have been needed during the 11 am – 12 noon hour for the intersection to meet Warrant #1, Condition B fully, in addition to Warrant #2. Thus, it is appropriate to assume that this intersection can be justified for a traffic signal in the current existing conditions even before the residential subdivision is developed. Appendix I contains the traffic signal warrant assessment at this intersection for the existing 2021 volumes (with a +20% increase).

With the traffic signal warrant analysis indicating that this intersection could be justified to have a traffic signal installed, Synchro Traffic Software (Version 8) was used to design a preliminary traffic signalization plan. A preliminary traffic signal timing design resulted in a much-improved level of service for the intersection based on an optimized actuated-uncoordinated cycle in the AM and PM peak hours. The level of service results for this intersection with this preliminary traffic signal timing is shown in Tables 8a and 8b. Appendix F includes the worksheets for these capacity analyses and presents the initial traffic signal timing plans. Table 8a shows the intersection results of Asheville Highway at North Ruggles Ferry Pike with the existing traffic volumes (+20% increase). Table 8b reports the intersection results in the projected 2028 conditions with the project and generated traffic volumes operating under a traffic signal.

The poor results shown in Table 8b with a traffic signal are based on the directive that all the traffic volumes generated by the development to and from the west of the development are distributed via the Asheville Highway at North Ruggles Ferry Pike intersection without deviation. This scenario requires all subdivision traffic entering from the west to turn left onto North Ruggles Ferry Pike. All subdivision exiting traffic towards the west will turn right onto Asheville Highway. In this scenario, the Level of Service and vehicle delay results are poor in the AM hour, even with a traffic signal. The results are based on an optimized 110-second actuated uncoordinated cycle in the AM and PM peak hours. While the results are unsatisfactory, it is founded on the unreasonable assumption that all the residents would travel to and from the west via this intersection without exception and not seek alternate routes to avoid the high vehicle delays for eastbound leftturns and southbound right-turns at the intersection. In reality, subdivision residents would more likely utilize North Patty Road or Cash Road off North Ruggles Ferry Pike to avoid turning at the intersection and travel thru the intersection on Asheville Highway instead.

It is recommended that further traffic counts be conducted at this intersection when either the pandemic has ended and overall traffic volumes return closer to pre-pandemic levels, or when it is surmised that overall traffic volumes have reached a "new normal". This will allow for a re-examination of the intersection, a re-comparison of the Traffic Signal Warrants, and establish a timeframe of when this intersection could be signalized. TDOT does not allow a traffic signal installation on a state route based on speculative developments or unrealized traffic volumes. This process should be coupled with the knowledge that Innsbruck Farms Subdivision and other future developments along North Ruggles Ferry Pike will be adding vehicle traffic volumes at the intersection in the future conditions. Traffic crash data should also be included in the examination.

With the installation of a traffic signal at the intersection, the vehicle delays would decrease to manageable levels for the minor side street approaches. Without a traffic signal, even without the proposed development, the motorists from the minor side street approaches will continue to experience extensive delays during peak hours. Extreme delays can contribute to motorist impatience and increase reckless driving behavior, leading to traffic incidents.

Any traffic signal design or other remediation should include determining whether the existing eastbound left-turn lane is sufficient in length with a traffic signal. It currently provides 150 feet of storage length. A cursory initial examination of the existing eastbound left-turn volumes (with the additional 20% increase) was made in the Synchro 8 software. The results showed that the 95th percentile queue length was 84 feet in the AM peak hour and 81 feet in the PM peak hour based on the existing (+20%) traffic volumes.

Since this intersection exists on a State Route, TDOT will need to provide direction and guidance to improve this intersection to reduce the considerable existing vehicle delays. The City of Knoxville will also need to be involved since they will assume ownership if a traffic signal is installed since this intersection lies within the city limits. TDOT does not own, operate, or maintain traffic signals, and the responsibility would belong to the local government.

A final recommendation for this intersection is regarding the prohibition of westbound leftturns from Asheville Highway to the Knox Farmers Cooperative parking lot. The existing sign (R3-2) stating this prohibition is dull and faded and should be more authoritatively presented. Several motorists were observed making this prohibited movement. This sign is recommended to be replaced with a new sign in the

(Looking West)

interim and supplemented with additional signage (minimum of 2 additional signs) located in the east median facing westbound traffic. Once the intersection is reconstructed with a traffic signal, this prohibition can be more pronounced by installing a sign on the span wire (or mast arm).

A summary of the recommendations at this intersection is shown in Figure 9a.

11812 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com

FIGURE 9a

Innsbruck Farms

Summary of Recommended External Road Improvements - Asheville Highway at North Ruggles Ferry Pike

TABLE 8a 2021 SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -ASHEVILLE HIGHWAY AT NORTH RUGGLES FERRY PIKE EXISTING TRAFFIC CONDITIONS (+20%)

	TRAFFIC	APPROACH/		AM PEAK			PM PEAK		
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	DELAY ^b	v/c ^c	LOS ^a	DELAY ^b	v/c °	
				(seconds)			(seconds)		
Asheville Highway at		Eastbound	А	9.4		А	4.9		
North Ruggles Ferry Pike	zeq	Westbound	С	20.3		В	14.4		
	nali	Northbound	А	0.0		С	22.0		
	Sig 🗖	Southbound	С	30.1		С	22.0		
		Summary	В	17.7	0.830	А	9.1	0.650	

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for signalized intersections Optimized Cycle Length = 75 Seconds

^a Level of Service

^b Average Delay (sec/vehicle)

° Volume-to-Capacity Ratio

TABLE 8b 2028 SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -ASHEVILLE HIGHWAY AT NORTH RUGGLES FERRY PIKE OPENING YEAR (2028 WITH PROJECT)

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK		
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	DELAY ^b	v/c ^c	LOS ^a	DELAY ^b	v/c °
				(seconds)			(seconds)	
Asheville Highway at		Eastbound	С	26.8		А	8.0	
North Ruggles Ferry Pike	zeq	Westbound	Е	66.5		С	23.9	
	nali	Northbound	А	0.0		D	35.2	
	Sig 🗖	Southbound	F	88.2		D	35.2	
		Summary	Е	57.6	1.030	В	14.9	0.730

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for signalized intersections Optimized Cycle Length = 110 Seconds

^a Level of Service

^b Average Delay (sec/vehicle)

° Volume-to-Capacity Ratio

<u>Andrew Johnson Highway at North Ruggles Ferry Pike (East Side & West Side)</u>: Both approaches of North Ruggles Ferry Pike (East Side and West Side) at Andrew Johnson Highway have been shown to operate very poorly with respect to Level of Service and with extreme vehicle delays in the existing conditions as well as the projected 2028 conditions. There are many operational issues with these existing intersections that will need to be addressed and are outside the impacts produced by the proposed Innsbruck Farms Subdivision.

This existing intersection is laid in out an extremely disadvantageous manner for Both sides of North motorists. Ruggles Ferry Pike intersect Andrew Johnson Highway at a sharp skewed angle of almost 30°. This skew would be unacceptable for а newly constructed intersection. Most roadway design standards indicate intersection angles between 75° and 90° are desirable and angles between 60° and 75° degrees are acceptable. Angles less than 60° are sub-standard and produce operational issues and particularly sight distance issues. Both ends of North Ruggles Ferry Pike at Andrew Johnson Highway are laid out with short lengths of roadway attempting to intersect the highway at a more acceptable angle, albeit for about a single car length.

North Ruggles Ferry Pike (East Side) at Andrew Johnson Highway (Looking East)

North Ruggles Ferry Pike (West Side) at Andrew Johnson Highway (Looking East)

As stated previously, a fair amount of traffic was observed "crossing" Andrew Johnson Highway from one side of North Ruggles Ferry Pike to the other and vice versa. Most of the existing turn movements on each side of North Ruggles Ferry Pike are left-turns onto Andrew Johnson Highway. In the future, it is expected that entering and exiting traffic generated by the proposed subdivision (shown in Figure 6b) will contribute heavily to these volumes. These volume contributions will include left-turns from North Ruggles Ferry Pike (West Side) for travel towards Jefferson City, left-turns from North Ruggles Ferry Pike (West Side) for travel across ("thru") Andrew Johnson Highway to the other side of North Ruggles Ferry Pike (East Side) and vice versa. It was also previously shown that the existing level of service for these approaches of North Ruggles Ferry Pike is extremely poor with high vehicle delays.

The intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) was also examined with respect to traffic signal warrants based on MUTCD Warrants for the existing (+20% adjusted) traffic volumes. Only North Ruggles Ferry Pike (West Side) was examined since the North Ruggles Ferry Pike (East Side) intersection has significantly fewer minor street volumes. For the traffic signal warrant analysis, North Ruggles Ferry Pike (West Side) was the minor side street, and Andrew Johnson Highway was the major street.

The analysis concluded that for the existing (+20% adjusted) traffic volumes, the intersection does not meet Warrant #1 or Warrant #2 even though the Level of Service calculations determined that the minor approaches at this intersection currently operate at LOS F during the AM and PM peak hour.

There are no easy or simple solutions for the existing conditions to reduce vehicle delays for this intersection. Remediation for the existing intersection is impeded due to many factors that include road geometrics, potentially limited right-of-way, many existing private driveways, and large thru volumes on Andrew Johnson Highway. Adding separate left-turn lanes on each side of North Ruggles Ferry Pike at Andrew Johnson Highway would decrease the delays for right-turn movements but will do little to decrease delays overall.

Since easily offered remediation is not readily apparent for this intersection, the intersection was re-examined with respect to traffic signal warrants. As stated previously,

TDOT does not typically accept justification for traffic signals except for Warrant #1 and #7. Warrant #7 was not examined for this study. Adding a traffic signal at this location would decrease vehicle delays for the minor street approach and potentially improve safety by reducing unprotected left-turns into the high thru volume streams on Andrew Johnson Highway. Another warrant, Warrant #3, is an alternative method to justify a traffic signal at this location. Warrant #3 is usually only used in rare instances such as locations near office complexes, manufacturing plants, etc. According to the MUTCD, Warrant #3 "is intended for use at a location where traffic suffers undue delay when entering or crossing the major street."

Warrant #3, Condition A, was met for the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) for the existing (+20% adjusted) traffic volumes. Appendix I shows the traffic signal warrant assessment at this intersection for the existing volumes of 2021 (with a +20% increase).

Outside of allowing the intersection to be currently signalized based on meeting Warrant #3, the intersection was further analyzed to determine when the volumes would justify a traffic signal based on Warrant #1. A spreadsheet was developed to determine the traffic volumes generated by the development being added to the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) based on the traffic distribution shown previously. This spreadsheet is provided in Appendix I. It is estimated that this intersection will meet Warrant #1, Condition B, and Warrant #2 in the year 2022. This estimation is based on the existing (+20%) traffic volumes and assuming a linear growth of home construction and occupancy in the subdivision over the seven years (slightly over 60 houses per year). This small length of time from not meeting Warrant #1 and #2 to potentially meeting the warrants is due to assuming the development will add 60 homes with residents with a subsequent 631 generated daily trips in the first year of construction (2022). Distributing and assigning a portion of those new trips at the intersection results in meeting the warrant thresholds.

With the traffic signal warrant analysis indicating that this intersection could be justified to have a traffic signal installed, Synchro Traffic Software (Version 8) was used to design a preliminary traffic signalization plan. A preliminary traffic signal timing design resulted in a much-improved level of service for the intersection based on an optimized

actuated-uncoordinated cycle in the AM and PM peak hours. The level of service results for this intersection with this preliminary traffic signal timing is shown in Tables 9a and 9b. Appendix F includes the worksheets for these capacity analyses and presents the initial traffic signal timing plans. Table 9a shows the intersection results of Andrew Johnson Highway at North Ruggles Ferry Pike with the existing traffic volumes (+20% increase). Table 9b reports the intersection results in the projected 2028 conditions with the project and generated traffic volumes operating under a traffic signal.

The results shown in Table 9b are based on the directive that all the traffic volumes generated by the development to and from the east of the development be distributed via the Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) intersection without deviation. Unlike the opposite end of North Ruggles Ferry Pike at Asheville Highway, it is expected and reasonable to believe that all traffic to and from the east of the development will travel through this intersection since there are no sensible alternative routes of travel or shortcuts. As observed in the manual traffic counts, there is a reasonable amount of traffic that travels from North Ruggles Ferry Pike towards Jefferson City and across ("thru") Andrew Johnson Highway towards Strawberry Plains Pike and vice versa. The manual traffic count observation was documented evidence of an existing traffic pattern, which would be expected to continue and increase when new trips are generated from the subdivision in the future.

Similar to the previous recommendations for the intersection of Asheville Highway at North Ruggles Ferry Pike, it is recommended that further traffic counts be conducted again at this intersection when either the pandemic has ended and overall traffic volumes return closer to pre-pandemic levels, or when it is surmised that overall traffic volumes have reached a "new normal". TDOT does not allow a traffic signal installation on a state route based on speculative developments or unrealized traffic volumes. This will allow for a re-examination of the intersection, a re-comparison of the Traffic Signal Warrants, and establish a timeframe of when this intersection could be signalized. Traffic crash data should also be included in the examination.

Also, during the planning phase for a traffic signal at the intersection of Andrew Johnson Highway at North Ruggles Ferry Pike, it is recommended that the eastbound approach of North Ruggles Ferry Pike be examined whether an exclusive right-turn lane should be provided. Adding an exclusive lane would allow for the separation of left and right-turn

movements.

With the installation of a traffic signal at the intersection, the vehicle delays would decrease to manageable levels for the minor side street approaches. Without a traffic signal, even without the proposed development, the motorists from the minor side street approaches will continue to experience considerable delays during peak hours. High delays can contribute to motorist impatience and increase reckless driving behavior, leading to traffic incidents.

Any traffic signal design or other remediation should include determining whether the existing northbound left-turn lane is sufficient in length with a traffic signal. It currently provides 75 feet of storage length. A cursory initial examination of the existing northbound left-turn volumes (with the additional 20% increase) was made in the Synchro 8 software. The results showed that the 95th percentile queue length was 20 feet in the AM peak hour and 24 feet in the PM peak hour based on the existing (+20%) traffic volumes.

Since this intersection exists on a State Route, TDOT will need to provide direction and guidance to improve this intersection to reduce the considerable existing vehicle delays. Knox County will also need to be involved since they will assume ownership if a traffic signal is installed since this intersection lies within the county limits. TDOT does not own, operate, or maintain traffic signals, and the responsibility would belong to the local government.

The intersection of Andrew Johnson Highway at North Ruggles Ferry Pike (East Side) was not included in the proposed preliminary traffic signal recommendation for the Andrew Johnson Highway at North Ruggles Ferry Pike (West Side). The exclusion is due to North Ruggles Ferry Pike (East Side) having significantly lower traffic volumes and operating as a t-intersection with fewer conflicting movements than the 4-way intersection of North Ruggles Ferry Pike (West Side). Installing a traffic signal at North Ruggles Ferry Pike (West Side) would create significantly more traffic gaps to allow for westbound turning movements from North Ruggles Ferry Pike (East Side). To incorporate both these intersections under a unified, coordinated traffic signal control would require careful consideration and could result in additional vehicle delays and reduced capacities since these two intersections are separated by approximately 250 feet. For this design to work correctly and safely at this location, the turning movements on North Ruggles Ferry Pike

(West Side) and the turning movements on North Ruggles Ferry Pike (East Side) would require creative traffic signal phasing and timing.

A final note and recommendation for the Andrew Johnson Highway at North Ruggles Ferry Pike (West Side) intersection is the existing north side median nose. For eastbound left-turns from North Ruggles Ferry Pike (West Side) towards the north onto Andrew Johnson Highway, an extra lane is provided in the median that allows for temporary refuge and space to allow for vehicle acceleration to merge into the traffic stream.

However, the existing median nose is extremely prohibitive to allowing this turn. The median nose is blunt and does not facilitate left-turns onto the highway and reduces the potential usefulness of the extra lane in the median. It is recommended that this median nose be modified to help facilitate eastbound left turns from North Ruggles Ferry Pike (West Side).

A summary of the recommendations at this intersection is shown in Figure 9b.

TABLE 9a 2021 SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -ANDREW JOHNSON HIGHWAY AT NORTH RUGGLES FERRY PIKE (WEST SIDE) EXISTING TRAFFIC CONDITIONS (+20%)

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK		
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	DELAY ^b	v/c °	LOS ^a	DELAY ^b	v/c °
				(seconds)			(seconds)	
Andrew Johnson Highway at		Eastbound	С	22.4		С	20.9	
North Ruggles Ferry Pike	zed	Westbound	Α	0.0		В	18.9	
(West Side)	nali	Northbound	А	2.7		А	3.8	
	5 ⁸	Southbound	А	4.0		А	3.2	
		Summary	Α	4.5	0.550	Α	4.3	0.530

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for signalized intersections Optimized Cycle Length = 55 Seconds

^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

TABLE 9b 2028 SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS -ANDREW JOHNSON HIGHWAY AT NORTH RUGGLES FERRY PIKE (WEST SIDE) OPENING YEAR (2028 WITH PROJECT)

	TRAFFIC	APPROACH/		AM PEAK		PM PEAK			
INTERSECTION	CONTROL	MOVEMENT	LOS ^a	LOS ^a DELAY ^b		LOS ^a	DELAY ^b	v/c °	
				(seconds)			(seconds)		
Andrew Johnson Highway at		Eastbound	С	24.6		С	21.1		
North Ruggles Ferry Pike	zed	Westbound	А	0.0		В	16.5		
(West Side)	nali	Northbound	Α	5.9		А	8.1		
	2; 8 2;	Southbound	В	10.3		А	7.0		
		Summary	В	10.3	0.740	А	8.7	0.660	

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for signalized intersections Optimized Cycle Length = 60 Seconds

^a Level of Service

^b Average Delay (sec/vehicle)

^c Volume-to-Capacity Ratio

II8I2 Black Road Knoxville, TN 37932 Phone: (865) 556-0042 Email: ajaxengineering@gmail.com

FIGURE 9b

Innsbruck Farms

NORTH

Summary of Recommended External Road Improvements - Andrew Johnson Highway at North Ruggles Ferry Pike North Ruggles Ferry Pike at Blake Lane / Road "Q": The intersection of North Ruggles Ferry Pike at Blake Lane / Road "Q" was calculated to operate very well with respect to level of service in the projected conditions in 2028.

- 3a) A separate exiting left-turn lane or right-turn lane on Blake Lane/Road "Q" at North Ruggles Ferry Pike is not required based on the projected 2028 traffic volumes.
- 3b) Separate eastbound or westbound lanes on North Ruggles Ferry Pike for entering traffic into the subdivision at Blake Lane/Road "Q" are not warranted.
- 3c) It is recommended that a Stop Sign (R1-1) and a 24" white stop bar be applied to the pavement of the Blake Lane/Road "Q" approach at North Ruggles Ferry Pike. The stop bar should be applied at a minimum of 4 feet away from the edge of North Ruggles Ferry Pike and should be placed at the desired stopping point that provides the maximum sight distance. An existing Stop Sign (R1-1) currently exists on this north approach but will need to be relocated to widen Blake Lane/Road "Q".
- 3d) Intersection sight distance at Blake Lane/Road "Q" must not be impacted by future landscaping or signage. Based on a posted speed limit of 40-mph on North Ruggles Ferry Pike, the required intersection sight distance (ISD) is 400 feet looking in each direction at the intersection of North Ruggles Ferry Pike at Blake Lane/Road "Q". Based on an existing 4% grade on North Ruggles Ferry Pike at Blake Lane/Road "Q" and a posted speed limit of 40-mph, the SSD is calculated to be 285 feet for eastbound and 325 feet for westbound vehicles. There is an existing hedgerow on the eastern side of Blake Lane/Road "Q" at North Ruggles Ferry Pike. This hedgerow could interfere with sight distance looking towards the east. This hedgerow will need to be maintained regularly. A licensed land surveyor must verify the available sight distance at this proposed subdivision entrance.
- 3e) A passing zone for both directions is currently delineated on North Ruggles Ferry Pike's centerline at this proposed entrance location. Knox County Engineering should determine whether this location should maintain this passing zone once the development is constructed with the new entrances.

3f) There is a small church located on the northwestern corner of this intersection. The parking lot for this church abuts Blake Lane. The widening of Blake will require Lane consideration of the pavement interface between the lane and the parking area of the church. Pavement striping may be necessary to delineate the roadway from the parking area.

3 North Ruggles Ferry Pike at Road "A": The intersection of North Ruggles Ferry Pike at Road "A" was calculated to operate very well with respect to level of service in the projected conditions in 2028.

- 4a) A separate exiting left-turn lane or right-turn lane on Road "A" at North RugglesFerry Pike is not required based on the projected 2028 traffic volumes.
- 4b) Separate eastbound or westbound lanes on North Ruggles Ferry Pike for entering traffic into the subdivision at Road "A" are not warranted.
- 4c) It is recommended that a Stop Sign (R1-1) and a 24" white stop bar be applied to the pavement of the Road "A" approach at North Ruggles Ferry Pike. The stop bar should be applied at a minimum of 4 feet away from the edge of North Ruggles Ferry Pike and should be placed at the desired stopping point that provides the maximum sight distance.
- 4d) Intersection sight distance at Road "A" must not be impacted by future landscaping or signage. Based on a posted speed limit of 40-mph on North Ruggles Ferry Pike, the required intersection sight distance (ISD) is 400 feet looking in each direction at the intersection of North Ruggles Ferry Pike at and Road "A". Based on an existing 4% grade on North Ruggles Ferry Pike at Road "A" and a posted speed limit of 40-mph, the SSD is calculated to be 325 feet for eastbound and 285 feet for westbound vehicles. There is an existing utility pole on the eastern side of the proposed location of Road "A" at North Ruggles Ferry Pike. This pole could interfere with sight distance looking towards the east. This pole may be removed or relocated to construct Road "A". A licensed land surveyor must verify the available sight distance at this proposed subdivision entrance.
- 4e) A passing zone for eastbound traffic is currently delineated on North Ruggles Ferry Pike's centerline at this proposed entrance location. Knox County Engineering should determine whether this location should maintain this passing zone once the development is constructed.

5 <u>Innsbruck Farms Internal Roads</u>: The current concept plan shows twenty-one new roads being constructed within the development, as shown in Figure 3.

5a) It is recommended that 25-mph Speed Limit Signs (R2-1) be posted near the front of both new streets, Road "A" and Blake Lane/Road "Q", off North Ruggles Ferry Pike. End of roadway signage (OM4-1) should be installed at the western end of Road "B" and the eastern end of Road "R". Stop Signs (R1-1) with 24" white stop bars and other traffic signage should be installed at the locations, as shown below:

- 5b) Sight distance at the new internal intersections in the development must not be impacted by new signage or future landscaping. With a speed limit of 25-mph in the development, the intersection sight distance requirement is 250 feet. The stopping sight distance required is 155 feet for a level road grade. The road layout designer should ensure that sight distance lengths are met.
- 5c) All drainage grates and covers for the residential development need to be pedestrian and bicycle safe.
- 5d) Sidewalks are not proposed for this development. If this changes, they should have appropriate ADA-compliant curbed ramps at intersection corners, and the sidewalks are recommended to be 5 feet minimum in width.
- 5e) Traffic calming measures might be needed for this development. Several roads within the development have long and straight road segments. The possible need for traffic calming measures inside the development should be coordinated with Knox County Engineering and Public Works during the detailed design phase.
- 5f) It is a long-standing practice by Knox County that residential subdivisions provide secondary outlets when developments exceed 150 lots. Providing two entrances will spread the load of entering and exiting vehicles. The two entrances, Road "A" and Blake Lane/Road "Q" will be spaced approximately 1,300 feet apart and are not expected to interfere with traffic operations at one another. The Knox County requirement for intersection spacing on a collector road is 300 feet. The spacing between Road "A" and Burris Road is 565 feet. The spacing between Blake Lane/Road "Q" and Burris Road is 735 feet.
- 5g) All road grade and intersection elements internally and externally should be designed to AASHTO, TDOT, and Knox County specifications and guidelines to ensure proper operation.

3-SB-21-C Revised: 2/26/2021

APPENDIX A

HISTORICAL TRAFFIC COUNT DATA

Organization: TDOT

Station ID #: 000058

Location: SR 9, Asheville Highway (west of Meadow Trace Way)

Organization: TDOT

Station ID #: 000060

Location: SR 34 (at Pleasant Hill Road)

Organization: TDOT

Station ID #: 000039

Location: North Ruggles Ferry Pike (east of Rugby Lane)

Organization: Knox TPO

Station ID #: 093M038

Location: North Ruggles Ferry Pike (north of Asheville Highway)

APPENDIX B

WALK SCORE

WALKSCORE

(from walkscore.com)

Scores for 8607 North Ruggles Ferry Pike

Walk S	core	Transit Score	Bike Score								
ransit Scor based on th	e measures l e distance ai	now well a location is ser nd type of nearby transit	ved by public transit lines.								
90-100	Rider's Par World-class	adise public transportation									
70-89	Excellent T Transit is cor	Excellent Transit Transit is convenient for most trips									
50-69	Good Trans Many nearb	it y public transportation opti	ons								
25-49	Some Trans	iit y public transportation optic	ons								
0-24	Minimal Tra	ansit to get on a bus									

×

Scores for 8607 North Ruggles Ferry Pike

Walk S	core	Transit Score	Bike Score										
Bike Score n lanes and tr	neasures whe ails, hills, roa	ether an area is good for d connectivity, and desti	biking based on bike nations.										
90-100	Biker's Para	dise	bika										
70-89	Very Bikeab	Very Bikeable											
50-69	Biking is conv Bikeable	venient for most trips											
	Some bike in	frastructure											
0-49	Somewhat I Minimal bike	Bikeable infrastructure											

APPENDIX C

KNOXVILLE AREA TRANSIT MAP AND INFORMATION

FARE INFORMATION

With a base fare of \$1.50, KAT offers a variety of passes. Please note that only the fares marked with an asterisk can be purchased when boarding the bus. Others are available at KAT's Customer Service Counter at Knoxville Station (301 Church Ave.) or by mal Va kabus.com.

FARE TYPE REGULAR FARE REDUCED FARE One-Ride Pass* \$1.50 \$0.75 1 Day Pass* \$4.00 \$2.00 7 Day Pass \$15.00 \$7.50 30 Day Pass \$50.00 \$25.00 20 Ride Pass \$25.00 \$12.50 Transfer* \$0.50 \$0.25

REDUCED FARE INFORMATION

A reduced fare is available to those who qualify. Qualifying individuals include seniors age 65 or over, Medicare card holders, students under the age 61 18, and persons with disabilities. Proper identification (Medicare card or a valid KAT ILC card) is required before barding. For more information on how to obtain a discounted-fare LD, visit katbus com/fares or call

BUS STOPS ONLY!

KAT buses stop ONLY at locations designated by bus stop signs. Generally, bus stop at least every ¼ mile along the route.

KAT HOLIDAYS

s are locate

KAT buses do not run on the following holidays: • New Year's Day • Thanksgiving • Independence Day • Christmas Please note that KAT's Knoxville Station Customer Service counter is also closed during those days.

KAT buses run on a Saturday schedule on the following holidays: • Martin Luther King, Jr. Day • Memorial Day • Labor Day • Labor Day

MAGNOLIA AVENUE (Weekdays and Weekends)

SERVES:

- Burlington Branch Library Chilhowee Park
- **Holston Drive**
- Knoxville Station/Downtown

Kroger Pellissippi State,

Magnolia Ave. Campus

Information Updated: January 6, 2020

		Goii	ng away f	rom Dow	ntown	Going toward Downtown						
	T Transfer	to:		Rts. 3	3 & 34			Rts. 3	3 & 34			
	Knoxville Station—	Magnolia at	Magnolia at	Kirkw Supe	ood St. erstop	Burns Rd at	Chilhowee at	Kirkwe	ood St. rstop	Magnolia at	Magnolia at	Knoxville Station
	Platform F	Jessamine	Chestnut	(Arrives)	(Leaves)	Asheville Hwy	Holston	(Arrives)	(Leaves)	Chestnut	Jessamine	(10)
									/			
					WEEK	DAY SCH	EDULE					
A.M.	-	_	-	_	-	5:38	5:43	5:51	5:53	5:59	6:04	6:10
						5:53	5:58	6:06	6:08	6:14	6:19	6:25
	-	-	-	-	-	6:08	6:13	6:21	6:23	6:29	6:34	6:40
						6:23	6:28	6:36	6:38	6:44	6:49	6:55
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	6:30	6:34	6:40	6:45	6:48	6:53	6:58	7:06	7:08	7:14	7:19	7:25
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:00	7:04	7:10	7:15	7:18	7:23	7:28	7:36	7:38	7:44	7:49	7:55
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:30	7:34	7:40	7:45	7:48	7:53	7:58	8:06	8:08	8:14	8:19	8:25
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:00	8:04	8:10	8:15	8:18	8:23	8:28	8:36	8:38	8:44	8:49	8:55
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:30	8:34	8:40	8:45	8:48	8:53	8:58	9:06	9:08	9:14	9:19	9:25
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:00	9:04	9:10	9:15	9:18	9:23	9:28	9:36	9:38	9:44	9:49	9:55
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	10:40
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	10:45	10:49	10:55	11:00	11:03	11:08	11:13	11:21	11:23	11:29	11:34	11:40
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10
	11:45	11:49	11:55	12:00	12:03	12:08	12:13	12:21	12:23	12:29	12:34	12:40
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10
	12:45	12:49	12:55	1:00	1:03	1:08	1:13	1:21	1:23	1:29	1:34	1:40
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10
	1:45	1:49	1:55	2:00	2:03	2:08	2:13	2:21	2:23	2:29	2:34	2:40
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10
	2:45	2:49	2:55	3:00	3:03	3:08	3:13	3:21	3:23	3:29	3:34	3:40
	3:15	3:19	3:25	3:30	3:33	3:38	3:43	3:51	3:53	3:59	4:04	4:10
	-	-	-	-	-	3:53	3:58	4:06	4:08	4:14	4:19	4:25
	3:45	3:49	3:55	4:00	4:03	4:08	4:13	4:21	4:23	4:29	4:34	4:40
	4:00	4:04	4:10	4:15	4:18	4:23	4:28	4:36	4:38	4:44	4:49	4:55
	4:15	4:19	4:25	4:30	4:33	4:38	4:43	4:51	4:53	4:59	5:04	5:10
	4:30	4:34	4:40	4:45	4:48	4:53	4:58	5:06	5:08	5:14	5:19	5:25
	4:45	4:49	4:55	5:00	5:03	5:08	5:13	5:21	5:23	5:29	5:34	5:40
	5:00	5:04	5:10	5:15	5:18	5:23	5:28	5:36	5:38	5:44	5:49	5:55
	5:15	5:19	5:25	5:30	5:33	5:38	5:43	5:51	5:53	5:59	6:04	6:10
	5:30	5:34	5:40	5:45	5:48	5:53	5:58	6:06	6:08	6:14	6:19	6:25
	5:45	5:49	5:55	6:00	6:03	6:08	6:13	6:21	6:23	6:29	6:34	6:40
	6:00	6:04	6:10	6:15	6:18	6:23	6:28	6:36	6:38	6:44	6:49	6:55
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	To Garage
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	To Garage

Need help reading this schedule?

Need other general information on how to ride?

Click here to Download the General Schedule Information pdf available from katbus.com

Saturday-Sunday Schedule Route 31: Magnolia

		Goii	ng away f	rom Dow	ntown		Going toward Downtown												
	Transfer t	o:		Rts. 3	3 & 34			Rts. 3	3 & 34										
	Knoxville	Magnolia	Magnolia	Kirkwood S	t. Superstop	Burns Rd	Chilhowee	Kirkwood St	t. Superstop	Magnolia	Magnolia	Knoxville							
	Station—	at	at	(4	(I)	at	at	(4	(1)	at	at	Station							
	Platform F	Jessamine	Chesthut	(Arrives)	(Leaves)	Asneville Hwy	Hoiston	(Arrives)	(Leaves)	Chesthut	Jessamine								
	(1)	(2)	(3)		1)	(5)	(6)	(7	7)	(8)	(9)	(10)							
					SATU	RDAY SCH	EDULE		-										
A.M.		_	_	_	_	6:38	6:43	6:51	6:53	6:59	7:04	7:10							
	-	_	_	_	_	7:08	7:13	7:21	7:23	7:29	7:34	7:40							
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10							
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40							
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10							
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40							
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10							
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	10:40							
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10							
	10:45	10:49	10:55	11:00	11:03	11:08	11:13	11:21	11:23	11:29	11:34	11:40							
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10							
	11:45	11:49	11:55	12:00	12:03	12:08	12:13	12:21	12:23	12:29	12:34	12:40							
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10							
	12:45	12:49	12:55	1:00	1:03	1:08	1:13	1:21	1:23	1:29	1:34	1:40							
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10							
	1:45	1:49	1:55	2:00	2:03	2:08	2:13	2:21	2:23	2:29	2:34	2:40							
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10							
	2:45	2:49	2:55	3:00	3:03	3:08	3:13	3:21	3:23	3:29	3:34	3:40							
	3:15	3:19	3:23	3:30	3:33	3:38	3:43	3:51	3:33	3:39	4:04	4:10							
	3:45	3.49 A-10	4.25	4:00	4:03	4:08	4.15	4:21	4:23	4:29	5:04	5.10							
	4.15	4.19	4.25	5:00	5.03	5:08	5.13	5.21	5.23	5.29	5.34	5:40							
	5.15	5.19	5.25	5.30	5.33	5:38	5.43	5.51	5.53	5.59	6:04	6.10							
	5:45	5:49	5:55	6:00	6:00	5:30	5:30	5:30	5:30	5:30	5:30	6:03	6:08	6:13	6:21	6:23	6:29	6:34	6:40
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10							
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40							
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10							
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40							
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10							
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40							
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10							
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	To Garage							
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10							
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	To Garage							
					SUN	DAY SCHE	DULE												
A.M.	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10							
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10							
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10							
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10							
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10							
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10							
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10							
	3:15	3:19	3:25	3:30	3:33	3:38	3:43	3:51	3:53	3:59	4:04	4:10							
	4:15	4:19	4:25	4:30	4:33	4:38	4:43	4:51	4:53	4:59	5:04	5:10							
	5:15	5:19	5:25	5:30	5:33	5:38	5:43	5:51	5:53	5:59	6:04	6:10							
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10							
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10							

Need help reading this schedule?

Need other general information on how to ride?

Click here to Download the General Schedule Information pdf available from katbus.com

APPENDIX D

ZONING MAP

APPENDIX E

MANUAL TRAFFIC COUNT DATA

TRAFFIC COUNT DATA

Major Street: Asheville Highway - US 11E / US 70 / US 25W / SR 9 (WB-EB) Minor Street: North Ruggles Ferry Pike / Private Driveway (SB-NB) Traffic Control: Stop Control on North Ruggles Ferry Pike

1/13/2021 (Wednesday) Mostly Cloudy, Cold Conducted by: Ajax Engineering

	North	Ruggles Fe	erry Pike Asheville Highway		Pri	Private Driveway			Asheville Highway					
TIME	SC	UTHBOUN	ND	W	ESTBOUN	JD	NC	RTHBOU	ND	E	ASTBOUN	ID	VEHICLE	PEAK
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL	HOUR
7:00 AM	2	0	30	0	258	1	0	0	0	15	80	0	386	7:00 AM - 8:00 AM
7:15 AM	0	0	37	0	273	1	0	0	0	34	118	1	464	
7:30 AM	1	0	55	0	336	3	0	0	0	39	147	0	581	
7:45 AM	0	0	35	0	262	2	0	0	0	15	151	1	466	
8:00 AM	1	0	29	0	219	1	0	0	0	16	111	2	379	
8:15 AM	0	0	23	0	210	0	0	1	0	11	101	2	348	
8:30 AM	0	0	24	0	192	0	0	0	1	6	82	1	306	
8:45 AM	0	2	15	0	160	1	0	0	0	9	111	1	299	
TOTAL	4	2	248	0	1910	9	0	1	1	145	901	8	3229	
11:00 AM	0	0	8	0	135	2	3	0	1	17	117	2	285	
11:15 AM	0	0	13	1	132	0	0	0	2	11	107	5	271	
11:30 AM	0	0	9	1	147	0	2	0	2	14	124	4	303	
11:45 AM	0	0	5	0	141	0	2	0	1	17	127	3	296	
12:00 PM	0	0	9	2	134	1	1	0	2	10	123	3	285	12:00 PM - 1:00 PM
12:15 PM	0	0	17	2	141	1	1	0	1	15	141	2	321	
12:30 PM	0	0	20	1	145	0	1	0	1	21	138	3	330	
12:45 PM	0	0	12	0	166	1	0	0	1	20	130	1	331	
TOTAL	0	0	93	7	1141	5	10	0	11	125	1007	23	2422	
2:00 PM	0	0	9	1	160	0	1	0	2	19	158	1	351	
2:15 PM	0	0	15	0	162	0	1	0	0	38	136	2	354	
2:30 PM	0	0	20	0	140	1	2	0	1	29	179	5	377	
2:45 PM	0	0	43	2	147	0	0	0	2	33	171	5	403	
3:00 PM	0	0	24	1	143	0	3	0	2	27	211	4	415	
3:15 PM	0	0	13	2	165	0	1	0	2	28	224	6	441	
3:30 PM	0	0	19	0	167	2	1	0	2	31	213	4	439	
3:45 PM	0	0	20	0	203	3	1	0	3	40	246	4	520	
4:00 PM	0	0	22	0	232	5	2	0	0	37	250	4	552	
4:15 PM	0	0	16	1	180	0	1	0	3	25	284	4	514	
4:30 PM	0	1	11	0	186	2	0	0	2	24	242	3	471	
4:45 PM	0	0	16	0	145	2	1	1	1	39	315	4	524	4:45 PM - 5:45 PM
5:00 PM	0	0	14	2	188	1	1	0	1	30	305	0	542	
5:15 PM	1	0	12	0	152	1	1	0	1	41	295	1	505	
5:30 PM	0	0	16	0	228	1	1	0	0	40	275	1	562	
5:45 PM	0	0	20	1	180	0	1	0	0	20	256	0	478	
TOTAL	1	1	290	10	2778	18	18	1	22	501	3760	48	7448	

2021 AM Peak Hour 7:00 AM - 8:00 AM

	North	North Ruggles Ferry Pike Asheville Highway					Priv	vate Drive	way	Asheville Highway		
TIME	SOUTHBOUND			WESTBOUND			NC	RTHBOU	ND	EASTBOUND		
BEGIN	LT	THRU	RT	LT	LT THRU RT			THRU	RT	LT	THRU	RT
7:00 AM	2	0	30	0	258	1	0	0	0	15	80	0
7:15 AM	0	0	37	0	273	1	0	0	0	34	118	1
7:30 AM	1	0	55	0	336	3	0	0	0	39	147	0
7:45 AM	0	0	35	0	262	2	0	0	0	15	151	1
TOTAL	3	0	157	0	1129	7	0	0	0	103	496	2
PHF	0.38	-	0.71	-	0.84	0.58	-	-	-	0.66	0.82	0.50

2021 PM Peak Hour 4:45 PM - 5:45 PM

	North	Ruggles Fe	rry Pike	Ash	eville Higl	nway	Priv	vate Drive	way	Asheville Highway		
TIME	SOUTHBOUND			WESTBOUND			NORTHBOUND			EASTBOUND		
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT
4:45 PM	0	0	16	0	145	2	1	1	1	39	315	4
5:00 PM	0	0	14	2	188	1	1	0	1	30	305	0
5:15 PM	1	0	12	0	152	1	1	0	1	41	295	1
5:30 PM	0	0	16	0	228	1	1	0	0	40	275	1
TOTAL	1	0	58	2	713	5	4	1	3	150	1190	6
PHF	0.25	-	0.91	0.25	0.78	0.63	1.00	0.25	0.75	0.91	0.94	0.38
TRAFFIC COUNT DATA

Major Street: Andrew Johnson Highway - US 11E / SR 34 (SB-NB) Minor Street: North Ruggles Ferry Pike (West Side) / Private Driveway (WB-EB) Traffic Control: Stop Control on North Ruggles Ferry Pike (West Side)

1/13/2021 (Wednesday) Mostly Cloudy, Cold Conducted by: Ajax Engineering

	Andrev	v Johnson H	Highway	Pri	vate Drivev	way	Andrew Johnson		Highway	North Rug	gles Ferry Pike	(West Side)		
TIME	SC	UTHBOUN	ND	W	/ESTBOUN	D	NO	ORTHBOUI	ND		EASTBOUND		VEHICLE	PEAK
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL	HOUR
7:00 AM	0	205	0	0	0	0	0	58	0	2	0	2	267	
7:15 AM	0	238	1	0	0	0	0	93	0	9	0	7	348	7:15 AM - 8:15 AM
7:30 AM	0	267	1	0	0	0	1	119	0	6	0	9	403	
7:45 AM	0	183	8	0	0	0	3	96	0	6	0	1	297	
8:00 AM	2	148	2	0	0	0	0	98	0	14	1	3	268	
8:15 AM	0	139	4	0	0	0	3	97	0	4	0	0	247	
8:30 AM	0	164	4	1	0	1	1	70	0	3	0	2	246	
8:45 AM	1	114	1	0	0	1	0	85	0	4	0	1	207	
TOTAL	3	1458	21	1	0	2	8	716	0	48	1	25	2283	
11:00 AM	2	96	3	3	0	1	4	92	0	1	0	1	203	
11:15 AM	2	116	3	2	0	0	2	98	0	1	2	1	227	
11:30 AM	0	116	3	0	2	1	1	90	0	1	0	0	214	
11:45 AM	2	95	3	1	0	2	2	100	0	3	0	1	209	
12:00 PM	1	113	3	0	0	3	2	96	0	5	1	4	228	12:00 PM - 1:00 PM
12:15 PM	0	104	1	1	0	0	4	98	2	1	0	3	214	
12:30 PM	3	134	4	1	1	1	2	109	0	4	1	1	261	
12:45 PM	5	109	1	1	0	2	6	123	0	2	0	1	250	
TOTAL	15	883	21	9	3	10	23	806	2	18	4	12	1806	
2:00 PM	3	122	3	2	1	1	2	108	0	6	0	3	251	
2:15 PM	1	145	5	0	0	3	1	104	1	4	1	2	267	
2:30 PM	1	124	3	0	0	4	4	120	1	3	0	3	263	
2:45 PM	1	120	2	0	0	2	3	156	0	3	0	2	289	
3:00 PM	4	110	6	0	0	5	4	164	0	3	0	4	300	
3:15 PM	2	124	4	0	0	2	3	184	0	7	2	3	331	
3:30 PM	3	132	8	0	1	0	3	212	0	7	0	1	367	
3:45 PM	1	176	3	0	1	6	3	205	0	3	1	2	401	
4:00 PM	1	148	5	1	0	4	3	223	0	4	0	3	392	
4:15 PM	3	145	7	2	1	5	5	205	1	8	1	3	386	
4:30 PM	1	143	7	0	0	1	4	208	0	8	0	4	376	
4:45 PM	5	152	2	1	0	0	2	258	0	6	1	1	428	4:45 PM - 5:45 PM
5:00 PM	1	129	8	1	0	3	1	277	0	8	0	5	433	
5:15 PM	2	146	3	0	1	2	5	248	0	8	0	2	417	
5:30 PM	0	168	10	1	0	5	0	245	0	8	0	4	441	
5:45 PM	2	145	3	2	1	3	3	213	0	6	1	1	380	
TOTAL	31	2229	79	10	6	46	46	3130	3	92	7	43	5722	

2021 AM Peak Hour 7:15 AM - 8:15 AM

	Andrev	v Johnson H	Iighway	Pri	vate Drive	way	Andrev	v Johnson H	Iighway	North Ruggles Ferry Pike (West Side)			
TIME	SC	UTHBOUN	JD	W	ESTBOUN	D	NC	ORTHBOU	ND		EASTBOUND		
BEGIN	LT	THRU	RT	LT THRU RT			LT	THRU	RT	LT	THRU	RT	
7:15 AM	0	238	1	0	0	0	0	93	0	9	0	7	
7:30 AM	0	267	1	0	0	0	1	119	0	6	0	9	
7:45 AM	0	183	8	0	0	0	3	96	0	6	0	1	
8:00 AM	2	148	2	0	0	0	0	98	0	14	1	3	
TOTAL	2	836	12	0	0	0	4	406	0	35	1	20	
PHF	0.25	0.78	0.38	-	-	-	0.33	0.85	-	0.63	0.25	0.56	

2021 AM Peak Hour 4:45 PM - 5:45 PM

	Andrev	v Johnson H	Highway	Pri	vate Drive	way	Andrev	w Johnson H	Highway	North Ruggles Ferry Pike (West Side)			
TIME	SC	DUTHBOUN	ND	W	/ESTBOUN	D	NO	ORTHBOU	ND		EASTBOUND		
BEGIN	LT	THRU	RT	LT THRU RT			LT	THRU	RT	LT	THRU	RT	
4:45 PM	5	152	2	1	0	0	2	258	0	6	1	1	
5:00 PM	1	129	8	1	0	3	1	277	0	8	0	5	
5:15 PM	2	146	3	0	1	2	5	248	0	8	0	2	
5:30 PM	0	168	10	1	0	5	0	245	0	8	0	4	
TOTAL	8	595	23	23 3 1 10		8	1028	0	30	1	12		
PHF	0.40	0.89	0.58	0.75	0.25	0.50	0.40	0.93	-	0.94	0.25	0.60	

TRAFFIC COUNT DATA

Major Street: Andrew Johnson Highway - US 11E / SR 34 (SB-NB) Minor Street: North Ruggles Ferry Pike (East Side) (WB) Traffic Control: Stop Control on North Ruggles Ferry Pike (East Side)

1/13/2021 (Wednesday) Mostly Cloudy, Cold Conducted by: Ajax Engineering

	Andrew Johr	nson Highway	North Ruggles Fe	rry Pike (East Side)	Andrew Johr	nson Highway		
TIME	SOUTH	BOUND	WESTE	BOUND	NORTH	BOUND	VEHICLE	PEAK
BEGIN	LT	THRU	LT	RT	THRU	RT	TOTAL	HOUR
7:00 AM	0	204	1	0	59	1	265	
7:15 AM	1	238	1	0	101	1	342	7:15 AM - 8:15 AM
7:30 AM	0	267	1	0	123	2	393	
7:45 AM	1	188	3	1	97	5	295	
8:00 AM	1	151	1	0	99	13	265	
8:15 AM	1	136	7	0	97	4	245	
8:30 AM	1	165	3	1	72	2	244	
8:45 AM	0	113	3	0	84	6	206	
TOTAL	5	1462	20	2	732	34	2255	
11:00 AM	0	100	1	0	94	0	195	
11:15 AM	0	118	3	1	98	2	223	
11:30 AM	2	119	0	0	88	5	215	
11:45 AM	0	98	2	0	102	3	205	
12:00 PM	0	117	0	0	103	2	223	12:00 PM - 1:00 PM
12:15 PM	0	105	0	0	96	3	204	
12:30 PM	0	141	0	0	112	3	257	
12:45 PM	2	115	0	0	123	5	246	
TOTAL	4	913	6	1	816	23	1763	
2:00 PM	0	126	2	1	114	1	244	
2:15 PM	0	148	3	0	109	3	264	
2:30 PM	0	128	0	0	125	3	257	
2:45 PM	1	121	2	0	158	3	285	
3:00 PM	0	115	5	0	163	9	292	
3:15 PM	1	130	0	0	188	5	324	
3:30 PM	0	135	8	1	211	10	367	
3:45 PM	1	177	3	0	210	5	397	
4:00 PM	1	150	4	0	229	3	388	
4:15 PM	0	154	1	0	210	8	373	
4:30 PM	1	150	1	0	208	9	369	
4:45 PM	0	155	4	0	256	9	425	4:45 PM - 5:45 PM
5:00 PM	0	133	5	2	276	12	428	
5:15 PM	0	148	3	0	254	5	411	
5:30 PM	0	174	4	0	255	3	436	
5:45 PM	0	148	2	0	215	7	372	
TOTAL	5	2292	47	4	3181	95	5624	

2021 AM Peak Hour 7:15 AM - 8:15 AM

	Andrew Johr	ison Highway	North Ruggles Fe	rry Pike (East Side)	Andrew Johnson Highway			
TIME	SOUTH	BOUND	WESTE	OUND	NORTH	BOUND		
BEGIN	LT	THRU	LT	RT	THRU	RT		
7:15 AM	1	238	1	0	101	1		
7:30 AM	0 267		1	0	123	2		
7:45 AM	1	188	3	1	97	5		
8:00 AM	1 151		1	0	99	13		
TOTAL	3 844		6	1	420	21		
PHF	0.75 0.79		0.50	0.25	0.85	0.40		

2021 PM Peak Hour 4:45 PM - 5:45 PM

	Andrew John	ison Highway	North Ruggles Fe	rry Pike (East Side)	Andrew Johnson Highway			
TIME	SOUTH	BOUND	WESTE	OUND	NORTH	BOUND		
BEGIN	LT	THRU	LT	RT	THRU	RT		
4:45 PM	0 155		4	0	256	9		
5:00 PM	0	133	5	2	276	12		
5:15 PM	0	148	3	0	254	5		
5:30 PM	0	174	4	0	255	3		
TOTAL	0 610		16	2	1041	29		
PHF	- 0.88		0.80	0.25	0.94	0.60		

TRAFFIC COUNT DATA

Major Street: North Ruggles Ferry Pike (WB-EB) Minor Street: Burris Road (SB-NB) Traffic Control: Stop Control on Burris Road

1/13/2021 (Wednesday) Mostly Cloudy, Cold Conducted by: Ajax Engineering

	1	Burris Roa	d	North 1	Ruggles Fe	rry Pike	1	Burris Roa	d	North I	Ruggles Fe	rry Pike		
TIME	SO	UTHBOUI	ND	W	ESTBOUN	ID	NC	RTHBOU	ND	Ez	ASTBOUN	D	VEHICLE	PEAK
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	TOTAL	HOUR
7:00 AM	0	0	0	0	3	0	0	0	1	0	1	3	8	
7:15 AM	0	0	0	1	3	0	3	0	0	0	8	0	15	7:15 AM - 8:15 AM
7:30 AM	0	0	0	1	3	0	2	0	1	0	8	3	18	
7:45 AM	0	0	0	1	8	0	0	0	1	0	6	0	16	
8:00 AM	0	0	0	0	2	0	1	0	1	0	10	0	14	
8:15 AM	0	0	0	0	2	0	1	0	1	0	4	1	9	
8:30 AM	0	0	0	0	4	0	2	0	0	0	3	2	11	
8:45 AM	0	0	0	0	4	0	0	0	1	0	5	0	10	
TOTAL	0	0	0	3	29	0	9	0	6	0	45	9	101	
11:00 AM	0	0	0	0	2	0	0	0	0	0	2	1	5	
11:15 AM	0	0	0	0	2	0	3	0	0	0	2	2	9	
11:30 AM	0	0	0	1	5	0	0	0	0	0	1	0	7	
11:45 AM	0	0	0	1	4	0	0	0	0	0	6	0	11	11:45 AM - 12:45 PM
12:00 PM	0	0	0	0	5	0	0	0	1	0	8	1	15	
12:15 PM	0	0	0	0	2	0	0	0	0	0	5	1	8	
12:30 PM	0	0	0	0	6	0	0	0	0	0	5	1	12	
12:45 PM	0	0	0	0	2	0	2	0	0	0	3	0	7	
TOTAL	0	0	0	2	28	0	5	0	1	0	32	6	74	
2:00 PM	0	0	0	0	2	0	0	0	0	0	7	0	9	
2:15 PM	0	0	0	0	5	0	0	0	2	0	4	1	12	
2:30 PM	0	0	0	0	3	0	0	0	1	0	5	1	10	
2:45 PM	0	0	0	0	3	0	2	0	1	0	6	0	12	
3:00 PM	0	0	0	2	8	0	2	0	0	0	4	2	18	
3:15 PM	0	0	0	0	4	0	1	0	1	0	11	1	18	
3:30 PM	0	0	1	0	6	0	1	0	0	0	7	0	15	
3:45 PM	0	0	0	2	6	0	1	0	1	0	6	2	18	
4:00 PM	0	0	0	0	3	0	1	0	1	0	7	0	12	
4:15 PM	0	0	1	3	8	0	0	0	1	1	15	0	29	4:15 PM - 5:15 PM
4:30 PM	0	0	0	0	10	0	1	0	0	1	10	3	25	
4:45 PM	0	0	0	0	4	1	1	0	1	0	9	2	18	
5:00 PM	0	0	0	1	11	0	2	0	0	0	14	0	28	
5:15 PM	0	0	0	1	3	0	0	0	1	0	7	3	15	
5:30 PM	0	0	0	1	7	0	6	0	0	0	9	1	24	
5:45 PM	0	0	0	0	6	0	0	1	1	0	12	0	20	
TOTAL	0	0	2	10	89	1	18	1	11	2	133	16	283	

2021 AM Peak Hour 7:15 AM - 8:15 AM

	H	Burris Roa	d	North I	Ruggles Fe	erry Pike	I	Burris Roa	d	North Ruggles Ferry Pike			
TIME	SO	UTHBOU	ND	W	ESTBOUN	JD	NC	RTHBOU	ND	E	ASTBOUN	D	
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	
7:15 AM	0	0	0	1	3	0	3	0	0	0	8	0	
7:30 AM	0	0	0	1	3	0	2	0	1	0	8	3	
7:45 AM	0	0	0	1	8	0	0	0	1	0	6	0	
8:00 AM	0	0	0	0	2	0	1	0	1	0	10	0	
TOTAL	0	0	0	3	16	0	6	0	3	0	32	3	
PHF			0.75	0.50	-	0.50	-	0.75	-	0.80	0.25		

2021 PM Peak Hour 4:15 PM - 5:15 PM

	I	Burris Roa	d	North I	Ruggles Fe	erry Pike	Н	Burris Roa	d	North Ruggles Ferry Pike			
TIME	SO	UTHBOU	ND	W	ESTBOUN	JD	NC	RTHBOU	ND	Ez	ASTBOUN	D	
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	
4:15 PM	0	0	1	3	8	0	0	0	1	1	15	0	
4:30 PM	0	0	0	0	10	0	1	0	0	1	10	3	
4:45 PM	0	0	0	0	4	1	1	0	1	0	9	2	
5:00 PM	0	0	0	1	11	0	2	0	0	0	14	0	
TOTAL	0	0	1	4	33	1	4	0	2	2	48	5	
PHF	0.25			0.33	0.75	0.25	0.50	-	0.50	0.50	0.80	0.42	

APPENDIX F

CAPACITY ANALYSES - HCM WORKSHEETS (SYNCHRO 8)

EXISTING TRAFFIC CONDITIONS

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	-	\rightarrow	¥	-	*	٩.	T.	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	≜†},			ፈጉ			4			4	
Volume (veh/h)	103	496	2	0	1129	7	0	0	0	3	0	157
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Hourly flow rate (vph)	156	605	4	0	1344	12	0	0	0	8	0	221
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1356			609			1812	2275	304	1965	2271	678
vC1, stage 1 conf vol							919	919		1350	1350	
vC2, stage 2 conf vol							893	1356		615	921	
vCu, unblocked vol	1356			609			1812	2275	304	1965	2271	678
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	69			100			100	100	100	93	100	42
cM capacity (veh/h)	498			980			16	52	697	109	119	381
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	156	403	206	672	684	0	229					
Volume Left	156	0	0	0	0	0	8					
Volume Right	0	0	4	0	12	0	221					
cSH	498	1700	1700	980	1700	1700	351					
Volume to Capacity	0.31	0.24	0.12	0.00	0.40	0.00	0.65					
Queue Length 95th (ft)	33	0	0	0	0	0	109					
Control Delay (s)	15.5	0.0	0.0	0.0	0.0	0.0	32.5					
Lane LOS	С					А	D					
Approach Delay (s)	3.2			0.0		0.0	32.5					
Approach LOS						А	D					
Intersection Summary												
Average Delay			4.2									
Intersection Capacity Utilization		65.1%	10	CU Level o	of Service			С				
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway^{1/22/2021}

	٦	-	$\mathbf{\hat{z}}$	•	+	*	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	A			đ þ	
Volume (veh/h)	35	1	20	0	0	0	4	406	0	2	836	12
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Hourly flow rate (vph)	37	4	33	0	0	0	12	478	0	8	1072	32
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1367	1605	552	1089	1621	239	1103			478		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	40/7	4 (05		1000	4 (0 4		1100			170		
vCu, unblocked vol	1367	1605	552	1089	1621	239	1103			4/8		
tC, single (s)	7.6	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	0.5	1.0	0.0	0.5	1.0	0.0	0.0			0.0		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	64	96	93	100	100	100	98			99		
civi capacity (ven/n)	103	103	482	153	102	769	640			1095		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	75	0	12	318	159	544	567					
Volume Left	37	0	12	0	0	8	0					
Volume Right	33	0	0	0	0	0	32					
cSH	158	1700	640	1700	1700	1095	1700					
Volume to Capacity	0.47	0.00	0.02	0.19	0.09	0.01	0.33					
Queue Length 95th (ft)	55	0	1	0	0	1	0					
Control Delay (s)	46.5	0.0	10.7	0.0	0.0	0.2	0.0					
Lane LOS	E	A	В			A						
Approach Delay (s)	46.5	0.0	0.3			0.1						
Approach LOS	E	A										
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utilization			34.9%	IC	CU Level o	of Service			А			
Analysis Period (min)		15										

	٭	-	\mathbf{F}	∢	+	•	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	32	3	3	16	0	6	0	3	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.90	0.80	0.25	0.75	0.50	0.90	0.50	0.90	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	0	40	12	4	32	0	12	0	4	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	32			52			86	86	46	90	92	32
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	32			52			86	86	46	90	92	32
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			99	100	100	100	100	100
cM capacity (veh/h)	1593			1567			903	806	1029	894	800	1048
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	52	36	16	0								
Volume Left	0	4	12	0								
Volume Right	12	0	4	0								
cSH	1593	1567	932	1700								
Volume to Capacity	0.00	0.00	0.02	0.00								
Queue Length 95th (ft)	0	0	1	0								
Control Delay (s)	0.0	0.8	8.9	0.0								
Lane LOS		А	А	А								
Approach Delay (s)	0.0	0.8	8.9	0.0								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utilization			13.4%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	∢	*	Ť	۲	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		†₽,			-a†	
Volume (veh/h)	6	1	420	21	3	844	
Sign Control	Stop		Free			Free	
Grade	0%		0%			-1%	
Peak Hour Factor	0.50	0.25	0.85	0.40	0.75	0.79	
Hourly flow rate (vph)	12	4	494	52	4	1068	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1063	273			547		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1063	273			547		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	95	99			100		
cM capacity (veh/h)	221	730			1033		
Direction Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	16	329	217	360	712		
Volume Left	10	0	0	300 4	0		
Volume Right	12	0	52	-	0		
cSH	267	1700	1700	1033	1700		
Volume to Canacity	0.06	0.10	0.13	0.00	0.42		
Oueue Length 95th (ft)	5	0.17	0.15	0.00	0.42		
Control Delay (s)	10.3	0.0	0.0	01	0.0		
Lang LOS	17.5 C	0.0	0.0	0.1	0.0		
Annroach Delay (s)	10.3	0.0		0.0			
Approach LOS	C	0.0		0.0			
Intersection Summarv							
Average Delay			0.2				
Intersection Capacity Util	ization		35.4%	IC.	U Level o	f Service	Ś
Analysis Period (min)			15	10	2 201010	. 5011100	
			15				

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	-	\rightarrow	4	-	*	٩.	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲,	A1⊅			đ þ			4			\$	
Volume (veh/h)	124	595	2	0	1355	8	0	0	0	4	0	188
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Hourly flow rate (vph)	188	726	4	0	1613	14	0	0	0	11	0	265
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1627			730			2175	2730	365	2359	2725	813
vC1, stage 1 conf vol							1103	1103		1620	1620	
vC2, stage 2 conf vol							1071	1627		739	1105	
vCu, unblocked vol	1627			730			2175	2730	365	2359	2725	813
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	52			100			100	100	100	85	100	14
cM capacity (veh/h)	391			884			2	11	637	70	77	310
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	188	484	246	807	820	0	275					
Volume Left	188	0	0	0	0	0	11					
Volume Right	0	0	4	0	14	0	265					
cSH	391	1700	1700	884	1700	1700	274					
Volume to Capacity	0.48	0.28	0.14	0.00	0.48	0.00	1.01					
Queue Length 95th (ft)	63	0	0	0	0	0	257					
Control Delay (s)	22.4	0.0	0.0	0.0	0.0	0.0	96.8					
Lane LOS	С					А	F					
Approach Delay (s)	4.6			0.0		0.0	96.8					
Approach LOS						А	F					
Intersection Summary												
Average Delay			10.9									
Intersection Capacity Utilization			76.1%	10	CU Level	of Service			D			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway^{1/22/2021}

	≯	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦	≜ †₽			đĥ	
Volume (veh/h)	42	1	24	0	0	0	5	487	0	2	1003	14
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Hourly flow rate (vph)	45	4	40	0	0	0	15	573	0	8	1286	37
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1637	1924	661	1304	1942	286	1323			573		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1637	1924	661	1304	1942	286	1323			573		
tC, single (s)	7.6	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	30	94	90	100	100	100	97			99		
cM capacity (veh/h)	64	65	409	101	64	/1/	529			1010		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	89	0	15	382	191	651	680					
Volume Left	45	0	15	0	0	8	0					
Volume Right	40	0	0	0	0	0	37					
cSH	103	1700	529	1700	1700	1010	1700					
Volume to Capacity	0.86	0.00	0.03	0.22	0.11	0.01	0.40					
Queue Length 95th (ft)	123	0	2	0	0	1	0					
Control Delay (s)	128.9	0.0	12.0	0.0	0.0	0.2	0.0					
Lane LOS	F	А	В			А						
Approach Delay (s)	128.9	0.0	0.3			0.1						
Approach LOS	F	А										
Intersection Summary												
Average Delay			5.9									_
Intersection Capacity Utilization	on		40.1%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	٭	-	\mathbf{F}	4	-	•	٩.	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	38	4	4	19	0	7	0	4	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.90	0.80	0.25	0.75	0.50	0.90	0.50	0.90	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	0	48	16	5	38	0	14	0	5	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	38			64			104	104	56	110	112	38
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	38			64			104	104	56	110	112	38
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
t⊢ (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			98	100	99	100	100	100
cM capacity (veh/h)	1585			1552			8/9	/8/	1017	867	//9	1040
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	64	43	19	0								
Volume Left	0	5	14	0								
Volume Right	16	0	5	0								
cSH	1585	1552	913	1700								
Volume to Capacity	0.00	0.00	0.02	0.00								
Queue Length 95th (ft)	0	0	2	0								
Control Delay (s)	0.0	0.9	9.0	0.0								
Lane LOS		А	А	А								
Approach Delay (s)	0.0	0.9	9.0	0.0								
Approach LOS			A	А								
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utilizat	tion		14.4%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	<	*	Ť	۲	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		†1≽			-4†
Volume (veh/h)	7	1	504	25	4	1013
Sign Control	Stop		Free			Free
Grade	0%		0%			-1%
Peak Hour Factor	0.50	0.25	0.85	0.40	0.75	0.79
Hourly flow rate (vph)	14	4	593	62	5	1282
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1276	328			655	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1276	328			655	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	91	99			99	
cM capacity (veh/h)	160	674			941	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	18	395	260	433	855	
Volume Left	14	0	0	5	0	
Volume Right	4	0	62	0	0	
cSH	193	1700	1700	941	1700	
Volume to Capacity	0.09	0.23	0.15	0.01	0.50	
Queue Length 95th (ff)	8	0	0	0	0	
Control Delay (s)	25.6	0.0	0.0	0.2	0.0	
Lane LOS	D	0.0	0.0	A	0.0	
Approach Delay (s)	25.6	0.0		0.1		
Approach LOS	D	0.0		0.1		
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utili	zation		40.8%	IC	U Level o	of Service
Analysis Period (min)			15			
J -			-			

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	-	\rightarrow	¥	+	•	٩.	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	A12			đ þ			4			\$	
Volume (veh/h)	150	1190	6	2	713	5	4	1	3	1	0	58
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Hourly flow rate (vph)	165	1266	16	8	914	8	4	4	4	4	0	64
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	922			1282			2140	2542	641	1903	2545	461
vC1, stage 1 conf vol							1604	1604		934	934	
vC2, stage 2 conf vol							537	938		969	1611	
vCu, unblocked vol	922			1282			2140	2542	641	1903	2545	461
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	77			99			94	95	99	97	100	88
cM capacity (veh/h)	712			548			66	76	422	121	88	532
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	165	844	438	465	465	12	68					
Volume Left	165	0	0	8	0	4	4					
Volume Right	0	0	16	0	8	4	64					
cSH	712	1700	1700	548	1700	98	443					
Volume to Capacity	0.23	0.50	0.26	0.01	0.27	0.12	0.15					
Queue Length 95th (ft)	22	0	0	1	0	10	13					
Control Delay (s)	11.6	0.0	0.0	0.4	0.0	47.0	14.6					
Lane LOS	В			А		E	В					
Approach Delay (s)	1.3			0.2		47.0	14.6					
Approach LOS						E	В					
Intersection Summary												
Average Delay			1.5									_
Intersection Capacity Utiliza	tion		66.7%	10	CU Level o	of Service			С			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway^{1/22/2021}

	٦	-	$\mathbf{\hat{z}}$	•	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		٦	đβ			đ þ	
Volume (veh/h)	30	1	12	3	1	10	8	1028	0	8	595	23
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Hourly flow rate (vph)	32	4	20	4	4	20	20	1105	0	20	669	40
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1343	1874	354	1542	1894	553	708			1105		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	10.10	4074	054	1510	4004	550	700			4405		
vCu, unblocked vol	1343	18/4	354	1542	1894	553	/08			1105		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	0.5	1.0	0.0	0.5	1.0	0.0	0.0			0.0		
tF (S)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	68	94	97	94	94	96	98			97		
civi capacity (ven/n)	98	69	648	/1	6/	483	900			639		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	56	28	20	737	368	354	374					
Volume Left	32	4	20	0	0	20	0					
Volume Right	20	20	0	0	0	0	40					
cSH	135	179	900	1700	1700	639	1700					
Volume to Capacity	0.41	0.16	0.02	0.43	0.22	0.03	0.22					
Queue Length 95th (ft)	45	14	2	0	0	2	0					
Control Delay (s)	49.3	28.9	9.1	0.0	0.0	1.0	0.0					
Lane LOS	E	D	A			А						
Approach Delay (s)	49.3	28.9	0.2			0.5						
Approach LOS	E	D										
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilizat	ion		41.6%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	≯	-	\rightarrow	∢	+	•	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	2	48	5	4	33	1	4	0	2	0	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.50	0.80	0.42	0.33	0.75	0.25	0.50	0.90	0.50	0.25	0.90	0.90
Hourly flow rate (vph)	4	60	12	12	44	4	8	0	4	0	0	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	48			72			145	146	66	148	150	46
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	48			72			145	146	66	148	150	46
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			99	100	100	100	100	100
cM capacity (veh/h)	1572			1541			821	742	1004	815	737	1029
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	76	60	12	1								
Volume Left	4	12	8	0								
Volume Right	12	4	4	1								
cSH	1572	1541	874	1029								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (ft)	0	1	1	0								
Control Delay (s)	0.4	1.5	9.2	8.5								
Lane LOS	А	А	А	А								
Approach Delay (s)	0.4	1.5	9.2	8.5								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									_
Intersection Capacity Utilization	n		14.0%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	∢	•	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		≜ t≽			۠
Volume (veh/h)	16	2	1041	29	0	610
Sign Control	Stop		Free			Free
Grade	0%		0%			-1%
Peak Hour Factor	0.80	0.25	0.94	0.60	0.90	0.88
Hourly flow rate (vph)	20	8	1107	48	0	693
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1478	578			1156	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1478	578			1156	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	83	98			100	
cM capacity (veh/h)	119	464			612	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	28	738	417	231	462	
Volume Left	20	0	0	0	0	
Volume Right	8	0	48	0	0	
cSH	151	1700	1700	612	1700	
Volume to Capacity	0.19	0.43	0.25	0.00	0.27	
Queue Length 95th (ft)	16	0	0	0	0	
Control Delay (s)	34.2	0.0	0.0	0.0	0.0	
Lane LOS	D					
Approach Delay (s)	34.2	0.0		0.0		
Approach LOS	D					
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utilizat	tion		39.7%	IC	U Level o	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	→	\rightarrow	¥	-	•	٩.	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦ ۲	≜1 ≱			đ þ			4			\$	
Volume (veh/h)	180	1428	7	2	856	6	5	1	4	1	0	70
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Hourly flow rate (vph)	198	1519	18	8	1097	10	5	4	5	4	0	77
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1107			1538			2566	3047	769	2281	3051	553
vC1, stage 1 conf vol							1924	1924		1118	1118	
vC2, stage 2 conf vol							642	1123		1163	1933	
vCu, unblocked vol	1107			1538			2566	3047	769	2281	3051	553
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	67			98			86	90	98	95	100	83
cM capacity (veh/h)	604			438			36	39	348	79	53	462
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	198	1013	525	557	558	14	81					
Volume Left	198	0	0	8	0	5	4					
Volume Right	0	0	18	0	10	5	77					
cSH	604	1700	1700	438	1700	56	373					
Volume to Capacity	0.33	0.60	0.31	0.02	0.33	0.26	0.22					
Queue Length 95th (ft)	36	0	0	1	0	22	20					
Control Delay (s)	13.8	0.0	0.0	0.5	0.0	90.8	17.3					
Lane LOS	В			А		F	С					
Approach Delay (s)	1.6			0.3		90.8	17.3					
Approach LOS						F	С					
Intersection Summary												
Average Delay			2.0									
Intersection Capacity Utilizat	ion		78.0%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway^{1/22/2021}

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4		٦	A			đ þ	
Volume (veh/h)	36	1	14	4	1	12	10	1234	0	10	714	28
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Hourly flow rate (vph)	38	4	23	5	4	24	25	1327	0	25	802	48
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1616	2253	425	1853	2277	663	851			1327		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1616	2253	425	1853	2277	663	851			1327		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	33	90	96	86	89	94	97			95		
cM capacity (veh/h)	57	39	583	39	38	409	797			527		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	66	33	25	885	442	426	449					
Volume Left	38	5	25	0	0	25	0					
Volume Right	23	24	0	0	0	0	48					
cSH	81	111	797	1700	1700	527	1700					
Volume to Capacity	0.81	0.30	0.03	0.52	0.26	0.05	0.26					
Queue Length 95th (ft)	103	29	2	0	0	4	0					
Control Delay (s)	142.4	51.0	9.7	0.0	0.0	1.4	0.0					
Lane LOS	F	F	А			А						
Approach Delay (s)	142.4	51.0	0.2			0.7						
Approach LOS	F	F										
Intersection Summary												
Average Delay			5.1									
Intersection Capacity Utilization	n		48.0%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	≯	-	\mathbf{F}	4	←	*	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Volume (veh/h)	2	58	6	5	40	1	5	0	2	0	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.50	0.80	0.42	0.33	0.75	0.25	0.50	0.90	0.50	0.25	0.90	0.90
Hourly flow rate (vph)	4	72	14	15	53	4	10	0	4	0	0	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	57			87			174	175	80	177	180	55
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	57			87			174	175	80	177	180	55
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			99	100	100	100	100	100
cM capacity (veh/h)	1560			1522			785	713	986	778	708	1017
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	91	72	14	1								
Volume Left	4	15	10	0								
Volume Right	14	4	4	1								
cSH	1560	1522	834	1017								
Volume to Capacity	0.00	0.01	0.02	0.00								
Queue Length 95th (ft)	0	1	1	0								
Control Delay (s)	0.3	1.6	9.4	8.5								
Lane LOS	А	А	А	А								
Approach Delay (s)	0.3	1.6	9.4	8.5								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization	on		15.8%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

4	•	Ť	1	1	Ļ
WBL	WBR	NBT	NBR	SBL	SBT
Y		ħ₽			-۠
19	2	1249	35	0	732
Stop		Free			Free
0%		0%			-1%
0.80	0.25	0.94	0.60	0.90	0.88
24	8	1329	58	0	832
		None			None
1774	694			1387	
1774	694			1387	
6.8	6.9			4.1	
3.5	3.3			2.2	
69	98			100	
76	390			500	
WB 1	NB 1	NB 2	SB 1	SB 2	
32	886	501	277	555	
24	0	0	0	0	
8	0	58	0	0	
95	1700	1700	500	1700	
0.33	0.52	0.29	0.00	0.33	
32	0	0	0	0	
60.9	0.0	0.0	0.0	0.0	
F					
60.9	0.0		0.0		
F					
		0.9			
on		45.6%	IC	U Level o	of Service
		15			
	WBL Y 19 Stop 0% 0.80 24 24 1774 1774 1774 6.8 3.5 69 76 WB 1 32 24 8 95 0.33 32 60.9 F 60.9 F 60.9 F 60.9 F	WBL WBR 19 2 Stop 0 0% 0.25 24 8 1774 694 1774 694 1774 694 1774 694 1774 694 1774 694 1774 694 1774 694 1774 694 0 98 76 390 WB 1 NB 1 32 886 24 0 8 0 95 1700 0.33 0.52 32 0 60.9 0.0 F 60.9 60.9 0.0 F 0 0 7 0 0.0 F 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 <td>WBL WBR NBT WBL WBR NBT 19 2 1249 Stop Free 0% 0% 0% 0.25 0.94 24 8 1329 24 8 1329 1774 694 </td> <td>WBL WBR NBT NBR 19 2 1249 35 Stop Free 0% 0% 0% 0.25 0.94 0.60 24 8 1329 58 1774 694 </td> <td>WBL WBR NBT NBR SBL 19 2 1249 35 0 Stop Free </td>	WBL WBR NBT WBL WBR NBT 19 2 1249 Stop Free 0% 0% 0% 0.25 0.94 24 8 1329 24 8 1329 1774 694	WBL WBR NBT NBR 19 2 1249 35 Stop Free 0% 0% 0% 0.25 0.94 0.60 24 8 1329 58 1774 694	WBL WBR NBT NBR SBL 19 2 1249 35 0 Stop Free

OPENING YEAR TRAFFIC CONDITIONS (WITHOUT THE PROJECT)

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	-	\mathbf{r}	-	+	*	▲	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	A			đ þ			4			4	
Volume (veh/h)	137	657	2	0	1497	9	0	0	0	4	0	208
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Hourly flow rate (vph)	208	801	4	0	1782	16	0	0	0	11	0	293
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1798			805			2402	3016	403	2606	3010	899
vC1, stage 1 conf vol							1218	1218		1790	1790	
vC2, stage 2 conf vol							1184	1798		816	1220	
vCu, unblocked vol	1798			805			2402	3016	403	2606	3010	899
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	38			100			0	100	100	79	100	0
cM capacity (veh/h)	335			828			0	5	602	50	54	271
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	208	534	271	891	907	0	303					
Volume Left	208	0	0	0	0	0	11					
Volume Right	0	0	4	0	16	0	293					
cSH	335	1700	1700	828	1700	1700	235					
Volume to Capacity	0.62	0.31	0.16	0.00	0.53	0.00	1.29					
Queue Length 95th (ft)	98	0	0	0	0	0	394					
Control Delay (s)	31.7	0.0	0.0	0.0	0.0	0.0	200.2					
Lane LOS	D					А	F					
Approach Delay (s)	6.5			0.0		0.0	200.2					
Approach LOS						А	F					
Intersection Summary												
Average Delay			21.6									
Intersection Capacity Utilization	n		83.0%	[(CU Level	of Service			E			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/22/2021

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		٦	đβ			đ þ	
Volume (veh/h)	46	1	27	0	0	0	6	538	0	2	1108	15
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Hourly flow rate (vph)	49	4	45	0	0	0	18	633	0	8	1421	39
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1809	2126	730	1443	2145	316	1460			633		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1809	2126	730	1443	2145	316	1460			633		
tC, single (s)	7.6	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
t⊦ (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	92	88	100	100	100	96			99		
cM capacity (veh/h)	4/	48	369	/5	4/	686	469			960		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	98	0	18	422	211	718	750					
Volume Left	49	0	18	0	0	8	0					
Volume Right	45	0	0	0	0	0	39					
cSH	78	1700	469	1700	1700	960	1700					
Volume to Capacity	1.25	0.00	0.04	0.25	0.12	0.01	0.44					
Queue Length 95th (ft)	185	0	3	0	0	1	0					
Control Delay (s)	277.4	0.0	13.0	0.0	0.0	0.2	0.0					
Lane LOS	F	А	В			А						
Approach Delay (s)	277.4	0.0	0.4			0.1						
Approach LOS	F	А										
Intersection Summary												
Average Delay			12.4									
Intersection Capacity Utilizat	tion		43.4%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

1/22/2021

	۶	-	\mathbf{F}	4	+	*	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	0	42	4	4	21	0	8	0	4	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.90	0.80	0.25	0.75	0.50	0.90	0.50	0.90	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	0	52	16	5	42	0	16	0	5	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	42			68			113	113	60	118	121	42
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	42			68			113	113	60	118	121	42
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			98	100	99	100	100	100
cM capacity (veh/h)	1580			1545			867	778	1011	855	770	1034
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	68	47	21	0								
Volume Left	0	5	16	0								
Volume Right	16	0	5	0								
cSH	1580	1545	899	1700								
Volume to Capacity	0.00	0.00	0.02	0.00								
Queue Length 95th (ft)	0	0	2	0								
Control Delay (s)	0.0	0.8	9.1	0.0								
Lane LOS		А	А	А								
Approach Delay (s)	0.0	0.8	9.1	0.0								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utilization	on		14.5%	IC	CU Level o	f Service			А			
Analysis Period (min)			15									

1	*	1	۲	1	Ŧ
WBL	WBR	NBT	NBR	SBL	SBT
¥		≜ †₽			-¢†
8	1	557	28	4	1119
Stop		Free			Free
0%		0%			-1%
0.50	0.25	0.85	0.40	0.75	0.79
16	4	655	70	5	1416
		None			None
1409	363			725	
1409	363			725	
6.8	6.9			4.1	
3.5	3.3			2.2	
88	99			99	
131	640			887	
WB 1	NB 1	NB 2	SB 1	SB 2	
20	437	288	477	944	
16	0	0	5	0	
4	0	70	0	0	
156	1700	1700	887	1700	
0.13	0.26	0.17	0.01	0.56	
11	0	0	0	0	
31.5	0.0	0.0	0.2	0.0	
D			А		
31.5	0.0		0.1		
D					
		0.3			
n		43.7%	IC	U Level o	f Service
	WBL WBL 8 8 Stop 0% 0.50 16 4 1409 6.8 3.5 88 131 WB 1 20 16 4 156 0.13 11 31.5 D 31.5 D 31.5 D	WBL WBR WB 1 8 1 Stop 0 0% 0 0% 0.25 16 4 1409 363 6.8 6.9 3.5 3.3 88 99 131 640 WB 1 NB 1 20 437 16 0 4 0 156 1700 0.13 0.26 11 0 31.5 0.0 D 31.5 0.0 0 31.5 0.0 D 31.5	WBL WBR NBT WBL WBR NBT Main 557 Stop Free 0% 0% 0.50 0.25 0.85 16 4 655 16 4 655 16 4 655 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 1409 363 140 0 140 0 3.5 3.3 131 640 0 0	WBL WBR NBT NBR WB 1 557 28 Stop Free 0% 0% 0% 0% 0% 0 0% 0.25 0.85 0.40 16 4 655 70 1409 363	WBL WBR NBT NBR SBL Y 1 557 28 4 Stop Free

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	≯	→	\rightarrow	4	+	•	•	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	A1≱			đ þ			\$			\$	
Volume (veh/h)	388	1578	8	2	946	7	6	1	4	1	0	137
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Hourly flow rate (vph)	426	1679	21	8	1213	11	6	4	5	4	0	151
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1224			1700			3315	3782	850	2934	3787	612
vC1, stage 1 conf vol							2542	2542		1234	1234	
vC2, stage 2 conf vol							773	1240		1699	2553	
vCu, unblocked vol	1224			1700			3315	3782	850	2934	3787	612
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	22			98			0	0	98	23	100	64
cM capacity (veh/h)	544			380			1	1	307	5	4	422
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	426	1119	581	614	618	15	155					
Volume Left	426	0	0	8	0	6	4					
Volume Right	0	0	21	0	11	5	151					
cSH	544	1700	1700	380	1700	1	137					
Volume to Capacity	0.78	0.66	0.34	0.02	0.36	12.53	1.13					
Queue Length 95th (ft)	182	0	0	2	0	Err	220					
Control Delay (s)	31.6	0.0	0.0	0.7	0.0	Err	180.3					
Lane LOS	D			А		F	F					
Approach Delay (s)	6.3			0.3		Err	180.3					
Approach LOS						F	F					
Intersection Summary												
Average Delay			55.3									
Intersection Capacity Utiliza	tion		88.8%	10	CU Level	of Service			E			
Analysis Period (min)			15									_

HCM Unsignalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/22/2021

	۶	-	$\mathbf{\hat{z}}$	•	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٦.	A			đ ĥ	
Volume (veh/h)	108	1	57	4	1	13	40	1364	0	11	789	103
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Hourly flow rate (vph)	115	4	95	5	4	26	100	1467	0	28	887	178
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1992	2697	532	2262	2786	733	1064			1467		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1992	2697	532	2262	2786	733	1064			1467		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	77	81	59	74	93	85			94		
cM capacity (veh/h)	23	17	497	13	15	368	662			466		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	214	35	100	978	489	471	621					
Volume Left	115	5	100	0	0	28	0					
Volume Right	95	26	0	0	0	0	178					
cSH	40	48	662	1700	1700	466	1700					
Volume to Capacity	5.39	0.74	0.15	0.58	0.29	0.06	0.37					
Queue Length 95th (ft)	Err	74	13	0	0	5	0					
Control Delay (s)	Err	190.8	11.4	0.0	0.0	1.8	0.0					
Lane LOS	F	F	В			А						
Approach Delay (s)	Err	190.8	0.7			0.8						
Approach LOS	F	F										
Intersection Summary												
Average Delay			738.6									
Intersection Capacity Utilization	n		60.6%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

	≯	-	\mathbf{F}	4	+	•	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (veh/h)	2	156	7	6	44	101	6	0	2	0	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.50	0.80	0.42	0.33	0.75	0.25	0.50	0.90	0.50	0.25	0.90	0.90
Hourly flow rate (vph)	4	195	17	18	59	404	12	0	4	0	0	1
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	463			212			509	710	203	512	517	261
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	463			212			509	710	203	512	517	261
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			97	100	100	100	100	100
cM capacity (veh/h)	1109			1371			472	356	843	467	457	783
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	216	481	16	1								
Volume Left	4	18	12	0								
Volume Right	17	404	4	1								
cSH	1109	1371	530	783								
Volume to Capacity	0.00	0.01	0.03	0.00								
Queue Length 95th (ft)	0	1	2	0								
Control Delay (s)	0.2	0.4	12.0	9.6								
Lane LOS	А	А	В	А								
Approach Delay (s)	0.2	0.4	12.0	9.6								
Approach LOS			В	Α								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilizatio	n		24.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	<	*	1	۲	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ħ₽			-۠
Volume (veh/h)	49	2	1431	56	0	853
Sign Control	Stop		Free			Free
Grade	0%		0%			-1%
Peak Hour Factor	0.80	0.25	0.94	0.60	0.90	0.88
Hourly flow rate (vph)	61	8	1522	93	0	969
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	2054	808			1616	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	2054	808			1616	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0	98			100	
cM capacity (veh/h)	49	328			409	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	69	1015	601	323	646	
Volume Left	61	0	0	0	0	
Volume Right	8	0	93	0	0	
cSH	54	1700	1700	409	1700	
Volume to Capacity	1.27	0.60	0.35	0.00	0.38	
Queue Length 95th (ft)	153	0	0	0	0	
Control Delay (s)	336.0	0.0	0.0	0.0	0.0	
Lane LOS	F					
Approach Delay (s)	336.0	0.0		0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			8.8			
Intersection Capacity Utili	zation		51.3%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

	٦	-	←	•	1	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स्	¢Î,		¥	
Volume (veh/h)	189	73	50	0	110	60
Sign Control		Free	Free		Stop	
Grade		-2%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	210	81	56	0	122	67
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	56				557	56
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	56				557	56
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	87				71	93
cM capacity (veh/h)	1562				429	1017
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	291	56	189			
Volume Left	210	0	122			
Volume Right	0	0	67			
cSH	1562	1700	538			
Volume to Capacity	0.13	0.03	0.35			
Queue Length 95th (ft)	12	0	39			
Control Delay (s)	5.8	0.0	15.3			
Lane LOS	А		С			
Approach Delay (s)	5.8	0.0	15.3			
Approach LOS			С			
Intersection Summary						
Average Delay			8.5			
Intersection Capacity Utiliza	ation		37.4%	IC	U Level o	of Service
Analysis Period (min)			15			

OPENING YEAR TRAFFIC CONDITIONS (WITH PROJECT)

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

2/26/2021

	≯	-	\rightarrow	4	-	•	٩.	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	tβ			4î þ			\$			\$	
Volume (veh/h)	167	657	2	0	1497	9	0	0	0	4	0	377
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Hourly flow rate (vph)	253	801	4	0	1782	16	0	0	0	11	0	531
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1798			805			2731	3107	403	2697	3101	899
vC1, stage 1 conf vol							1309	1309		1790	1790	
vC2, stage 2 conf vol							1422	1798		907	1311	
vCu, unblocked vol	1798			805			2731	3107	403	2697	3101	899
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	25			100			0	100	100	73	100	0
cM capacity (veh/h)	335			828			0	3	602	38	38	271
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	253	534	271	891	907	0	542					
Volume Left	253	0	0	0	0	0	11					
Volume Right	0	0	4	0	16	0	531					
cSH	335	1700	1700	828	1700	1700	242					
Volume to Capacity	0.75	0.31	0.16	0.00	0.53	0.00	2.23					
Queue Length 95th (ft)	147	0	0	0	0	0	1055					
Control Delay (s)	42.3	0.0	0.0	0.0	0.0	0.0	600.6					
Lane LOS	Е					А	F					
Approach Delay (s)	10.1			0.0		0.0	600.6					
Approach LOS						А	F					
Intersection Summary												
Average Delay			98.9									
Intersection Capacity Utilization			93.4%	[(CU Level	of Service			F			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/26/2021

	۶	-	$\mathbf{\hat{z}}$	∢	+	*	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		۲.	A			đ þ	
Volume (veh/h)	98	1	67	0	0	0	23	538	0	2	1108	55
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Hourly flow rate (vph)	104	4	112	0	0	0	70	633	0	8	1421	145
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1965	2281	783	1612	2354	316	1565			633		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1965	2281	783	1612	2354	316	1565			633		
tC, single (s)	7.6	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	88	67	100	100	100	84			99		
cM capacity (veh/h)	32	33	341	38	30	686	428			960		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	220	0	70	422	211	718	855					
Volume Left	104	0	70	0	0	8	0					
Volume Right	112	0	0	0	0	0	145					
cSH	60	1700	428	1700	1700	960	1700					
Volume to Capacity	3.69	0.00	0.16	0.25	0.12	0.01	0.50					
Queue Length 95th (ft)	Err	0	14	0	0	1	0					
Control Delay (s)	Err	0.0	15.1	0.0	0.0	0.2	0.0					
Lane LOS	F	А	С			А						
Approach Delay (s)	Err	0.0	1.5			0.1						
Approach LOS	F	А										
Intersection Summary												
Average Delay			881.6									
Intersection Capacity Utilization			50.0%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

2/26/2021

	≯	-	\mathbf{F}	4	+	•	٩.	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			4			4	
Volume (veh/h)	0	111	4	4	117	0	8	0	4	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.90	0.80	0.25	0.75	0.50	0.90	0.50	0.90	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	0	139	16	5	234	0	16	0	5	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	234			155			391	391	147	397	399	234
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	234			155			391	391	147	397	399	234
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			100			97	100	99	100	100	100
cM capacity (veh/h)	1345			1438			571	546	906	562	539	810
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	155	239	21	0								
Volume Left	0	5	16	0								
Volume Right	16	0	5	0								
cSH	1345	1438	629	1700								
Volume to Capacity	0.00	0.00	0.03	0.00								
Queue Length 95th (ft)	0	0	3	0								
Control Delay (s)	0.0	0.2	10.9	0.0								
Lane LOS		А	В	А								
Approach Delay (s)	0.0	0.2	10.9	0.0								
Approach LOS			В	А								
Intersection Summary												
Average Delay			0.7									
Intersection Capacity Utilization	n		19.4%	IC	CU Level c	of Service			А			
Analysis Period (min)			15									

2/26/2021

	<	*	Ť	۲	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		†₽,			-۠
Volume (veh/h)	28	1	588	49	4	1139
Sign Control	Stop		Free			Free
Grade	0%		0%			-1%
Peak Hour Factor	0.50	0.25	0.85	0.40	0.75	0.79
Hourly flow rate (vph)	56	4	692	122	5	1442
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1485	407			814	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1485	407			814	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	52	99			99	
cM capacity (veh/h)	117	599			822	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	60	461	353	486	961	
Volume Left	56	0	0	5	0	
Volume Right	4	0	122	0	0	
cSH	124	1700	1700	822	1700	
Volume to Capacity	0.49	0.27	0.21	0.01	0.57	
Queue Length 95th (ft)	55	0	0	0	0	
Control Delay (s)	59.0	0.0	0.0	02	0.0	
Lane LOS	F	010	0.0	A	010	
Approach Delay (s)	59.0	0.0		0.1		
Approach LOS	F	010		0.1		
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utili	zation		44.3%	IC	U Level o	of Service
Analysis Period (min)			15			
J -			-			
	٦	-	+	•	1	∢
-------------------------------	-------	------	-------	------	-----------	-----------
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	¢Î,		Y	
Volume (veh/h)	20	56	88	37	59	110
Sign Control		Free	Free		Stop	
Grade		-2%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	22	62	98	41	66	122
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	139				225	118
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	139				225	118
tC, single (s)	4.1				6.4	6.2
IC, 2 stage (s)	0.0				0.5	0.0
IF (S)	2.2				3.5	3.3
p0 queue free %	98				91	87
civi capacity (ven/n)	1457				/56	939
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	84	139	188			
Volume Left	22	0	66			
Volume Right	0	41	122			
cSH	1457	1700	866			
Volume to Capacity	0.02	0.08	0.22			
Queue Length 95th (ft)	1	0	21			
Control Delay (s)	2.1	0.0	10.3			
Lane LOS	А		В			
Approach Delay (s)	2.1	0.0	10.3			
Approach LOS			В			
Intersection Summary						
Average Delay			5.1			
Intersection Capacity Utiliza	ation		31.0%	IC	U Level c	f Service
Analysis Period (min)			15			

	٦	-	+	•	5	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ţ,		¥	
Volume (veh/h)	10	105	62	20	33	59
Sign Control		Free	Free		Stop	
Grade		4%	-4%		-2%	
Peak Hour Factor	0.90	0.80	0.50	0.90	0.90	0.90
Hourly flow rate (vph)	11	131	124	22	37	66
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	146				289	135
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	146				289	135
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				95	93
cM capacity (veh/h)	1448				701	919
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	142	146	102			
Volume Left	11	0	37			
Volume Right	0	22	66			
cSH	1448	1700	827			
Volume to Capacity	0.01	0.09	0.12			
Queue Length 95th (ft)	1	0	11			
Control Delay (s)	0.6	0.0	10.0			
Lane LOS	А		А			
Approach Delay (s)	0.6	0.0	10.0			
Approach LOS			А			
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utilizat	ion		24.9%	IC	U Level a	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

2/27/2021

	≯	-	\rightarrow	4	+	•	•	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	↑ ĵ₀			đ þ			\$			\$	
Volume (veh/h)	387	1578	8	2	946	7	6	1	4	1	0	136
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			4%			8%			-8%	
Peak Hour Factor	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Hourly flow rate (vph)	425	1679	21	8	1213	11	6	4	5	4	0	149
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1224			1700			3312	3780	850	2932	3785	612
vC1, stage 1 conf vol							2540	2540		1234	1234	
vC2, stage 2 conf vol							772	1240		1697	2550	
vCu, unblocked vol	1224			1700			3312	3780	850	2932	3785	612
tC, single (s)	4.2			4.1			7.5	6.5	6.9	7.5	6.5	7.1
tC, 2 stage (s)							6.5	5.5		6.5	5.5	
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free %	22			98			0	0	98	26	100	65
cM capacity (veh/h)	544			380			1	1	307	5	4	422
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	NB 1	SB 1					
Volume Total	425	1119	581	614	618	15	153					
Volume Left	425	0	0	8	0	6	4					
Volume Right	0	0	21	0	11	5	149					
cSH	544	1700	1700	380	1700	1	140					
Volume to Capacity	0.78	0.66	0.34	0.02	0.36	12.35	1.10					
Queue Length 95th (ft)	181	0	0	2	0	Err	212					
Control Delay (s)	31.4	0.0	0.0	0.7	0.0	Err	167.1					
Lane LOS	D			А		F	F					
Approach Delay (s)	6.3			0.3		Err	167.1					
Approach LOS						F	F					
Intersection Summary												
Average Delay			54.7									
Intersection Capacity Utiliza	ition		88.8%	IC	CU Level	of Service			E			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/27/2021

	۶	-	$\mathbf{\hat{z}}$	∢	+	*	٩.	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		ľ	tβ			đĥ	
Volume (veh/h)	108	1	58	4	1	13	40	1364	0	11	789	104
Sign Control		Stop			Stop			Free			Free	
Grade		4%			-6%			1%			-1%	
Peak Hour Factor	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Hourly flow rate (vph)	115	4	97	5	4	26	100	1467	0	28	887	179
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1993	2698	533	2264	2787	733	1066			1467		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1993	2698	533	2264	2787	733	1066			1467		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	//	81	59	/4	93	85			94		
cM capacity (veh/h)	23	17	496	13	15	368	661			466		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2					
Volume Total	216	35	100	978	489	471	623					
Volume Left	115	5	100	0	0	28	0					
Volume Right	97	26	0	0	0	0	179					
cSH	40	47	661	1700	1700	466	1700					
Volume to Capacity	5.40	0.74	0.15	0.58	0.29	0.06	0.37					
Queue Length 95th (ft)	Err	74	13	0	0	5	0					
Control Delay (s)	Err	192.6	11.4	0.0	0.0	1.8	0.0					
Lane LOS	F	F	В			А						
Approach Delay (s)	Err	192.6	0.7			0.8						
Approach LOS	F	F										
Intersection Summary												
Average Delay			743.5									_
Intersection Capacity Utilizati	on		60.6%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 14: Burris Road & North Ruggles Ferry Pike

2/27/2021

	≯	-	\mathbf{F}	4	←	•	٩.	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			4	
Volume (veh/h)	2	204	7	6	131	1	6	0	2	0	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		-2%			2%			-7%			3%	
Peak Hour Factor	0.50	0.80	0.42	0.33	0.75	0.25	0.50	0.90	0.50	0.90	0.90	0.25
Hourly flow rate (vph)	4	255	17	18	175	4	12	0	4	0	0	4
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	179			272			488	486	263	488	493	177
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	179			272			488	486	263	488	493	177
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			99			98	100	99	100	100	100
cM capacity (veh/h)	1409			1303			486	477	781	484	472	872
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	276	197	16	4								
Volume Left	4	18	12	0								
Volume Right	17	4	4	4								
cSH	1409	1303	536	872								
Volume to Capacity	0.00	0.01	0.03	0.00								
Queue Length 95th (ft)	0	1	2	0								
Control Delay (s)	0.1	0.8	11.9	9.1								
Lane LOS	А	А	В	А								
Approach Delay (s)	0.1	0.8	11.9	9.1								
Approach LOS			В	Α								
Intersection Summary												
Average Delay			0.9									
Intersection Capacity Utilization	n		24.1%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

2/27/2021

	∢	*	1	۲	1	ţ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ħ₽			-۠
Volume (veh/h)	49	2	1431	56	0	854
Sign Control	Stop		Free			Free
Grade	0%		0%			-1%
Peak Hour Factor	0.80	0.25	0.94	0.60	0.90	0.88
Hourly flow rate (vph)	61	8	1522	93	0	970
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	2054	808			1616	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	2054	808			1616	
tC, single (s)	6.8	6.9			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	0	98			100	
cM capacity (veh/h)	49	328			409	
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	69	1015	601	323	647	
Volume Left	61	0	0	0	0	
Volume Right	8	0	93	0	0	
cSH	54	1700	1700	409	1700	
Volume to Capacity	1.27	0.60	0.35	0.00	0.38	
Queue Length 95th (ft)	153	0	0	0	0	
Control Delay (s)	336.5	0.0	0.0	0.0	0.0	
Lane LOS	F					
Approach Delay (s)	336.5	0.0		0.0		
Approach LOS	F					
Intersection Summary						
Average Delay			8.8			
Intersection Capacity Utiliz	zation		51.3%	IC	U Level o	of Service
Analysis Period (min)			15			
			10			

	٦	-	+	•	1	∢	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	ţ,		Y		1
Volume (veh/h)	122	141	72	66	72	39	
Sign Control		Free	Free		Stop		
Grade		-2%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	136	157	80	73	80	43	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked					_		
vC, conflicting volume	153				544	117	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	153				544	11/	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)	0.0				0.5		
t⊦ (s)	2.2				3.5	3.3	
p0 queue free %	91				82	95	
civi capacity (ven/n)	1440				456	941	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	292	153	123				
Volume Left	136	0	80				
Volume Right	0	73	43				
cSH	1440	1700	557				
Volume to Capacity	0.09	0.09	0.22				
Queue Length 95th (ft)	8	0	21				
Control Delay (s)	4.0	0.0	13.3				
Lane LOS	А		В				
Approach Delay (s)	4.0	0.0	13.3				
Approach LOS			В				
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Utiliza	ation		38.4%	IC	U Level c	f Service	
Analysis Period (min)			15				

	۶	-	+	•	5	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ţ,		Y	
Volume (veh/h)	68	138	117	37	39	21
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.80	0.75	0.90	0.90	0.90
Hourly flow rate (vph)	76	172	156	41	43	23
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	197				500	177
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	197				500	177
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	95				91	97
cM capacity (veh/h)	1388				505	872
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	248	197	67			
Volume Left	76	0	43			
Volume Right	0	41	23			
cSH	1388	1700	592			
Volume to Capacity	0.05	0.12	0.11			
Queue Length 95th (ft)	4	0	9			
Control Delay (s)	2.7	0.0	11.9			
Lane LOS	А		В			
Approach Delay (s)	2.7	0.0	11.9			
Approach LOS			В			
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utilizati	on		32.9%	IC	U Level a	f Service
Analysis Period (min)			15			

TRAFFIC SIGNALIZATION

HCM Signalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/23/2021

	۶	→	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		5	A 1.			ፈቴ	
Volume (vph)	42	1	24	0	0	0	5	487	0	2	1003	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-6%			1%			-1%	
Total Lost time (s)		5.0					5.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frt		0.94					1.00	1.00			1.00	
Flt Protected		0.98					0.95	1.00			1.00	
Satd. Flow (prot)		1624					1796	3326			3477	
Flt Permitted		0.84					0.18	1.00			0.95	
Satd. Flow (perm)		1399					339	3326			3312	
Peak-hour factor, PHF	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Adj. Flow (vph)	45	4	40	0	0	0	15	573	0	8	1286	37
RTOR Reduction (vph)	0	36	0	0	0	0	0	0	0	0	2	0
Lane Group Flow (vph)	0	53	0	0	0	0	15	573	0	0	1329	0
Heavy Vehicles (%)	3%	0%	0%	0%	0%	0%	0%	8%	0%	0%	4%	0%
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		4.5					33.3	33.3			33.3	
Effective Green, g (s)		4.5					33.3	33.3			33.3	
Actuated g/C Ratio		0.09					0.70	0.70			0.70	
Clearance Time (s)		5.0					5.0	5.0			5.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		131					236	2317			2307	
v/s Ratio Prot								0.17				
v/s Ratio Perm		c0.04					0.04				c0.40	
v/c Ratio		0.40					0.06	0.25			0.58	
Uniform Delay, d1		20.4					2.3	2.7			3.7	
Progression Factor		1.00					1.00	1.00			1.00	
Incremental Delay, d2		2.0					0.1	0.1			0.4	
Delay (s)		22.4					2.4	2.7			4.0	
Level of Service		С					А	А			А	
Approach Delay (s)		22.4			0.0			2.7			4.0	
Approach LOS		С			А			А			А	
Intersection Summary												
HCM 2000 Control Delay			4.5	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacity	y ratio		0.55									
Actuated Cycle Length (s)			47.8	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizatio	n		41.7%	IC	U Level	ot Service			А			
Analysis Period (min)			15									

Timing Report, Sorted By Phase

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/23/2021

	†	4	-4-	\mathbf{F}			
Phase Number	2	4	6	8			
Movement	NBTL	EBTL	SBTL	WBTL			
Lead/Lag							
Lead-Lag Optimize							
Recall Mode	Min	None	Min	None			
Maximum Split (s)	34	21	34	21			
Maximum Split (%)	61.8%	38.2%	61.8%	38.2%			
Minimum Split (s)	21	21	21	21			
Yellow Time (s)	4	4	4	4			
All-Red Time (s)	1	1	1	1			
Minimum Initial (s)	4	4	4	4			
Vehicle Extension (s)	3	3	3	3			
Minimum Gap (s)	3	3	3	3			
Time Before Reduce (s)	0	0	0	0			
Time To Reduce (s)	0	0	0	0			
Walk Time (s)	5	5	5	5			
Flash Dont Walk (s)	11	11	11	11			
Dual Entry	Yes	Yes	Yes	Yes			
Inhibit Max	Yes	Yes	Yes	Yes			
Start Time (s)	0	34	0	34			
End Time (s)	34	0	34	0			
Yield/Force Off (s)	29	50	29	50			
Yield/Force Off 170(s)	29	39	29	39			
Local Start Time (s)	0	34	0	34			
Local Yield (s)	29	50	29	50			
Local Yield 170(s)	29	39	29	39			
Intersection Summary							
Cycle Length			55				
Control Type	Actuate	ed-Uncoo	rdinated				
Natural Cycle			55				
Splits and Phases: 10: A	Andrew Johr	nson High	way & No	orth Rugg	les Ferry Pike (Wes	t Side)/Private	Drivev
		0	2	00		A	

	ø4	
34 s	21s	
ø6	4 Ø8	
34 s	21 s	

HCM Signalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

1/22/2021

	≯	-	\mathbf{r}	1	+	*	1	†	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	↑ ĵ₀			4îÞ			\$			\$	
Volume (vph)	124	595	2	0	1355	8	0	0	0	4	0	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Grade (%)		-2%			4%			8%			-8%	
Total Lost time (s)	5.0	5.0			5.0						5.0	
Lane Util. Factor	1.00	0.95			0.95						1.00	
Frt	1.00	1.00			1.00						0.87	
Flt Protected	0.95	1.00			1.00						1.00	
Satd. Flow (prot)	1770	3438			3398						1541	
Flt Permitted	0.10	1.00			1.00						0.99	
Satd. Flow (perm)	180	3438			3398						1528	
Peak-hour factor, PHF	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Adj. Flow (vph)	188	726	4	0	1613	14	0	0	0	11	0	265
RTOR Reduction (vph)	0	0	0	0	1	0	0	0	0	0	117	0
Lane Group Flow (vph)	188	730	0	0	1626	0	0	0	0	0	159	0
Heavy Vehicles (%)	3%	6%	0%	0%	4%	0%	0%	0%	0%	0%	0%	8%
Turn Type	pm+pt	NA			NA					Perm	NA	
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	46.3	46.3			36.3						11.6	
Effective Green, g (s)	46.3	46.3			36.3						11.6	
Actuated g/C Ratio	0.68	0.68			0.53						0.17	
Clearance Time (s)	5.0	5.0			5.0						5.0	
Vehicle Extension (s)	3.0	3.0			3.0						3.0	
Lane Grp Cap (vph)	239	2344			1816						261	
v/s Ratio Prot	c0.06	0.21			c0.48							
v/s Ratio Perm	0.48										c0.10	
v/c Ratio	0.79	0.31			0.90						0.61	
Uniform Delay, d1	13.3	4.4			14.1						26.1	
Progression Factor	1.00	1.00			1.00						1.00	
Incremental Delay, d2	15.6	0.1			6.2						4.0	
Delay (s)	28.9	4.4			20.3						30.1	
Level of Service	С	А			С						С	
Approach Delay (s)		9.4			20.3			0.0			30.1	
Approach LOS		А			С			А			С	
Intersection Summary												
HCM 2000 Control Delay			17.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.83									
Actuated Cycle Length (s)			67.9	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	ation		78.6%	IC	CU Level	of Service	1		D			
Analysis Period (min)			15									

Phase Number 2 4 6 7 8 Movement NBTL EBTL SBTL EBL WBTL Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize Yes Yes Yes Recall Mode Min None Min None None Maximum Split (s) 23 52 23 10 42 Maximum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Vinimum Initial (s) 4 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 3 3 3 3 3 Minimum Gap (s) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5<			4	4-	۶	\mathbf{F}
Movement NBTL EBTL SBTL EBL WBTL _ead/Lag Lead Lag Lead Lag _ead-Lag Optimize Yes Yes Yes Recall Mode Min None Min None None Maximum Split (s) 23 52 23 10 42 Maximum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 All-Red Time (s) 1 1 1 1 Vinimum Initial (s) 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 Minimum Gap (s) 5 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes Start Time (s) 0 23 0 23 3 3	Phase Number	2	4	6	7	8
Lead/Lag Lead Lag Lead-Lag Optimize Yes Yes Recall Mode Min None Min None Maximum Split (s) 23 52 23 10 42 Maximum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 1 Vinimum Initial (s) 4 4 4 4 4 4 Vehicle Extension (s) 3	Movement	NBTL	EBTL	SBTL	EBL	WBTL
Lead-Lag Optimize Yes Yes Recall Mode Min None Min None None Maximum Split (s) 23 52 23 10 42 Maximum Split (s) 20 7 13.3% 56.0% Vinimum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Vehicle Extension (s) 3 </td <td>Lead/Lag</td> <td></td> <td></td> <td></td> <td>Lead</td> <td>Lag</td>	Lead/Lag				Lead	Lag
Recall Mode Min None Min None None Maximum Split (s) 23 52 23 10 42 Maximum Split (s) 30.7% 69.3% 30.7% 13.3% 56.0% Vinimum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Vinimum Initial (s) 4 4 4 4 4 Vehicle Extension (s) 3	Lead-Lag Optimize				Yes	Yes
Maximum Split (s) 23 52 23 10 42 Maximum Split (%) 30.7% 69.3% 30.7% 13.3% 56.0% Minimum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Minimum Initial (s) 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 Minimum Gap (s) 3 3 3 3 3 3 Vinimum Gap (s) 3 3 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 0 0 Valk Time (s) 5 5 5 5 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes Yes Yes Ye	Recall Mode	Min	None	Min	None	None
Maximum Split (%) 30.7% 69.3% 30.7% 13.3% 56.0% Minimum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Minimum Initial (s) 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 Vinimum Gap (s) 3 3 3 3 3 3 Vinimum Gap (s) 0 0 0 0 0 0 Vinimum Gap (s) 5 5 5 5 5 5 Time Before Reduce (s) 0 0 0 0 0 0 Valk Time (s) 5 5 5 5 5 5 5 5 Flash Dont Walk (s) 11	Maximum Split (s)	23	52	23	10	42
Minimum Split (s) 21 21 21 9 21 Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 Minimum Initial (s) 4 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 3 Minimum Gap (s) 3 1 11 11 11 11 11	Maximum Split (%)	30.7%	69.3%	30.7%	13.3%	56.0%
Yellow Time (s) 4 4 4 4 4 All-Red Time (s) 1 1 1 1 1 1 Vinimum Initial (s) 4 4 4 4 4 4 Vehicle Extension (s) 3 1 11 11 11 11 11 11 11 11 11 11 11	Minimum Split (s)	21	21	21	9	21
All-Red Time (s) 1 1 1 1 1 1 1 Minimum Initial (s) 4 4 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 3 Minimum Gap (s) 3 3 3 3 3 3 3 Fine Before Reduce (s) 0 0 0 0 0 0 0 Fine To Reduce (s) 0 0 0 0 0 0 0 Valk Time (s) 5 5 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes Yes nhibit Max Yes Yes Yes Yes Yes Yes Yes Yes Yes Start Time (s) 0 23 0 23 33 0 Yield/Force Off (s) 18 59 18 28 59 Local Yield (s) <t< td=""><td>Yellow Time (s)</td><td>4</td><td>4</td><td>4</td><td>4</td><td>4</td></t<>	Yellow Time (s)	4	4	4	4	4
Minimum Initial (s) 4 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 3 Vinimum Gap (s) 3 <td>All-Red Time (s)</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>	All-Red Time (s)	1	1	1	1	1
Vehicle Extension (s) 3 3 3 3 3 Minimum Gap (s) 3 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 0 Time To Reduce (s) 0 0 0 0 0 0 Valk Time (s) 5 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes nhibit Max Yes Yes Yes Yes Yes Yes Yes Start Time (s) 0 23 0 23 33 0 Yield/Force Off (s) 18 70 18 28 70 Yield/Force Off 170(s) 18 59 18 28 59 23 33 33 Local Start Time (s) 0 23 0 23 33 33 33 Local Yield (s) 18 70 18 28 70 33	Minimum Initial (s)	4	4	4	4	4
Minimum Gap (s) 3 3 3 3 3 Time Before Reduce (s) 0 0 0 0 0 Time To Reduce (s) 0 0 0 0 0 Walk Time (s) 5 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes nhibit Max Yes Yes Yes Yes Yes Yes Yes Start Time (s) 0 23 0 23 33 0 Yield/Force Off (s) 18 70 18 28 70 Yield/Force Off 170(s) 18 59 18 28 59 Local Start Time (s) 0 23 0 23 33 Local Yield (s) 18 70 18 28 70 Local Yield 170(s) 18 59 18 28 59 Local Yield 170(s) 18 59 18 28 59	Vehicle Extension (s)	3	3	3	3	3
Time Before Reduce (s) 0 11	Minimum Gap (s)	3	3	3	3	3
Time To Reduce (s) 0 11 <t< td=""><td>Time Before Reduce (s)</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Time Before Reduce (s)	0	0	0	0	0
Malk Time (s) 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes nhibit Max Yes Yes Yes Yes Yes Yes Yes start Time (s) 0 23 0 23 33 0 Yield/Force Off (s) 18 70 18 28 70 Yield/Force Off 170(s) 18 59 18 28 59 Local Start Time (s) 0 23 0 23 33 Local Yield (s) 18 70 18 28 70 Local Yield 170(s) 18 59 18 28 59	Time To Reduce (s)	0	0	0	0	0
Flash Dont Walk (s) 11 11 11 11 11 Dual Entry Yes Yes Yes Yes Yes Yes nhibit Max Yes Yes Yes Yes Yes Yes Yes Start Time (s) 0 23 0 23 33 0 End Time (s) 23 0 23 33 0 Yield/Force Off (s) 18 70 18 28 70 Yield/Force Off 170(s) 18 59 18 28 59 Local Start Time (s) 0 23 0 23 33 Local Yield (s) 18 70 18 28 70 Local Yield 170(s) 18 59 18 28 59 Intersection Summary 18 59 18 28 59	Walk Time (s)	5	5	5		5
Dual Entry Yes	Flash Dont Walk (s)	11	11	11		11
Nhibit Max Yes	Dual Entry	Yes	Yes	Yes	No	Yes
Start Time (s) 0 23 0 23 33 End Time (s) 23 0 23 33 0 Yield/Force Off (s) 18 70 18 28 70 Yield/Force Off 170(s) 18 59 18 28 59 Local Start Time (s) 0 23 0 23 33 Local Yield (s) 18 70 18 28 70 Local Yield 170(s) 18 59 18 28 59 Intersection Summary 18 59 18 28 59	Inhibit Max	Yes	Yes	Yes	Yes	Yes
End Time (s)23023330Yield/Force Off (s)1870182870Yield/Force Off 170(s)1859182859Local Start Time (s)02302333Local Yield (s)1870182870Local Yield 170(s)1859182859Intersection Summary1859182859	Start Time (s)	0	23	0	23	33
Yield/Force Off (s)1870182870Yield/Force Off 170(s)1859182859Local Start Time (s)02302333Local Yield (s)1870182870Local Yield 170(s)1859182859Intersection Summary	End Time (s)	23	0	23	33	0
Yield/Force Off 170(s)1859182859Local Start Time (s)02302333Local Yield (s)1870182870Local Yield 170(s)1859182859Intersection Summary	Yield/Force Off (s)	18	70	18	28	70
Local Start Time (s) 0 23 0 23 33 Local Yield (s) 18 70 18 28 70 Local Yield (s) 18 59 18 28 59 Local Yield 170(s) 18 59 18 28 59 Intersection Summary 10 10 10 10 10	Yield/Force Off 170(s)	18	59	18	28	59
Local Yield (s) 18 70 18 28 70 Local Yield 170(s) 18 59 18 28 59 Intersection Summary 10 <t< td=""><td>Local Start Time (s)</td><td>0</td><td>23</td><td>0</td><td>23</td><td>33</td></t<>	Local Start Time (s)	0	23	0	23	33
Local Yield 170(s) 18 59 18 28 59 ntersection Summary	Local Yield (s)	18	70	18	28	70
ntersection Summary	Local Yield 170(s)	18	59	18	28	59
	Intersection Summarv					
Cycle Length 75	Cycle Length			75		
Control Type Actuated-Uncoordinated	Control Type	Actuate	ed-Uncoo	rdinated		
Vatural Cycle 75	Natural Cycle	, lotadite	011000	75		

Splits and Phases: 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

≪¶ ø2	<u>↓</u> _{Ø4}	
23 s	52 s	
ø6	▶ _{Ø7} ₩ _{Ø8}	
23 s	10 s 42 s	

HCM Signalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/23/2021

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		5	≜1 5			ፈቤ	
Volume (vph)	36	1	14	4	1	12	10	1234	0	10	714	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-6%			1%			-1%	
Total Lost time (s)		5.0			5.0		5.0	5.0			5.0	
Lane Util. Factor		1.00			1.00		1.00	0.95			0.95	
Frt		0.95			0.90		1.00	1.00			0.99	
Flt Protected		0.97			0.99		0.95	1.00			1.00	
Satd. Flow (prot)		1665			1752		1796	3522			3436	
Flt Permitted		0.80			0.93		0.32	1.00			0.90	
Satd. Flow (perm)		1373			1647		613	3522			3097	
Peak-hour factor, PHF	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Adj. Flow (vph)	38	4	23	5	4	24	25	1327	0	25	802	48
RTOR Reduction (vph)	0	21	0	0	22	0	0	0	0	0	5	0
Lane Group Flow (vph)	0	44	0	0	11	0	25	1327	0	0	870	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	5%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		4.2			4.2		31.0	31.0			31.0	
Effective Green, g (s)		4.2			4.2		31.0	31.0			31.0	
Actuated g/C Ratio		0.09			0.09		0.69	0.69			0.69	
Clearance Time (s)		5.0			5.0		5.0	5.0			5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)		127			153		420	2415			2124	
v/s Ratio Prot								c0.38				
v/s Ratio Perm		c0.03			0.01		0.04				0.28	
v/c Ratio		0.35			0.07		0.06	0.55			0.41	
Uniform Delay, d1		19.2			18.7		2.3	3.6			3.1	
Progression Factor		1.00			1.00		1.00	1.00			1.00	
Incremental Delay, d2		1.7			0.2		0.1	0.3			0.1	
Delay (s)		20.9			18.9		2.4	3.8			3.2	
Level of Service		С			В		А	А			А	
Approach Delay (s)		20.9			18.9			3.8			3.2	
Approach LOS		С			В			А			А	
Intersection Summary												
HCM 2000 Control Delay			4.3	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacit	y ratio		0.53									
Actuated Cycle Length (s)			45.2	S	um of lost	t time (s)			10.0			
Intersection Capacity Utilization	n		49.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

Timing Report, Sorted By Phase

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway1/23/2021

		4	-4-	\mathbf{F}		
Phase Number	2	4	6	8		
Movement	NBTL	EBTL	SBTL	WBTL		
Lead/Lag						
Lead-Lag Optimize						
Recall Mode	Min	None	Min	None		
Maximum Split (s)	34	21	34	21		
Maximum Split (%)	61.8%	38.2%	61.8%	38.2%		
Minimum Split (s)	21	21	21	21		
Yellow Time (s)	4	4	4	4		
All-Red Time (s)	1	1	1	1		
Minimum Initial (s)	4	4	4	4		
Vehicle Extension (s)	3	3	3	3		
Minimum Gap (s)	3	3	3	3		
Time Before Reduce (s)	0	0	0	0		
Time To Reduce (s)	0	0	0	0		
Walk Time (s)	5	5	5	5		
Flash Dont Walk (s)	11	11	11	11		
Dual Entry	Yes	Yes	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes		
Start Time (s)	0	34	0	34		
End Time (s)	34	0	34	0		
Yield/Force Off (s)	29	50	29	50		
Yield/Force Off 170(s)	29	39	29	39		
Local Start Time (s)	0	34	0	34		
Local Yield (s)	29	50	29	50		
Local Yield 170(s)	29	39	29	39		
Intersection Summary						
Cycle Length			55			
Control Type	Actuate	ed-Uncoo	rdinated			
Natural Cycle			50			
Splits and Phases: 10: Ar	ndrew Johr	nson High	way & No	orth Rugg	es Ferry Pike (West	Side)/Private I
			2			<u>A</u>

√1 ø2	ø4	
34 s	21 s	
▼ ø6	₩ 8	
34 s	21 s	

HCM Signalized Intersection Capacity Analysis	
3: Private Driveway/North Ruggles Ferry Pike & Ashev	ille Highway

1/22/2021

	≯	-	\mathbf{i}	1	-	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	≜t ≽			đĥ			\$			\$	
Volume (vph)	180	1428	7	2	856	6	5	1	4	1	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Grade (%)		-2%			4%			8%			-8%	
Total Lost time (s)	5.0	5.0			5.0			5.0			5.0	
Lane Util. Factor	1.00	0.95			0.95			1.00			1.00	
Frt	1.00	1.00			1.00			0.95			0.87	
Flt Protected	0.95	1.00			1.00			0.98			1.00	
Satd. Flow (prot)	1720	3569			3431			1649			1544	
Flt Permitted	0.13	1.00			0.94			0.86			0.98	
Satd. Flow (perm)	244	3569			3225			1437			1520	
Peak-hour factor, PHF	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Adj. Flow (vph)	198	1519	18	8	1097	10	5	4	5	4	0	77
RTOR Reduction (vph)	0	1	0	0	1	0	0	4	0	0	72	0
Lane Group Flow (vph)	198	1536	0	0	1114	0	0	10	0	0	9	0
Heavy Vehicles (%)	6%	2%	0%	0%	3%	0%	0%	0%	0%	0%	0%	8%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	39.0	39.0			25.5			6.3			6.3	
Effective Green, g (s)	39.0	39.0			25.5			6.3			6.3	
Actuated g/C Ratio	0.71	0.71			0.46			0.11			0.11	
Clearance Time (s)	5.0	5.0			5.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	398	2517			1487			163			173	
v/s Ratio Prot	0.08	c0.43										
v/s Ratio Perm	0.27				c0.35			c0.01			0.01	
v/c Ratio	0.50	0.61			0.75			0.06			0.05	
Uniform Delay, d1	6.0	4.2			12.3			21.9			21.8	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	1.0	0.4			2.1			0.2			0.1	
Delay (s)	7.0	4.7			14.4			22.0			22.0	
Level of Service	А	А			В			С			С	
Approach Delay (s)		4.9			14.4			22.0			22.0	
Approach LOS		А			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			9.1	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	acity ratio		0.65									
Actuated Cycle Length (s)			55.3	S	um of lost	time (s)			15.0			
Intersection Capacity Utiliz	ation		80.5%	IC	CU Level o	of Service	;		D			
Analysis Period (min)			15									

Timing Report, Sorted By Phase 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

		4	-4-	≯	\mathbf{T}
Phase Number	2	4	6	7	8
Movement	NBTL	EBTL	SBTL	EBL	WBTL
Lead/Lag				Lead	Lag
Lead-Lag Optimize				Yes	Yes
Recall Mode	Min	None	Min	None	None
Maximum Split (s)	21	54	21	14	40
Maximum Split (%)	28.0%	72.0%	28.0%	18.7%	53.3%
Minimum Split (s)	21	21	21	9	21
Yellow Time (s)	4	4	4	4	4
All-Red Time (s)	1	1	1	1	1
Minimum Initial (s)	4	4	4	4	4
Vehicle Extension (s)	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0
Walk Time (s)	5	5	5		5
Flash Dont Walk (s)	11	11	11		11
Dual Entry	Yes	Yes	Yes	No	Yes
Inhibit Max	Yes	Yes	Yes	Yes	Yes
Start Time (s)	0	21	0	21	35
End Time (s)	21	0	21	35	0
Yield/Force Off (s)	16	70	16	30	70
Yield/Force Off 170(s)	16	59	16	30	59
Local Start Time (s)	0	21	0	21	35
Local Yield (s)	16	70	16	30	70
Local Yield 170(s)	16	59	16	30	59
Intersection Summary					
Cycle Length			75		
Control Type	Actuate	ed-Uncoo	rdinated		
Natural Cycle			60		

Splits and Phases: 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

	ø4	
21 s	54 s	
ø6	▶ _{ø7}	€ φ 8
21 s	14 s	40 s

1/22/2021

HCM Signalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/27/2021

	≯	→	$\mathbf{\hat{z}}$	4	+	•	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44		5	≜ 1≽			đ þ	
Volume (vph)	98	1	67	0	0	0	23	538	0	2	1108	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-6%			1%			-1%	
Total Lost time (s)		5.0					5.0	5.0			5.0	
Lane Util. Factor		1.00					1.00	0.95			0.95	
Frt		0.93					1.00	1.00			0.99	
Flt Protected		0.98					0.95	1.00			1.00	
Satd. Flow (prot)		1615					1796	3326			3452	
Flt Permitted		0.85					0.12	1.00			0.95	
Satd. Flow (perm)		1403					219	3326			3288	
Peak-hour factor, PHF	0.94	0.25	0.60	0.90	0.90	0.90	0.33	0.85	0.90	0.25	0.78	0.38
Adj. Flow (vph)	104	4	112	0	0	0	70	633	0	8	1421	145
RTOR Reduction (vph)	0	29	0	0	0	0	0	0	0	0	11	0
Lane Group Flow (vph)	0	191	0	0	0	0	70	633	0	0	1563	0
Heavy Vehicles (%)	3%	0%	0%	0%	0%	0%	0%	8%	0%	0%	4%	0%
Turn Type	Perm	NA					Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		12.2					34.5	34.5			34.5	
Effective Green, g (s)		12.2					34.5	34.5			34.5	
Actuated g/C Ratio		0.22					0.61	0.61			0.61	
Clearance Time (s)		5.0					5.0	5.0			5.0	
Vehicle Extension (s)		3.0					3.0	3.0			3.0	
Lane Grp Cap (vph)		301					133	2023			2000	
v/s Ratio Prot								0.19				
v/s Ratio Perm		c0.14					0.32				c0.48	
v/c Ratio		0.63					0.53	0.31			0.78	
Uniform Delay, d1		20.2					6.4	5.4			8.3	
Progression Factor		1.00					1.00	1.00			1.00	
Incremental Delay, d2		4.3					3.7	0.1			2.1	
Delay (s)		24.6					10.1	5.5			10.3	
Level of Service		С					В	А			В	
Approach Delay (s)		24.6			0.0			5.9			10.3	
Approach LOS		С			А			А			В	
Intersection Summary												
HCM 2000 Control Delay			10.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.74									
Actuated Cycle Length (s)			56.7	S	um of lost	time (s)			10.0			
Intersection Capacity Utilization	n		51.7%	IC	CU Level of	of Service			А			
Analysis Period (min)			15									

Timing Report, Sorted By Phase

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/27/2021

		4	4	\mathbf{T}	
Phase Number	2	4	6	8	
Movement	NBTL	EBTL	SBTL	WBTL	
Lead/Lag					
Lead-Lag Optimize					
Recall Mode	Min	None	Min	None	
Maximum Split (s)	39	21	39	21	
Maximum Split (%)	65.0%	35.0%	65.0%	35.0%	
Minimum Split (s)	21	21	21	21	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	1	1	1	1	
Minimum Initial (s)	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	5	5	5	5	
Flash Dont Walk (s)	11	11	11	11	
Dual Entry	Yes	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	0	39	0	39	
End Time (s)	39	0	39	0	
Yield/Force Off (s)	34	55	34	55	
Yield/Force Off 170(s)	34	44	34	44	
Local Start Time (s)	0	39	0	39	
Local Yield (s)	34	55	34	55	
Local Yield 170(s)	34	44	34	44	
Intersection Summary					
Cycle Length			60		
Control Type	Actuate	ed-Uncoo	rdinated		
Natural Cycle			60		
Splits and Phases: 10: A	ndrew Johr	nson Hiah	iwav & No	orth Ruaa	les Ferry Pike (West Side)/Private Driveway
		<u>.</u>			

	<u>↓</u> _{ø4}
39 s	21 s
ø6	4 Ø8
39 s	21 s

HCM Signalized Intersection Capacity Analysis 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

2/27/2021

	≯	-	\mathbf{r}	1	-	•	1	†	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	A			4îÞ			\$			\$	
Volume (vph)	167	657	2	0	1497	9	0	0	0	4	0	377
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Grade (%)		-2%			4%			8%			-8%	
Total Lost time (s)	5.0	5.0			5.0						5.0	
Lane Util. Factor	1.00	0.95			0.95						1.00	
Frt	1.00	1.00			1.00						0.87	
Flt Protected	0.95	1.00			1.00						1.00	
Satd. Flow (prot)	1770	3438			3398						1535	
Flt Permitted	0.07	1.00			1.00						1.00	
Satd. Flow (perm)	124	3438			3398						1531	
Peak-hour factor, PHF	0.66	0.82	0.50	0.90	0.84	0.58	0.90	0.90	0.90	0.38	0.90	0.71
Adj. Flow (vph)	253	801	4	0	1782	16	0	0	0	11	0	531
RTOR Reduction (vph)	0	0	0	0	1	0	0	0	0	0	151	0
Lane Group Flow (vph)	253	805	0	0	1798	0	0	0	0	0	391	0
Heavy Vehicles (%)	3%	6%	0%	0%	4%	0%	0%	0%	0%	0%	0%	8%
Turn Type	pm+pt	NA			NA					Perm	NA	
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	72.0	72.0			55.0						28.0	
Effective Green, g (s)	72.0	72.0			55.0						28.0	
Actuated g/C Ratio	0.65	0.65			0.50						0.25	
Clearance Time (s)	5.0	5.0			5.0						5.0	
Vehicle Extension (s)	3.0	3.0			3.0						3.0	
Lane Grp Cap (vph)	260	2250			1699						389	
v/s Ratio Prot	c0.11	0.23			c0.53							
v/s Ratio Perm	0.53										c0.26	
v/c Ratio	0.97	0.36			1.06						1.01	
Uniform Delay, d1	36.5	8.6			27.5						41.0	
Progression Factor	1.00	1.00			1.00						1.00	
Incremental Delay, d2	48.0	0.1			39.0						47.2	
Delay (s)	84.5	8.7			66.5						88.2	
Level of Service	F	А			E						F	
Approach Delay (s)		26.8			66.5			0.0			88.2	
Approach LOS		С			E			А			F	
Intersection Summary												
HCM 2000 Control Delay			57.6	Н	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capa	acity ratio		1.03									
Actuated Cycle Length (s)			110.0	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	ation		95.9%	IC	CU Level	of Service			F			
Analysis Period (min)			15									

Timing Report, Sorted By Phase 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

1	4	₽	≯	¥
2	4	6	7	8
NBTL	EBTL	SBTL	EBL	WBTL
			Lead	Lag
			Yes	Yes
Min	None	Min	None	None
33	77	33	17	60
30.0%	70.0%	30.0%	15.5%	54.5%
21	21	21	9	21
4	4	4	4	4
1	1	1	1	1
4	4	4	4	4
3	3	3	3	3
3	3	3	3	3
0	0	0	0	0
0	0	0	0	0
5	5	5		5
11	11	11		11
Yes	Yes	Yes	No	Yes
Yes	Yes	Yes	Yes	Yes
0	33	0	33	50
33	0	33	50	0
28	105	28	45	105
28	94	28	45	94
0	33	0	33	50
28	105	28	45	105
28	94	28	45	94
		110		
Actuate	d-Uncoo	rdinated		
		110		
	2 NBTL Min 33 30.0% 21 4 1 4 1 4 3 3 0 0 0 5 11 1 Yes Yes 0 33 28 28 0 33 28 28 0 28 28 28 0 28 28	2 4 NBTL EBTL NBTL EBTL Min None 33 77 30.0% 70.0% 21 21 4 4 1 1 4 4 3 3 0 0 0 0 0 0 5 5 11 11 Yes Yes Yes Yes Yes Yes 0 33 33 0 28 94 0 33 28 94 0 33 28 94	2 4 6 NBTL EBTL SBTL Min None Min 33 77 33 30.0% 70.0% 30.0% 21 21 21 4 4 4 1 1 1 4 4 4 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 11 11 11 Yes Yes Yes Yes Yes Yes Yes Yes Yes 0 33 0 33 28 105 28 28 94 28 28 94 28 28 94 28 28 94 28 28 94 28 28 94 28 28 94	2 4 6 7 NBTL EBTL SBTL EBL Lead Yes Min None Min None 33 77 33 17 30.0% 70.0% 30.0% 15.5% 21 21 21 9 4 4 4 4 1 1 1 1 4 4 4 4 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 11 11 11 1 Yes Yes Yes No 0 0 0 0 0 11 11 11 1 1 Yes Yes Yes No 3 11 11 11 1 1 Yes Yes Yes Yes No Yes Yes Yes <td< td=""></td<>

Splits and Phases: 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

√ <i>ø</i> 2	ø4		
33 s	77 s		
ø6	▶ ø7	₩ ø8	
33 s	17 s	60 s	

2/27/2021

HCM Signalized Intersection Capacity Analysis

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/27/2021

	≯	→	$\mathbf{\hat{z}}$	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4.		5	≜1 5			416	
Volume (vph)	108	1	58	4	1	13	40	1364	0	11	789	104
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	12	12	12	12	12	12	12	12	12
Grade (%)		4%			-6%			1%			-1%	
Total Lost time (s)		5.0			5.0		5.0	5.0			5.0	
Lane Util. Factor		1.00			1.00		1.00	0.95			0.95	
Frt		0.94			0.90		1.00	1.00			0.98	
Flt Protected		0.97			0.99		0.95	1.00			1.00	
Satd. Flow (prot)		1647			1748		1796	3522			3397	
Flt Permitted		0.81			0.94		0.22	1.00			0.89	
Satd. Flow (perm)		1377			1660		417	3522			3025	
Peak-hour factor, PHF	0.94	0.25	0.60	0.75	0.25	0.50	0.40	0.93	0.90	0.40	0.89	0.58
Adj. Flow (vph)	115	4	97	5	4	26	100	1467	0	28	887	179
RTOR Reduction (vph)	0	53	0	0	21	0	0	0	0	0	25	0
Lane Group Flow (vph)	0	163	0	0	14	0	100	1467	0	0	1069	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	5%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		10.9			10.9		31.3	31.3			31.3	
Effective Green, g (s)		10.9			10.9		31.3	31.3			31.3	
Actuated g/C Ratio		0.21			0.21		0.60	0.60			0.60	
Clearance Time (s)		5.0			5.0		5.0	5.0			5.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0			3.0	
Lane Grp Cap (vph)		287			346		250	2111			1813	
v/s Ratio Prot								c0.42				
v/s Ratio Perm		c0.12			0.01		0.24				0.35	
v/c Ratio		0.57			0.04		0.40	0.69			0.59	
Uniform Delay, d1		18.5			16.5		5.5	7.2			6.5	
Progression Factor		1.00			1.00		1.00	1.00			1.00	
Incremental Delay, d2		2.6			0.0		1.1	1.0			0.5	
Delay (s)		21.1			16.5		6.6	8.2			7.0	
Level of Service		С			В		A	A			A	
Approach Delay (s)		21.1			16.5			8.1			7.0	
Approach LOS		С			В			A			A	
Intersection Summary												
HCM 2000 Control Delay			8.7	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacity	y ratio		0.66									
Actuated Cycle Length (s)			52.2	S	um of lost	time (s)			10.0			
Intersection Capacity Utilizatio	n		62.3%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

Timing Report, Sorted By Phase

10: Andrew Johnson Highway & North Ruggles Ferry Pike (West Side)/Private Driveway2/27/2021

		4	-4-	-					
Phase Number	2	4	6	8					
Movement	NBTL	EBTL	SBTL	WBTL					
Lead/Lag									
Lead-Lag Optimize									
Recall Mode	Min	None	Min	None					
Maximum Split (s)	39	21	39	21					
Maximum Split (%)	65.0%	35.0%	65.0%	35.0%					
Minimum Split (s)	21	21	21	21					
Yellow Time (s)	4	4	4	4					
All-Red Time (s)	1	1	1	1					
Minimum Initial (s)	4	4	4	4					
Vehicle Extension (s)	3	3	3	3					
Minimum Gap (s)	3	3	3	3					
Time Before Reduce (s)	0	0	0	0					
Time To Reduce (s)	0	0	0	0					
Walk Time (s)	5	5	5	5					
Flash Dont Walk (s)	11	11	11	11					
Dual Entry	Yes	Yes	Yes	Yes					
Inhibit Max	Yes	Yes	Yes	Yes					
Start Time (s)	0	39	0	39					
End Time (s)	39	0	39	0					
Yield/Force Off (s)	34	55	34	55					
Yield/Force Off 170(s)	34	44	34	44					
Local Start Time (s)	0	39	0	39					
Local Yield (s)	34	55	34	55					
Local Yield 170(s)	34	44	34	44					
Intersection Summary									
Cycle Length			60						
Control Type	Actuate	ed-Uncoo	rdinated						
Natural Cycle			60						
Splits and Dhasas 10. A	ndrow John	oon Ulah	WOV 0 NL	orth Dugal		Noct Sic	rry Dika (Wast Sida)/Drivata Driva	my Dike (Mest Side)/Drivete Driveway	nry Dika (Maat Sida)/Drivata Drivaway
Splits and Phases: 10: Al	nurew Johr	ISUII HIGN	iway & NO	nin kuggi	es rer	ry Pike (west Sit	ry Pike (west Side)/Private Drive	ry Pike (West Side)/Private Driveway	ry Pike (West Side)/Private Driveway
							2	2.	2.

	→ _{ø4}	
39 s	21 s	
ø6	₩ ø8	
39 s	21 s	

HCM Signalized Intersection Capacity Analysis	
3: Private Driveway/North Ruggles Ferry Pike & Ashev	ille Highway

2/27/2021

	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	≜ 1₽			đ þ			4			4	
Volume (vph)	387	1578	8	2	946	7	6	1	4	1	0	136
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	12	12	12	11	11	11	11	11	11
Grade (%)		-2%			4%			8%			-8%	
Total Lost time (s)	4.0	5.0			5.0			5.0			5.0	
Lane Util. Factor	1.00	0.95			0.95			1.00			1.00	
Frt	1.00	1.00			1.00			0.95			0.87	
Flt Protected	0.95	1.00			1.00			0.98			1.00	
Satd. Flow (prot)	1720	3569			3431			1651			1537	
Flt Permitted	0.10	1.00			0.94			0.65			0.99	
Satd. Flow (perm)	174	3569			3220			1092			1526	
Peak-hour factor, PHF	0.91	0.94	0.38	0.25	0.78	0.63	1.00	0.25	0.75	0.25	0.90	0.91
Adj. Flow (vph)	425	1679	21	8	1213	11	6	4	5	4	0	149
RTOR Reduction (vph)	0	1	0	0	1	0	0	5	0	0	136	0
Lane Group Flow (vph)	425	1699	0	0	1231	0	0	10	0	0	17	0
Heavy Vehicles (%)	6%	2%	0%	0%	3%	0%	0%	0%	0%	0%	0%	8%
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	65.5	65.5			38.1			7.5			7.5	
Effective Green, g (s)	65.5	65.5			38.1			7.5			7.5	
Actuated g/C Ratio	0.79	0.79			0.46			0.09			0.09	
Clearance Time (s)	4.0	5.0			5.0			5.0			5.0	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	573	2816			1478			98			137	
v/s Ratio Prot	c0.21	0.48										
v/s Ratio Perm	0.38				c0.38			0.01			c0.01	
v/c Ratio	0.74	0.60			0.83			0.11			0.13	
Uniform Delay, d1	19.5	3.5			19.7			34.7			34.7	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	5.1	0.4			4.2			0.5			0.4	
Delay (s)	24.6	3.9			23.9			35.2			35.2	
Level of Service	С	А			С			D			D	
Approach Delay (s)		8.0			23.9			35.2			35.2	
Approach LOS		А			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.73									
Actuated Cycle Length (s)			83.0	S	um of lost	time (s)			14.0			
Intersection Capacity Utiliza	tion		91.3%	IC	CU Level o	of Service	;		F			
Analysis Period (min)			15									

	N	4	-4-	≯	\mathbf{T}	
Phase Number	2	4	6	7	8	
Movement	NBTL	EBTL	SBTL	EBL	WBTL	
Lead/Lag				Lead	Lag	
Lead-Lag Optimize				Yes	Yes	
Recall Mode	Min	None	Min	None	None	
Maximum Split (s)	22	88	22	30	58	
Maximum Split (%)	20.0%	80.0%	20.0%	27.3%	52.7%	
Minimum Split (s)	21	21	21	8	21	
Yellow Time (s)	4	4	4	3.5	4	
All-Red Time (s)	1	1	1	0.5	1	
Minimum Initial (s)	4	4	4	4	4	
Vehicle Extension (s)	3	3	3	3	3	
Minimum Gap (s)	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	
Walk Time (s)	5	5	5		5	
Flash Dont Walk (s)	11	11	11		11	
Dual Entry	Yes	Yes	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	22	0	22	52	
End Time (s)	22	0	22	52	0	
Yield/Force Off (s)	17	105	17	48	105	
Yield/Force Off 170(s)	17	94	17	48	94	
Local Start Time (s)	0	22	0	22	52	
Local Yield (s)	17	105	17	48	105	
Local Yield 170(s)	17	94	17	48	94	
Intersection Summary						
Cycle Length			110			
Control Type	Actuate	ed-Uncool	rdinated			
Natural Cycle			80			

Splits and Phases: 3: Private Driveway/North Ruggles Ferry Pike & Asheville Highway

✓ ø2	→ _{ø4}	
22 s	88 s	
ø6	▶ ø7	€ ø8
22 s	30 s	58 s

APPENDIX G

ITE TRIP GENERATION RATES

Land Use: 210 Single-Family Detached Housing

Description

Single-family detached housing includes all single-family detached homes on individual lots. A typical site surveyed is a suburban subdivision.

Additional Data

The number of vehicles and residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it was usually readily available, easy to project, and had a high correlation with average weekday vehicle trip ends.

This land use included data from a wide variety of units with different sizes, price ranges, locations, and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Single-family detached units had the highest trip generation rate per dwelling unit of all residential uses because they were the largest units in size and had more residents and more vehicles per unit than other residential land uses; they were generally located farther away from shopping centers, employment areas, and other trip attractors than other residential land uses; and they generally had fewer alternative modes of transportation available because they were typically not as concentrated as other residential land uses.

Time-of-day distribution data for this land use are presented in Appendix A. For the six general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:15 and 8:15 a.m. and 4:00 and 5:00 p.m., respectively. For the two sites with Saturday data, the overall highest vehicle volume was counted between 3:00 and 4:00 p.m. For the one site with Sunday data, the overall highest vehicle volume was counted between 10:15 and 11:15 a.m.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in California, Connecticut, Delaware, Illinois, Indiana, Maryland, Minnesota, Montana, New Jersey, North Carolina, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, and Virginia.

Source Numbers

100, 105, 114, 126, 157, 167, 177, 197, 207, 211, 217, 267, 275, 293, 300, 319, 320, 356, 357, 367, 384, 387, 407, 435, 522, 550, 552, 579, 598, 601, 603, 614, 637, 711, 716, 720, 728, 735, 868, 903, 925, 936

1

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units On a: Weekday

	Setting/Location:	General Urban/Suburba	า
	Number of Studies:	159	
Avg.	Num. of Dwelling Units:	264	
	Directional Distribution:	50% entering, 50% exiting	
Vehicle Trip Generat	ion per Dwelling U	nit	
Average Rate	Range of	fRates	Standard Deviation

4.81 - 19.39

Data Plot and Equation

9.44

2 Trip Generation Manual 10th Edition • Volume 2: Data • Residential (Land Uses 200-299)

2.10

Single-Family Detached Housing (210)

Vehic	e Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent S One Hour Between 7 an	treet Traffic, d 9 a.m.
S	etting/Location:	General Urban/Suburba	n
Nu	mber of Studies:	173	
Avg. Num. d	of Dwelling Units:	219	
Directi	onal Distribution:	25% entering, 75% exiting	
Vehicle Trip Generation p	er Dwelling U	nit	
	5		

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

Data Plot and Equation

3

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	190
Avg. Num. of Dwelling Units:	242
Directional Distribution:	63% entering, 37% exiting
Vehicle Trip Generation per Dwelling U	nit

Average Rate	Range of Rates	Standard Deviation
0.99	0.44 - 2.98	0.31

Data Plot and Equation

4 Trip Generation Manual 10th Edition • Volume 2: Data • Residential (Land Uses 200-299)

TRIP GENERATION FOR INNSBRUCK FARMS SUBDIVISION

482 Single-Family Detached Houses

				GI	ENERATE	D	GENERATED		
			GENERATED		TRAFFIC			TRAFFIC	
ITE LAND	LAND USE	UNITS	DAILY	AM	PEAK HC	OUR	PM	РЕАК НО	UR
USE CODE	DESCRIPTION		TRAFFIC						
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
	Single-Family			25%	75%		63%	37%	
#210	Detached Housing	482 Houses	4,420	87	261	348	290	170	460
То	tal New Volume Site	e Trips	4,420	87	261	348	290	170	460

ITE Trip Generation Manual, 10th Edition

Trips calculated by using Fitted Curve Equation

TRIP GENERATION FOR INNSBRUCK FARMS SUBDIVISION

482 Single-Family Detached Houses

482 Residential Houses = X

<u>Weekday:</u>

		4,420 mps			
	Т =	4 420 trips			
	Ln(T) =	8.39			
	Ln(T) =	0.92 *	6.18	+	2.71
Fitted Curve Equation:	Ln(T) ·	= 0.92 Ln(X) + 2	2.71		

Peak Hour of Adjacent Traffic between 7 and 9 am:

Т=	0 71 * 482	+ 480
-		1.00
T =	348 trips	

Peak Hour of Adjacent Traffic between 4 and 6 pm:

Fitted Curve Equation: Ln(T) = 0.96 Ln(X) + 0.2 Ln(T) = 0.96 * 6.18 + 0.20 Ln(T) = 6.13<u>T = 460 trips</u>

APPENDIX H

KNOX COUNTY TURN LANE VOLUME THRESHOLD WORKSHEETS

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

OPPOSING	THROU	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME 88 + 37= 125	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399			
100 - 149 150 - 199	250 200	180 140	140 105	110 90	80 70	70 60			
200 - 249 250 - 299	160 130	North Ruggl Pike at Roa	North Ruggles Ferry Pike at Road "A" 2028 Projected AM EB Left Turns = 20		65 60	55 50			
300 - 349 350 - 399	110 100	2028 Project			55 50	45 40			
400 - 449 450 - 499	90 80	EB Left Tur			45 40	35 30			
500 - 549 550 - 599	70 , 65	Warran	Warranted	35 35	35 30	25 25			
600 - 649 650 - 699	60 55	45 35	35 35	30 30	25 25	25 20			
700 - 749 750 or More	50 45	35 35	30 25	25 25	20 20	20 20			

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN	VOLUME	<u>;</u> *	
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ >600	
100 - 149	70	60	50	45	40	35	
150 - 199	60	55	45	40	35	30	
200 - 249	55	50	40	35	30	30	
250 - 299	50	45	35	30	30	30	
300 - 349	45	40	35	30	25	25	
350 - 399	40	35	30	25	25	20	
400 - 449	35	30	30	25	20	20	
450 - 499	30	25	25	20	20	20	
500 - 549	25	25	20	20	20	15	
550 - 599	25	20	20	20	20	15	
600 - 649	25	20	20	20	20	15	
650 - 699	20	20	20	20	20	15	
700 - 749	20	20	20	15	15	15	
750 or More	20	20	20	15	15	15	

* Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	88 THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
Fewer Than 25 25 - 49 50 - 99	→	North Bussles E						
100 - 149 150 - 199		Pike at Road "	A"					
200 - 249 250 - 299		2028 Projected A WB Right Turns	AM = 37		Yes	Yes Yes		
300 - 349 350 - 399		Right Turn Lane Warranted	NOT	Yes Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499	100 B 100	Yes	Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600		
Fewer Than 25 25 - 49 50 - 99		8		Yes	Yes Yes	Yes Yes		
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 ar More	Yes	Yes	Yes	Yes	Yes	Yes		

* Or through volume only if a left-turn lane exists.

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME 66 + 72 = 138	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399			
100 - 149 150 - 199	250 200	180 140	140 105	110 90	80 70	70 60			
200 - 249 250 - 299	160 130	North Rugg	les Ferry	75 65	65 60	55 50			
300 - 349 350 - 399	110 100	2028 Projec	ted PM	60 55	55 50	45 40			
400 - 449 450 - 499	90 80	EB Left Turn La	EB Left Turns = 122 Left Turn Lane NOT Warranted		45 40	35 30			
500 - 549 550 - 599	70 , 65	Warran			35 30	25 25			
600 - 649 650 - 699	60 55	45 35	35 35	30 30	25 25	25 20			
700 - 749 750 or More	50 45	35 35	30 25	25 25	20 20	20 20			

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN	VOLUME	E *	
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600	
100 - 149	70	60	50	45	40	35	
150 - 199	60	55	45	40	35	30	
200 - 249	55	50	40	35	30	30	
250 - 299	50	45	35	30	30	30	
300 - 349	45	40	35	30	25	25	
350 - 399	40	35	30	25	25	20	
400 - 449	35	30	30	25	20	20	
450 - 499	30	25	25	20	20	20	
500 - 549	25	25	20	20	20	15	
550 - 599	25	20	20	20	20	15	
600 - 649	25	20	20	20	20	15	
650 - 699	20	20	20	20	20	15	
700 - 749	20	20	20	15	15	15	
750 or More	20	20	20	15	15	15	

* Or through volume only if a right-turn lane exists

A-6
TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	THR	DUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	} ¥€
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199		North Rugg Pike at Ro	gles Ferry bad "A"			
200 - 249 250 - 299		2028 Projec WB Right T	cted PM urns = 66		Yes	Yes Yes
300 - 349 350 - 399		Right Turn I	Lane NOT	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499		Yes	Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599 *	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLU	ME PLUS LI	EFT-TURN	VOLUM	E *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
Fewer Than 25 25 - 49 50 - 99		8		Yes	Yes Yes	Yes Yes
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 ar More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN	OLUME	*
20 + 62 = 82	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
100 - 149	250	180	140	110	80	70
150 - 199	200	140	105	90	70	60
200 - 249 250 - 299	160 130	North Ruggles Ferry Pike at Blake Lane/ Road "Q"		75 65	65 60	55 50
300 - 349 350 - 399	110 100			60 55	55 50	45 40
400 - 449	90	2028 Projec	ted AM	50	45	35
450 - 499	80	EB Left Tur	rns = 10	45	40	30
500 - 549	70	Left Turn La	ted	35	35	25
550 - 599	, 65	Warran		35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749	50	35	30	25	20	20
750 or More	45	35	25	25	20	20

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600	
100 - 149	70	60	50	45	40	35	
150 - 199	60	55	45	40	35	30	
200 - 249	55	50	40	35	30	30	
250 - 299	50	45	35	30	30	30	
300 - 349	45	40	35	30	25	25	
350 - 399	40	35	30	25	25	20	
400 - 449	35	30	30	25	20	20	
450 - 499	30	25	25	20	20	20	
500 - 549	25	25	20	20	20	15	
550 - 599	25	20	20	20	20	15	
600 - 649	25	20	20	20	20	15	
650 - 699	20	20	20	20	20	15	
700 - 749	20	20	20	15	15	15	
750 or More	20	20	20	15	15	15	

* Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	62 THR	62 THROUGH VOLUME PLUS LI			VOLUME	*
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99		North Buggles				
100 - 149 150 - 199		Pike at Blake La Road "Q"	ane/			
200 - 249 250 - 299		2028 Projected WB Right Turns	AM		Yes	Yes Yes
300 - 349 350 - 399		Right Turn Lane	NOT Jes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	100 B 100	Yes	Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLU	ME PLUS LI	EFT-TURN	VOLUM	E *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
Fewer Than 25 25 - 49 50 - 99		8		Yes	Yes Yes	Yes Yes
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 ar More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

OPPOSING	THROU	JGH VOLUME PL	US RIGH	T-TURN	OLUME	*
VOLUME 37 + 117 = 154	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
100 - 149	2.0	180	140	110	80	70
150 - 199		140	105	90	70	60
200 - 249	160	North Ruggles Ferr	y 85	75	65	55
250 - 299	130	Bike at Blake Lane	75	65	60	50
300 - 349	110	Road "Q"	70	60	55	45
350 - 399	100		65	55	50	40
400 - 449	90	2028 Projected PM	8 60	50	45	35
450 - 499	80	EB Left Turns = 6	55	45	40	30
500 - 549	70	Left Turn Lane NO	T 45	35	35	25
550 - 599	, 65	Warranted	40	35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749	50	35	30	25	20	20
750 or More	45	35	25	25	20	20

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600		
100 - 149	70	60	50	45	40	35		
150 - 199	60	55	45	40	35	30		
200 - 249	55	50	40	35	30	30		
250 - 299	50	45	35	30	30	30		
300 - 349	45	40	35	30	25	25		
350 - 399	40	35	30	25	25	20		
400 - 449	35	30	30	25	20	20		
450 - 499	30	25	25	20	20	20		
500 - 549	25	25	20	20	20	15		
550 - 599	25	20	20	20	20	15		
600 - 649	25	20	20	20	20	15		
650 - 699	20	20	20	20	20	15		
700 - 749	20	20	20	15	15	15		
750 or More	20	20	20	15	15	15		

* Or through volume only if a right-turn lane exists

TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	THR	DUGH VOLUM	E PLUS LEI	T-TURN	VOLUME	. *
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199		North Rugg Pike at Blak	les Ferry e Lane/			
200 - 249 250 - 299		Road " 2028 Projec	Q"		Yes	Yes Yes
300 - 349 350 - 399		WB Right Tu	rms = 37	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	· · · · · · · · · · · · · · · · · · ·	Warran	ted	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLU	ME PLUS LI	EFT-TURN	VOLUM	E *
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600
Fewer Than 25 25 - 49 50 - 99		8		Yes	Yes Yes	Yes Yes
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 ar More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

APPENDIX I

MUTCD TRAFFIC SIGNAL WARRANT WORKSHEETS

Project Name	Innsbruck Farms Subdivision
Project/File #	#2016
Scenario	2021 - Existing Traffic Volumes (+20%)

Intersection Information						
Major Street Name	Asheville Highway					
North/South or East/West	E/W					
Speed Limit > 40 mph	Yes					
# of Approach Lanes	2 or more					
% of Right Turn Traffic to Include	100%					
Minor Street Name	North Ruggles Ferry Pike					
# of Approach Lanes	1					
% of Right Turn Traffic to Include	100%					
Isolated Community < 10,000 pop	No					

Additional Warrants to Consider		
Warrant 3, Peak Hour (A - Volume and Delay)	No	
All-Way Stop Warrant	No	

Asheville Highway (Major Street) Volume

Eastbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	124	595	2	
8 - 9 AM	50	486	7	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	71	570	17	
12 - 1 PM	79	638	11	
1 - 2 PM				
2 - 3 PM	143	773	16	
3 - 4 PM	151	1073	22	
4 - 5 PM	150	1309	18	
5 - 6 PM	157	1357	2	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	7,821	0

Westbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	1,355	8	
8 - 9 AM	0	937	2	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	2	666	2	
12 - 1 PM	6	703	4	
1 - 2 PM				
2 - 3 PM	4	731	1	
3 - 4 PM	4	814	6	
4 - 5 PM	1	892	11	
5 - 6 PM	4	898	4	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 7,055 0				

North Ruggles Ferry Pike (Minor Street) Volume

Northbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	0	0	
8 - 9 AM	0	1	1	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	8	0	7	
12 - 1 PM	4	0	6	
1 - 2 PM				
2 - 3 PM	5	0	6	
3 - 4 PM	7	0	11	
4 - 5 PM	5	1	7	
5 - 6 PM	5	0	2	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	76	0

Southbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	4	0	188	
8 - 9 AM	1	2	109	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	0	0	42	
12 - 1 PM	0	0	70	
1 - 2 PM				
2 - 3 PM	0	0	104	
3 - 4 PM	0	0	91	
4 - 5 PM	0	1	78	
5 - 6 PM	1	0	74	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 765			0	

Warrants 1 - 3 (Volume Warrants)

Project Name	Innsbruck Farms Subdivision		
Project/File #	#2016		
Scenario	2021 - Existing Traffic Volumes (+20%)		

Intersection Information			
Major Street (E/W Road)	Asheville Highway	Minor Street (N/S Road)	North Ruggles Ferry Pike
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	14876 vehicles	Total Approach Volume	841 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Reduction applied to warrant thresholds due to high speed on Asheville Highway

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not satisfied	Not satisfied	Not satisfied	
Required values reached for	2 hours	7 hours	4 (Cond. A) & 8 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

* Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume			
Condition Satisfied?	Satisfied		
Required values reached for	7 hours		
Criteria	See Figure Below		

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Examined	Satisfied
Required values reached for		6 hours
Criteria - Total Approach Volume (veh in one hour)		
Criteria - Minor Street High Side Volume (veh in one hour)		See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)		

Project Name	Innsbruck Farms Subdivision
Project/File #	#2016
Scenario	2021 - Existing Traffic Volumes (+20%)

Intersection Information		
Major Street Name	Andrew Johnson Highway	
North/South or East/West	N/S	
Speed Limit > 40 mph	Yes	
# of Approach Lanes	2 or more	
% of Right Turn Traffic to Include	100%	
Minor Street Name	North Ruggles Ferry Pike (West Side)	
# of Approach Lanes	1	
% of Right Turn Traffic to Include	100%	
Isolated Community < 10,000 pop	No	

Additional Warrants to Consider		
Warrant 3, Peak Hour (A - Volume and Delay)	Yes	
All-Way Stop Warrant	No	

Andrew Johnson Highway (Major Street) Volume

Northbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	5	439	0	
8 - 9 AM	5	420	0	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	11	456	0	
12 - 1 PM	17	511	2	
1 - 2 PM				
2 - 3 PM	12	586	2	
3 - 4 PM	16	918	0	
4 - 5 PM	17	1073	1	
5 - 6 PM	11	1180	0	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	5,682	0

Southbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	1,072	12	
8 - 9 AM	4	678	13	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	7	508	14	
12 - 1 PM	11	552	11	
1 - 2 PM				
2 - 3 PM	7	613	16	
3 - 4 PM	12	650	25	
4 - 5 PM	12	706	25	
5 - 6 PM	6	706	29	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 5,689		0		

North Ruggles Ferry Pike (West Side) (Minor Street) Volume

Eastbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	28	0	23	
8 - 9 AM	30	1	7	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	7	2	4	
12 - 1 PM	14	2	11	
1 - 2 PM				
2 - 3 PM	19	1	12	
3 - 4 PM	24	4	12	
4 - 5 PM	31	2	13	
5 - 6 PM	36	1	14	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 298			0	

Westbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	0	0	
8 - 9 AM	1	0	2	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	7	2	5	
12 - 1 PM	4	1	7	
1 - 2 PM				
2 - 3 PM	2	1	12	
3 - 4 PM	0	2	16	
4 - 5 PM	5	1	12	
5 - 6 PM	5	2	16	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total Vehicles (unadjusted) 103			0	

Warrants 1 - 3 (Volume Warrants)

Project Name	Innsbruck Farms Subdivision
Project/File #	#2016
Scenario	2021 - Existing Traffic Volumes (+20%)

Intersection Information			
Major Street (N/S Road)	Andrew Johnson Highway	Minor Street (E/W Road)	North Ruggles Ferry Pike (West Side)
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	11371 vehicles	Total Approach Volume	401 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Reduction applied to warrant thresholds due to high speed on Andrew Johnson Highway

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not satisfied	Not satisfied	Not satisfied
Required values reached for	0 hours	0 hours	0 (Cond. A) & 3 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

* Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not satisfied	
Required values reached for	0 hours	
Criteria	See Figure Below	

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Satisfied	Not Satisfied
Required values reached for	799 total, 150 minor, 6.3 delay	0 hours
Criteria - Total Approach Volume (veh in one hour)	650	
Criteria - Minor Street High Side Volume (veh in one hour)	150	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	5	

Project Name	Innsbruck Farms Subdivision
Project/File #	#2016
Scenario	2022 - Projected Traffic Volumes (with Project)

Intersection Information		
Major Street Name	Andrew Johnson Highway	
North/South or East/West	N/S	
Speed Limit > 40 mph	Yes	
# of Approach Lanes	2 or more	
% of Right Turn Traffic to Include	100%	
Minor Street Name	North Ruggles Ferry Pike (West Side)	
# of Approach Lanes	1	
% of Right Turn Traffic to Include	100%	
Isolated Community < 10,000 pop	No	

Additional Warrants to Consid	ler
Warrant 3, Peak Hour (A - Volume and Delay)	No
All-Way Stop Warrant	No

Andrew Johnson Highway (Major Street) Volume

Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	7	466	0	
8 - 9 AM	7	426	0	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	13	463	0	
12 - 1 PM	19	519	2	
1 - 2 PM				
2 - 3 PM	15	595	2	
3 - 4 PM	19	932	0	
4 - 5 PM	21	1089	1	
5 - 6 PM	15	1198	0	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	5,809	0

Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	1,088	17	
8 - 9 AM	4	688	18	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	7	516	19	
12 - 1 PM	11	560	16	
1 - 2 PM				
2 - 3 PM	7	622	23	
3 - 4 PM	12	660	33	
4 - 5 PM	12	717	34	
5 - 6 PM	6	717	39	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total V	ehicles (unad	justed)	5,826	0

North Ruggles Ferry Pike (West Side) (Minor Street) Volume

	Eastbou	nd Volume by	/ Hour	
Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	64	0	50	
8 - 9 AM	63	1	31	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	42	2	26	
12 - 1 PM	54	2	36	
1 - 2 PM				
2 - 3 PM	50	1	32	
3 - 4 PM	60	4	34	
4 - 5 PM	73	2	39	
5 - 6 PM	83	1	43	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total	Vehicles (unadju	usted)	793	0

Time	Left Turns	Through	Right Turns	Peds/Bikes
12 - 1 AM				
1 - 2 AM				
2 - 3 AM				
3 - 4 AM				
4 - 5 AM				
5 - 6 AM				
6 - 7 AM				
7 - 8 AM	0	0	0	
8 - 9 AM	1	0	2	
9 - 10 AM				
10 - 11 AM				
11 - 12 PM	8	2	6	
12 - 1 PM	4	1	8	
1 - 2 PM				
2 - 3 PM	2	1	13	
3 - 4 PM	0	2	18	
4 - 5 PM	6	1	13	
5 - 6 PM	6	2	18	
6 - 7 PM				
7 - 8 PM				
8 - 9 PM				
9 - 10 PM				
10 - 11 PM				
11 - 12 AM				
Total V	ehicles (unad	justed)	114	0

Warrants 1 - 3 (Volume Warrants)

Project Name	Innsbruck Farms Subdivision
Project/File #	#2016
Scenario	2022 - Projected Traffic Volumes (with Project)

	Intersecti	on Information	
Major Street (N/S Road)	Andrew Johnson Highway	Minor Street (E/W Road)	North Ruggles Ferry Pike (West Side)
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	11635 vehicles	Total Approach Volume	907 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Reduction applied to warrant thresholds due to high speed on Andrew Johnson Highway

	Warrant 1, Eight I	Hour Vehicular Volume	
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not satisfied	Satisfied	Not satisfied
Required values reached for	3 hours	8 hours	6 (Cond. A) & 8 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

* Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four H	lour Vehicular Volume
Condition Satisfied?	Satisfied
Required values reached for	8 hours
Criteria	See Figure Below

Warrant 3, Peak I	Iour Vehicular Volume	
	Condition A	Condition B
Condition Satisfied?	Not Examined	Satisfied
Required values reached for		7 hours
Criteria - Total Approach Volume (veh in one hour)		
Criteria - Minor Street High Side Volume (veh in one hour)		See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)		

TRAFFIC SIGNAL WARRANTS

PROJECTED FUTURE VOLUMES IN YEAR 2022 WITH TRAFFIC GROWTH AND NEW SUBDIVISION TRAFFIC

	And	rew Johnson H	ighway	I	Private Drivev	vay	Andre	w Johnson Hi	ghway	North Rug	gles Ferry Pike	(West Side)			Assumed Growth Rate (%)=	1.5%	20% Increase due	e to Covid
TIME		SOUTHBOUN	JD		WESTBOUN	D	N	ORTHBOUN	D		EASTBOUNI)			Number of years =	1		
BEGIN	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT	LT	THRU	RT				Year 2022		
7:00 AM	0	205	0	0	0	0	0	58	0	2	0	2	Existing Volumes	Note:				
7:15 AM	0	238	1	0	0	0	0	93	0	9	0	7	Existing Volumes	The entering and exit	ting traffic volumes are estimated based	d on trip generation of the en	ntire	
7:30 AM	0	267	1	0	0	0	1	119	0	6	0	9	Existing Volumes	development, based o	on assumed amounts of entering and e	exiting traffic, assumed percen	ntages	
/:45 AM	0	183	8	0	0	0	3	96	0	0	0	1	Existing Volumes	of directional traffic,	and the assumed percentage of trips be	ased on time of day (from 11	DOI Table 4.2 in Trat	tic Design Manual)
+ 20%/ La manage	0	893	10	0	0	0	4	300	0	23	0	19	Lannan - 6 20% day to Consid	Entire Developments	4 420 Daily Tring Computed	General Contractionistics	621 420 Additional I	Deile Trins and Yorn (4.420 trins /7 see)
+20% Increase	0	16.08	0.19	0	0	0	0.075	439	0	28	0	2.5	Canada Bata of 15% for 1 mar	Entire Development:	4,420 Daily Trips Generated	from Subdivision	651.429 Additional I	Daily Trips per Year (4,420 trips/ / year)
Trips Generated 7-8 am	0	10.08	5	0	0	0	2	0.365	0	7	0	5	Growin Rate of 1.5% for 1 year			AM		PM
Year 2022	0	1088	17	0	0	0	7	446	0	35	0	28		Т	Fraffic Movement Assumed Distributio	on: 45% from SB RT, 20% fr	rom NB LT	25% from SB RT, 10% from NB LT
8:00 AM	2	148	2	0	0	0	0	98	0	14	1	3				20% to EB LT. 15% to E	EB RT	40% to EB LT. 25% to EB RT
8:15 AM	0	139	4	0	0	0	3	97	0	4	0	0		Single-Family Detach	ned Housing #210			
8:30 AM	0	164	4	1	0	1	1	70	0	3	0	2		Entering and Exiting	g %'s (from ITE Trip Generation):	Directional Distribution A	Assumptions:	
8:45 AM	1	114	1	0	0	1	0	85	0	4	0	1		25% Enter	ring AM Hours	45% from SB RT	20% to EB LT	
Sum	3	565	11	1	0	2	4	350	0	25	1	6		75% Exitin	'g	20% from NB LT	15% to EB RT	
+20% Increase	4	678	13	1	0	2	5	420	0	30	1	7		50% Enter	ring Mid-Day Hours	25% from SB RT	40% to EB LT	(PM D. Distribution)
General Growth	0.06	10.17	0.195	0.015	0	0.03	0.075	6.3	0	0.45	0.015	0.105		50% Exitin	ng	10% from NB LT	25% to EB RT	
Trips Generated 8-9 am	0	0	5	0	0	0	2	0	0	6	0	5		63% Enten	ang PM Hours	25% from SB RT	40% to EB LT	
11.00 AM	4	688	18	2	0	2	/	426	0		0	12		3/7e Exitin	ıg	10% from ND L1	25% to ED R1	
11:15 AM	2	90	3	2	0	0	2	92	0	1	2	1	1			1		
11:30 AM	0	116	3	0	2	1	1	90	0	1	0	0	1	TDOT Traffic Engin	cering Office - Table 4.2 - TDOT Tra	ffic Design Manual		
11:45 AM	2	95	3	1	0	2	2	100	0	3	0	1	1	Population Tier = A	(Knoxville)			
Sum	6	423	12	6	2	4	9	380	0	6	2	3	1	TDOT Region 1 Ave	erage for Arterial Facilities (Multi-Lane))		
+20% Increase	7	508	14	7	2	5	11	456	0	7	2	4						
General Growth	0.105	7.62	0.21	0.105	0.03	0.075	0.165	6.84	0	0.105	0.03	0.06		Time of Day Percer	ntage of Trips			
Trips Generated 11am-12 pm	0	0	4	0	0	0	2	0	0	7	0	4		7-8 am 7.2	20%			
Year 2022	7	516	19	7	2	5	13	463	0	14	2	8		8-9 am 6.6	50%			
12:00 PM	1	113	3	0	0	3	2	96	0	5	1	4						
12:15 PM	0	104	1	1	0	0	4	98	2	1	0	3		11 am-Noon 5.5	52%			
12:30 PM 12:45 PM	5	109	4	1	0	2	6	109	0	4	0	1		Noon-1 pm 0.1	1170			
Sum	9	460	9	3	1	6	14	426	2	12	2	9		2-3 nm 6.3	39%			
+20% Increase	: 11	552	11	4	1	7	17	511	2	14	2	11		3-4 pm 7.3	34%			
General Growth	0.165	8.28	0.165	0.06	0.015	0.105	0.255	7.665	0.03	0.21	0.03	0.165		4-5 pm 8.4	48%			
Trips Generated 12-1 pm	0	0	5	0	0	0	2	0	0	8	0	5		5-6 pm <u>9.5</u>	50%			
X/ 20.22		570																
1 car 2022	. 11	560	16	4	1	7	19	519	2	22	2	16		57.1	14%			
2:00 PM	3	122	16 3	4	1	7	19 2	519 108	2	22 6	2	16 3		57.1	14%			
2:00 PM 2:15 PM 2:30 PM	3 1	122 145	16 3 5	4 2 0	1 1 0	7 1 3	19 2 1	519 108 104 120	2 0 1	22 6 4	2 0 1	16 3 2		57.1 For example, 7-8 AM	14% <u>1 for SB Right Turns:</u> ii: Turns:	// Thing from SD PT \$ 7 200/	Trine (+ 7.8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM	3 1 1 1	122 145 124 120	16 3 5 3 2	4 2 0 0	1 1 0 0	7 1 3 4 2	19 2 1 4 3	519 108 104 120 156	2 0 1 1 0	22 6 4 3 3	2 0 1 0 0	16 3 2 3 2		57.1 <u>For example, 7-8 AM</u> Volume = (4,420 Dai Volume = 631.43 x 2	14% <u>1 for SB Right Turns:</u> ily Trips * (1/7)) * 25% Entering * 45% 25 x 45 x (072	% Trips from SB RT * 7.20%	Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum	3 1 1 1 6	560 122 145 124 120 511	16 3 5 3 2 13	4 2 0 0 0 2	1 1 0 0 0	7 1 3 4 2 10	19 2 1 4 3 10	519 108 104 120 156 488	2 0 1 1 0 2	22 6 4 3 3 16	2 0 1 0 0 1	16 3 2 3 2 10		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 631.43 x .2 Volume = 5 Trips	14% <u>1 for SB Right Turns:</u> ily Trips * (1/7)) * 25% Entering * 45% 25 x .45 x .072	% Trips from SB RT * 7.20%	o Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM \$um +20% Increase	11 3 1 1 1 1 6 7	560 122 145 124 120 511 613	16 3 5 3 2 13 16	4 2 0 0 2 2	1 1 0 0 0 1 1	7 1 3 4 2 10 12	19 2 1 4 3 10 12	519 108 104 120 156 488 586	2 0 1 1 0 2 2	22 6 4 3 3 16 19	2 0 1 0 0 1 1 1	16 3 2 3 2 10 12		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 631.43 x .2 Volume = 5 Trips	14% <u>I for SB Right Turns:</u> ily Trips * (1/7)) * 25% Entering * 45% 25 x .45 x .072	% Trips from SB RT * 7.20%	Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth	3 1 1 1 4 6 7 0.105	560 122 145 124 120 511 613 9.195	16 3 5 3 2 13 16 0.24	4 2 0 0 2 2 0.03	1 0 0 1 1 0.015	7 1 3 4 2 10 12 0.18	19 2 1 4 3 10 12 0.18	519 108 104 120 156 488 586 8.79	2 0 1 1 0 2 2 0.03	22 6 4 3 16 19 0.285	2 0 1 0 0 1 1 1 0.015	16 3 2 3 2 10 12 0.18		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 631.43 x .2 Volume = 5 Trips	(4%) L for SB Right Turns: ily Trips * (1/7)) * 25% Entering * 45% 25 x .45 x .072	% Trips from SB RT * 7.20%	7 Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 4:245 PM 4:20% Increase General Growth Trips Generated 2:3 pm	11 3 1 1 1 1 6 7 0.105	560 122 145 124 120 511 613 9.195 0	16 3 5 3 2 13 16 0.24 6	4 2 0 0 2 2 0.03 0	1 0 0 1 1 0.015 0	7 1 3 4 2 10 12 0.18 0	19 2 1 4 3 10 12 0.18 3	519 108 104 120 156 488 586 8.79 0	2 0 1 2 2 0.03 0	22 6 4 3 3 16 19 0.285 6	2 0 1 0 0 1 1 0.015 0	16 3 2 3 2 10 12 0.18 4		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 631.43 x .2 Volume = 5 Trips	14% Lfor SR Right Turns: ily Trips * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hour	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2:3 pm Year 2022	11 3 1 1 1 2 7 0.105 0 2 7	560 122 145 124 120 511 613 9.195 0 622	16 3 5 3 2 13 16 0.24 6 23	4 2 0 0 2 2 0.03 0 2	1 0 0 1 1 0.015 0 1	7 1 3 4 2 10 12 0.18 0 12 12	19 2 1 4 3 10 12 0.18 3 15	519 108 104 120 156 488 586 8.79 0 595	2 0 1 2 2 0.03 0 2	22 6 4 3 3 16 19 0.285 6 25	2 0 1 0 0 1 1 0.015 0 1	16 3 2 3 2 10 12 0.18 4 16		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 631.43 x .2 Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>Lfor SB Right Turns:</u> ily Teps * (1/7)) * 25% Entering * 45% 25 x.45 x.172 sed to estimate the future project hour al warrants	% Trips from SB RT * 7.20%	o Trips (at 7-8 AM)	
Teir 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2-3 pm Vear 2022 3:00 PM	$ \begin{array}{c} 11 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 7 \\ 0 \\ 2 \\ 7 \\ 4 \\ 0 \\ 2 \\ 7 \\ 4 \\ 7$	500 122 145 124 120 511 613 9.195 0 622 110	16 3 5 3 2 13 16 0.24 6 23 6 6	4 2 0 0 2 2 0.03 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0.015 0 1 0 0 0	7 1 3 4 2 10 12 0.18 0 12 5 2	19 2 1 4 3 10 12 0.18 3 15 4 2	519 108 104 120 156 488 586 8.79 0 595 164 404	2 0 1 2 0.03 0 2 0 0 2 0 0	22 6 4 3 16 19 0.285 6 25 3 3	2 0 1 0 1 1 0.015 0 1 0 0	16 3 2 3 2 10 12 0.18 4 16 4 2		57.1 <u>For example, 7-8 AM</u> Volume = (4,420 Dai Volume = 631.43 s. 2 Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% I for SB Right Turns: ily Taps * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	, Trips (at 7-8 AM)	
Teir 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2-3 pm Year 2022 3:00 PM 3:35 PM 3:30 PM	$ \begin{array}{c} 11 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	360 122 145 124 120 511 613 9.195 0 622 110 124	16 3 5 2 13 16 0.24 6 23 6 4 8	4 2 0 0 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0.015 0 1 0 0 1 1	7 1 3 4 2 10 12 0.18 0 12 5 2 0	19 2 1 4 3 10 12 0.18 3 15 4 3 3 3	519 108 104 120 156 488 586 8.79 0 595 164 184 124	2 0 1 2 2 0.03 0 2 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 6 25 3 7 7	2 0 1 0 1 1 0.015 0 1 0 2 0	16 3 2 3 2 10 12 0.18 4 16 4 3 1		57.1 <u>For example, 7-8 AM</u> Volume = (4,420 Day Volume = 63143 x.2 Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turns: ily Trips * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	Trips (at 7-8 AM)	
16#2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM \$\$ 2:45 PM \$\$ 4:0% Increase General Grayh Trips General Grayh Year 2022 3:00 PM 3:15 PM 3:30 PM 3:345 PM	$ \begin{array}{c} 11 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 2 \\ 7 \\ 0.105 \\ 0 \\ 2 \\ 7 \\ 4 \\ 2 \\ 3 \\ 1 \\ 1 \end{array} $	360 122 145 124 120 511 613 9.195 0 622 110 124 120 110 124 132 176	16 3 5 3 2 13 16 0.24 6 23 6 4 8 3	4 2 0 0 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0.015 0 1 0 0 0 1 1	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6	19 2 1 4 3 10 12 0.18 3 15 4 3 3 3 3	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205	2 0 1 2 2 0.03 0 2 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 3 7 7 7 7 3	2 0 1 0 0 1 1 0.015 0 1 0 2 0 0	16 3 2 3 2 10 12 0.18 4 16 4 3 1 2		57.1 For example, 7-8 AM Volume = (4,420 Day Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>Lfor SB Right Turns:</u> ily Trips * (1/7)) * 25% Entering * 45% 25 x.45 x.172 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	, Trips (at 7-8 AM)	
Teir 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:45 PM Sum +20% Increase General Growth Trips Generated 2-5 pm 3:00 PM 3:315 PM 3:30 PM 3:35 PM 3:345 PM Sum	11 3 1 1 1 1 1 1 1 1 1 1 1 1 1	360 122 145 124 120 511 613 9.195 0 622 110 124 132 176	16 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21	4 2 0 0 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 2	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6 13	19 2 1 4 3 10 12 0.18 3 15 4 3 3 13	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 765	2 0 1 2 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 3 7 7 7 3 20	2 0 1 0 0 1 1 0.015 0 1 0 2 0 0 1 3	16 3 2 3 2 10 12 0.18 4 16 4 3 1 2 10 10 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10		57.1 <u>For example, 7-8 AM</u> Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	r Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2:3 pm Vear 2022 3:00 PM 3:35 PM 3:30 PM 3:35 PM 3:30 PM 3:45 PM Sum +20% Increase	$\begin{array}{c} 11\\ 3\\ 1\\ 1\\ 1\\ 1\\ 0\\ 6\\ 7\\ 0.105\\ 0\\ 0\\ 0\\ 7\\ 4\\ 2\\ 3\\ 1\\ 1\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ $	360 122 145 124 120 511 613 9.195 0 622 110 124 132 176 542 650	16 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 25	4 2 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 0.015 0 1 0 0 0 1 1 2 2	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6 13 16	19 2 1 4 3 10 12 0.18 3 15 4 3 3 13 16	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 765 918	2 0 1 2 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 6 25 3 7 7 7 7 3 20 24	2 0 1 0 0 1 1 0,015 0 1 0 2 2 0 0 1 3 3 4	16 3 2 3 2 10 12 0.18 4 16 4 3 1 2 10 12 10 12 10 12 10 12 12 10 12 12 12 12 12 12 12 12 12 12		57.1 For example, 7-8 AM Volume = (4,420 Day Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turns: ily Trips * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
101 200 2:00 PM 2:15 PM 2:30 PM 2:45 PM \$\$245 PM \$\$245 PM \$\$245 PM \$\$275 Pm \$\$245 PM \$\$260 PM 3:15 PM 3:30 PM 3:35 PM 3:35 PM 3:45 PM \$\$20% Increase \$\$General Growth \$\$+20% Increase \$\$General Growth \$\$+20% Increase \$\$General Growth	11 3 1 1 1 2 7 0.105 0 7 4 2 3 1 10 10 10 10 10 11 12 0.18	360 122 145 124 120 511 613 9.195 0 622 110 124 132 176 542 650 9.75	16 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 25 0.375	4 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 1 0.015 0 1 0 1 0 1 0 1 0 1 1 0 1 1 2 0.03	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6 13 16 0.24	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24	519 108 104 120 156 488 586 8.79 0 595 164 184 205 765 918 13.77	2 0 1 2 2 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 6 25 3 7 7 7 7 7 3 20 0 24 0.36	2 0 1 0 0 1 1 0.015 0 0 0 2 0 0 1 1 3 4 0.06	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 51 Si Al-3 s. 2 Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turns:</u> ily Trips * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hour al warrants	% Trips from SB RT * 7.20%	, Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2:3 pm Vera 2022 3:00 PM 3:30 PM 3:30 PM 3:35 PM 3:30 PM 3:35 PM Sum 4:20% Increase General Growth Trips Generated 3:4 pm	$\begin{array}{c} 11 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	360 122 145 124 120 511 613 9,195 0 622 110 124 132 176 542 650 9,75 0	16 3 5 3 2 13 16 0.24 6 4 3 21 25 0.375 7	4 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 1 0.015 0 1 1 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6 13 16 0.24 0	19 2 1 4 3 10 12 0.18 3 15 4 3 3 3 13 16 0.24 3	519 108 1044 120 136 488 586 8.79 0 505 164 184 212 205 765 918 13.77 0	2 0 1 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 3 7 7 7 7 7 3 20 24 0.36 7	2 0 1 0 0 1 1 0.015 0 0 2 0 0 1 1 3 3 4 0.06 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 3 10 12 0.18 4		57.1 <u>For example, 7-8 AM</u> Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Trps * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Tear 2022 2-00 PM 2-15 PM 2-35 PM 2-45 PM Sum +20% Increase General Growth Trips Generated 2-3 pm Year 2022 3:00 PM 3:15 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM Trips Generated 3-4 pm Year 2022 General Growth Trips Generated 3-4 pm Year 2022	$\begin{array}{c} 11 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	360 122 145 124 124 511 613 9.195 0 662 110 124 132 132 136 542 650 9.75 0 660	16 3 5 3 2 13 16 0.24 6 23 6 4 8 21 25 0.375 7 33	4 2 0 0 2 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\$	7 1 3 4 2 0 10 12 0 12 5 2 0 6 13 16 0	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24 3 19	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 164 184 212 205 918 13.77 0 932	2 0 1 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 3 7 7 7 7 7 7 3 20 24 0.36 7 7 3 1	2 0 1 1 0 0 1 1 0 0 1 0 2 2 0 1 1 0 2 2 0 1 1 3 3 4 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 3 1 2 10 12 0.18 4 3 1 2 10 12 0.18 4 16		57.1 For example, 7-8 AM Volume = (4,420 Day Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turns: ily Trips * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Teir 2022 2:00 PM 2:15 PM 2:35 PM 2:45 PM 4:00% Increase General Gravh Trips General 2:3 PM 3:35 PM 3:35 PM 3:35 PM 3:39 PM 3:39 PM 3:39 PM 3:39 PM Trips Generated 3:4 pm Year 2022 4:00 PM	11 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 10 12 0.18 0 12 12 12 1	360 122 145 124 120 511 613 9.195 0 622 110 124 132 110 124 132 176 542 9.75 0 660 148	16 3 5 3 2 13 16 0.23 6 23 6 4 8 3 21 25 0.375 7 33 5	4 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 2 0.03 0 2 0 0 0 0	7 1 3 4 2 0 10 12 0 12 0 12 5 2 0 6 13 16 0.24 0 16 4	19 2 1 4 3 10 12 0.18 3 15 4 3 15 4 3 10 12 0.18 3 13 16 0.24 3 19 3	519 108 104 120 156 488 586 8.79 0 595 164 184 205 765 918 13.77 0 932 223	2 0 1 1 0 2 2 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 3 7 7 3 20 0.36 7 3 4	2 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 2 0 0 1 1 0 0 0 1 1 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 0.18 4 3 12 0.18 4 3		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 53 Trips This spreadsheet is us will meet traffic signa	44% <u>I for SB Right Turns:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	, Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2:3 pm Vear 2022 3:00 PM 3:35 PM 3:30 PM 3:35 PM 3:30 PM 3:35 PM Ceneral Growth Trips Generated 3:4 pm Vear 2022 4:00 PM 4:15 PM 4:35 PM	11 1 1 1 1 1 0 0 7 4 2 3 1 10 7 4 2 3 11 10 12 0.18 0 12 13 3	360 122 145 124 124 120 511 511 613 9.195 0 622 110 132 132 154 132 650 9.75 0 6 60 9.75 0 144 148 145 145	16 3 3 5 3 2 13 16 0.24 6 4 8 21 25 0.375 7 33 5 7 33 5 7	4 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 1 3 4 2 10 12 0 13 16 16 15 15 15 15 15 15 15 15 15 15	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24 3 5 4	519 108 104 120 156 879 0 586 8.79 0 595 164 184 212 205 765 918 13.77 0 922 223 205	2 0 1 1 0 2 2 0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 25 6 25 6 25 7 7 7 3 20 24 0.36 7 7 3 1 20 24 8 8 8	2 0 1 1 0 0 1 1 1 0 0 2 0 0 1 1 3 4 0 0 6 0 1 1 3 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 10 12 0.18 4 16 4 4 16 4 10 12 10 12 0.18 4 10 12 13 10 12 10 13 13 13 13 13 13 13 13 13 13		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
2:00 PM 2:15 PM 2:30 PM 2:45 PM 2:45 PM 4:20% Increase General Growth 3:15 PM 3:35 PM 3:35 PM 3:35 PM 3:35 PM 3:35 PM 3:35 PM 3:45 PM 3:45 PM 4:20% Increase General Growth Trips Generated 3-4 pm Vear 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:30 PM	$\begin{array}{c} 11\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	360 360 122 145 124 145 120 121 120 511 130 120 511 613 9.195 0 62 62 110 124 132 176 542 650 9.75 0 660 660 148 145 145 145	$\begin{array}{c} 16\\ 3\\ 5\\ 5\\ 3\\ 2\\ 113\\ 16\\ 0.24\\ 6\\ 23\\ 6\\ 4\\ 4\\ 8\\ 3\\ 21\\ 25\\ 7\\ 7\\ 33\\ 5\\ 5\\ 7\\ 7\\ 7\\ 7\\ 2\end{array}$	4 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 2 00 2 0 2 0 2 0 1 0	$\begin{array}{c} 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 0\\ 12\\ 5\\ 2\\ 0\\ 6\\ 6\\ 13\\ 16\\ 0.24\\ 4\\ 5\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 16\\ 4\\ 5\\ 5\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	19 2 1 4 3 10 12 0.18 3 15 4 3 3 16 0.28 10 12 0.18 3 3 16 0.24 3 19 3 5 4 2	519 108 104 120 135 488 586 8.79 0 595 164 184 212 205 765 918 13.77 0 932 223 205 208 258	2 0 1 1 2 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 3 16 19 0.285 6 25 3 7 7 7 3 20 0.285 6 25 3 7 7 7 3 20 0.24 0.36 7 7 3 1 4 8 8 8	2 0 1 0 0 1 1 0 0 1 0 0 2 0 1 1 0 2 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 16 4 10 12 0.18 4 10 12 0.18 3 4 16 3 3 4 16 3 4 1 10		57.1 For example, 7-8 AM Volume = (4,420 Day Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turns: ily Tops * (1/7)) * 25% Entering * 459 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Teir 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2-3 pm Year 2022 3:00 PM 3:15 PM 3:30 PM 3:45 PM Year 2022 4:00 PM 4:15 PM 4:00 PM 4:15 PM 4:00 PM 4:15 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM Som	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	360 360 122 145 124 145 120 511 613 9.195 622 110 1124 132 113 132 136 542 650 9.75 0 660 148 145 143 155 588 888	16 3 5 3 2 13 16 0.24 6 23 6 4 3 21 33 5 7 33 5 7 2 21	4 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1 4	1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 2 0.03 0 2 0 0 0 0 0 0 0 0 1	7 1 3 4 10 12 0 12 0 12 0 12 0 13 0 14 0 15 2 0 6 13 16 0.24 0 16 16 16 11 0 10	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24 3 5 4 2 19 3 5 4 2 14	519 108 104 120 136 488 586 8.79 0 595 164 184 212 205 765 918 13.77 0 932 223 208 238 894		22 6 4 3 3 3 16 19 0.285 6 25 6 3 7 7 7 3 20 24 4 0.36 7 7 3 1 0.36 7 8 8 8 6 26	2 0 1 1 0 0 1 1 0.015 0 0 1 1 0 0 2 0 0 1 1 3 4 4 0.06 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 3 12 0.18 4 16 3 3 4 1 11		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	44% <u>I for SB Right Turns:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
1 at 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2:3 pm 3:315 PM 3:30 PM 3:35 PM 3:30 PM 3:35 PM Concern Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:35 PM Sum 4:20% Increase General Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:35 PM Sum 4:20% Increase General Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:35 PM 4:30 PM 4:45 PM Sum +20% Increase	$\begin{array}{c} 11\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 6\\ 7\\ 7\\ 4\\ 2\\ 0\\ 10\\ 7\\ 4\\ 2\\ 1\\ 2\\ 12\\ 0.18\\ 0\\ 0\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	360 360 122 145 124 124 120 511 511 511 9,195 0 622 110 132 132 132 542 650 9,75 0 660 660 660 640 148 145 143 152 588 588 706	16 3 3 5 3 2 13 16 0.24 6 2 3 2 1 3 2 13 16 6 4 8 3 21 25 0.375 7 33 5 7 7 2 21 25 25	4 2 0 0 0 0 2 2 0.033 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 1 4 5 5	1 1 0 0 1 0.015 0 1 0.015 0 1 1 0.015 0 1 1 2 2 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1	7 1 3 4 2 10 12 5 2 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 16 16 16 16 16 16 16 16 16	19 2 1 4 3 10 12 0.18 3 15 4 3 15 4 3 10 12 0.18 3 13 16 0.24 3 5 4 2 14 17	519 108 104 120 135 488 586 8.79 0 595 164 184 201 505 164 184 205 765 918 13.77 0 932 205 205 205 205 205 205 205 205 205 205 205 205 205 205 208 894 807 1073	2 0 1 1 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 10 25 6 6 6 7 7 3 7 7 3 20 24 0.285 7 7 3 20 24 0.245 8 8 8 8 8 8 6 25 3 11 20 20 20 20 20 20 20 20 20 20	2 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 3 3 4 0 0 0 1 1 0 0 2 0 0 1 1 1 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 1 2 10 12 0.18 4 3 1 12 0.18 4 16 3 3 4 16 13 13		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Tear 202 2-00 PM 2-15 PM 2-35 PM 2-45 PM 3-245 PM 4-20% Increase General Growth Trips Generated 2-3 pm 3-30 PM 4-20% Increase General Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:31 PM 4:30 PM 4:30 PM 5:50 PM 4:50 PM 4:50 PM 5:50 PM 4:50 PM 5:50 PM 5:50 PM 5:50 PM 5:50 PM 5:50 PM 5:50 PM 6:50 PM 5:50 PM 5:50 PM 5:50 PM 5:50 PM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 360\\ 360\\ 122\\ 145\\ 122\\ 145\\ 120\\ 120\\ 120\\ 120\\ 120\\ 613\\ 9.195\\ 622\\ 110\\ 124\\ 132\\ 176\\ 124\\ 132\\ 176\\ 124\\ 135\\ 124\\ 136\\ 124\\ 136\\ 148\\ 143\\ 143\\ 143\\ 143\\ 143\\ 143\\ 143\\ 143$	16 3 3 5 3 2 13 16 0.24 6 4 8 3 21 25 0.375 7 7 21 25 0.375 0.375	4 2 0 0 2 0.03 0 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 0.075	$\begin{array}{c c} 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 1\\ 2\\ 2\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 2\\ 0\\ 16\\ 16\\ 0.24\\ 16\\ 0.24\\ 16\\ 0.24\\ 16\\ 0.24\\ 0\\ 10\\ 10\\ 10\\ 12\\ 0.18\\ \end{array}$	19 2 1 4 3 10 12 0.18 3 15 4 3 16 0.24 3 19 3 5 4 17 0.255	519 108 104 120 136 488 586 8.79 0 505 164 184 212 205 765 918 13.77 0 932 223 205 208 258 894 1073 16.095	2 0 1 1 2 2 2 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 6 25 3 7 7 3 3 20 0.285 6 25 3 7 7 3 3 20 0.24 0.36 7 7 3 1 4 8 8 8 6 6 24 0.245 0.255 0.245 0.255 0.	2 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 4 3 10 12 10 12 11 13 16 3 3 4 16 3 3 4 11 13 0.195 1095		57.1 For example, 7-8 AM Volume = (4,420 Day Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turne: ily Teps * (1/7)) * 25% Entering * 459 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
1 Corr 2002 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Gravh Trips Generated 2:3 pm Year 2022 3:00 PM 3:15 PM 3:30 PM 3:45 PM Year 2022 3:00 PM 4:15 PM Year 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM Sum +20% Increase General Gravth 4:30 PM 4:35 PM Trips Generated 3:5 pm	$\begin{array}{c} 11\\ 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 12\\ 1\\ 1\\ 1\\ 0\\ 12\\ 12\\ 0\\ 18\\ 0\\ 12\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	360 122 145 120 145 120 511 613 9.195 622 110 124 132 136 542 542 542 550 0 660 148 145 143 155 706 10.5 706 0 0	16 3 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 20.375 7 33 5 7 7 2 21 25 0.375 8 8	4 2 0 0 0 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 4 5 0.075 0	1 1 0 0 1 0.015 0 1 0.015 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0	$\begin{array}{c} 7\\ 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 5\\ 2\\ 0\\ 12\\ 0\\ 12\\ 0\\ 13\\ 16\\ 13\\ 16\\ 10\\ 10\\ 12\\ 0.18\\ 0\\ 0\\ 10\\ 12\\ 0.18\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	19 2 1 4 3 10 12 0.18 3 15 4 3 16 0.24 0.24 3 5 4 2 4 17 0.255	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 918 13.77 92 223 205 208 288 1073 16.095 0	2 0 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 16 19 19 0.285 6 25 3 7 7 7 3 20 24 0.36 7 3 20 24 0.36 7 3 3 0.20 24 0.36 7 3 3 0 20 24 0.36 7 3 3 0 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 7 3 20 24 0.36 7 7 7 3 20 24 0.36 7 7 7 3 20 24 0.36 7 7 7 3 20 24 0.36 7 7 7 3 20 24 0.36 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 7 7 7 3 3 0.36 6 6 6 6 6 6 6 6 6 6 6 6 6	2 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 11 12 12 12 14 16 4 3 11 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 13 0.195		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	44% <u>I for SB Right Turns:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	ntrips (at 7-8 AM)	
Tear 2022 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2.3 pm 3:30 PM 3:315 PM 3:30 PM 3:35 PM 3:30 PM 3:45 PM Ceneral Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:45 PM Sum +20% Increase General Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:35 PM Sum +20% Increase General Growth Trips Generated 3-5 pm Yur 2022	$\begin{array}{c} 11\\ 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 6\\ 7\\ 0.105\\ 0\\ 7\\ 4\\ 2\\ 3\\ 3\\ 1\\ 10\\ 12\\ 12\\ 0\\ 12\\ 1\\ 5\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 0\\ 0\\ 12\\ 0\\$	360 122 145 124 124 124 120 511 9.195 0 622 110 124 132 132 176 652 0 660 9.75 0 660 660 148 143 152 588 706 0 0 717 0	16 3 3 5 3 2 13 6 23 6 4 8 3 21 25 0.375 7 2 21 25 0.375 7 2 21 25 0.375 8 34	4 2 0 0 0 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 4 5 0.075 0 5 0	1 1 0 0 1 0.015 0 1 0.015 0 1 1 0.015 0 1 1 2 2 0 0 1 0 0 1 0.015 0 1	7 1 3 4 2 10 12 0.18 0 12 5 2 0 6 0.24 0 16 0.24 5 10 14 5 1 0 10 10 11 0 10 11 0 10 112 0.18	19 2 1 4 3 10 12 0.18 3 15 4 3 16 0.25 4 3 16 0.25 3 17 0.255 3 21	519 108 104 120 150 488 586 8.79 0 595 164 184 205 765 918 13.77 0 932 205 205 205 205 205 205 205 205 0 932 223 894 1073 0 0 0 0	2 0 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 19 0.285 6 25 3 7 7 3 20 24 0.36 7 7 3 20 24 0.31 4 8 8 8 8 8 6 26 5 31 0 20 20 24 5 6 20 20 20 20 20 20 20 20 20 20	2 0 1 1 0 0 1 1 0 0 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 3 3 4 0 0 0 1 1 3 0 0 1 1 0 0 2 0 0 1 1 1 0 0 0 0 0 0 0 0	16 3 2 10 12 0.18 4 3 1 1 2 10 12 0.18 4 3 1 12 10 12 10 12 3 4 16 3 3 4 11 13 0.195 5 18		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	4% <u>I for SB Right Turne:</u> ily Taps * (1/7)) * 25% Entering * 45% 25 x .45 x .072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	Trips (at 7-8 AM)	
Tear 202 2-00 PM 2-15 PM 2-35 PM 2-45 PM 3-245 PM 4-20% Increase General Growth Trips Generated 2-3 pm Year 2022 3:00 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 4:20% Increase General Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 5:00 PM 5:00 PM	$\begin{array}{c} 11\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 6\\ 7\\ 7\\ 0.105\\ 0\\ 7\\ 4\\ 4\\ 2\\ 2\\ 3\\ 1\\ 1\\ 1\\ 12\\ 0.18\\ 0\\ 12\\ 12\\ 0.18\\ 0\\ 10\\ 12\\ 1\\ 1\\ 0\\ 11\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$	360 362 122 145 120 145 120 511 613 9,195 622 110 110 613 9,195 662 110 124 132 176 542 650 9,75 0 642 148 144 143 152 152 152 588 706 0 0 70 717 717	16 3 3 2 13 16 0.24 6 23 6 4 8 3 21 25 0.375 7 7 2 133 5 7 2 125 0.375 7 2 125 0.375 8 34	4 2 0 0 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 0 5 1	1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0	$\begin{array}{c} 7\\ 7\\ 1\\ 3\\ 4\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 0\\ 12\\ 0\\ 12\\ 0\\ 16\\ 0\\ 16\\ 0\\ 16\\ 0\\ 16\\ 16\\ 0\\ 10\\ 10\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 3\\ 3\\ 0 \end{array}$	19 2 1 4 3 10 12 0.18 3 15 4 3 16 0.24 3 5 4 2 14 17 5 4 2 14 17 255 3 21 1	519 108 104 120 156 488 586 8.79 0 505 164 184 212 205 765 918 13.77 0 932 205 205 205 205 208 8594 10073 0 0 91089 2071	2 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 6 25 3 7 7 3 20 0.285 6 3 7 7 3 3 20 0.24 0.36 7 7 3 3 20 0.24 0.36 7 7 3 3 20 0.245 8 8 8 8 8 8	2 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 16 3 4 16 3 4 16 3 4 11 13 0.195 5 18		57.1 For example, 7-8 AM Volume = (4,420 Div Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% 1 for SB Right Turne: ily Taps * (1/7)) * 25% Entering * 459 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Tear 2022 2:00 PM 2:15 PM 2:35 PM 2:45 PM 3:00 PM 2:45 PM 4:20% Increase General Growth Trips Generated 2:3 pm Year 2022 3:00 PM 3:15 PM 3:30 PM 3:45 PM Year 2022 4:00 PM +20% Increase Generated Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:30 PM Trips Generated 3:4 pm +20% Increase General Growth Trips Generated 4:5 pm Year 2022 5:00 PM 5:15 PM 5:15 PM 5:15 PM	$\begin{array}{c} 11\\ 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 6\\ 6\\ 7\\ -\\ 0.105\\ 0\\ 7\\ -\\ 4\\ 2\\ -\\ 3\\ 1\\ 10\\ -\\ 12\\ 0.18\\ 0\\ 0\\ -\\ 12\\ 0.18\\ 0\\ 0\\ -\\ 12\\ 0.18\\ 0\\ 0\\ 12\\ 0.18\\ 0\\ 0\\ 12\\ 0.18\\ 0\\ 0\\ 12\\ 0\\ 12\\ 0\\ 12\\ 0\\ 12\\ 0\\ 12\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	360 122 145 120 145 120 511 613 9.195 622 110 124 132 136 145 120 511 613 9.195 622 110 132 136 542 650 9.75 0 660 148 145 152 588 706 10.59 0 717 129 146 142 142	16 3 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 20 23 6 4 8 3 21 23 5 7 33 5 7 7 2 21 25 0.375 8 3 3 3	4 2 0 0 2 0.03 0 2 0.03 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 0.075 0 5 1 0 5 0 5 0	1 1 0 0 0 1 0.015 0 1 0.015 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0	$\begin{array}{c} 7\\ 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 5\\ 2\\ 0\\ 12\\ 0\\ 13\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 10\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 0.18\\ 0\\ 12\\ 0\\ 12\\ 2\\ r\\ r\\$	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24 0.24 0.24 3 5 4 2 19 3 5 4 2 14 17 0.255 2 1 5 6	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 918 13.7 92 205 205 205 205 204 1073 16.095 0 1089 277 248	2 0 1 1 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 16 19 19 0.285 6 25 3 7 7 7 3 20 24 0.36 7 3 20 24 0.36 7 3 20 24 0.36 7 3 20 24 0.36 7 3 20 24 0.36 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 20 24 0.36 7 7 3 3 7 7 3 20 24 0.36 7 7 3 3 20 24 0.36 7 7 3 3 3 7 7 3 3 20 24 0.36 7 7 3 3 3 7 7 3 3 20 24 0.36 7 7 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 11 12 10 14 4 3 1 1 1 10 11 12 10 12 10 12 10 12 10 12 10 12 10 12 13 0.195 18 2 2		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turns:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x.45 x.072 seed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	ntrips (at 7-8 AM)	
1 200 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2-3 pm 3:30 PM 3:315 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 4:20% Increase Generated 7-4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:45 PM Sum +20% Increase General Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:35 PM Sum +20% Increase General Growth Trips Generated 4-5 pm Year 2022 5:00 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM 5:30 PM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 360\\ 360\\ 122\\ 145\\ 124\\ 124\\ 124\\ 120\\ 124\\ 120\\ 124\\ 120\\ 0\\ 613\\ 9.195\\ 0\\ 622\\ 110\\ 124\\ 132\\ 176\\ 650\\ 9.75\\ 0\\ 124\\ 132\\ 152\\ 0\\ 660\\ 660\\ 148\\ 145\\ 152\\ 388\\ 706\\ 10.59\\ 0\\ 0\\ 717\\ 129\\ 129\\ 146\\ 168\\ 168\\ 168\\ 168\\ 168\\ 168\\ 168\\ 16$	16 3 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 25 7 7 33 5 7 7 2 21 25 0.375 8 34 8 3 10 3 10 3 10	4 2 0 0 2 0.03 0 2 0.03 0 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 0 5 1 0 1 2	1 1 0 0 0 1 0.015 0 1 0.015 0 1 0 1 0 1 1 0 1 1 2 2 0 0 0 0 1 0.015 0 1 0.015 0 1 0.015 0 1 0 1 0 1 0 1	$\begin{array}{c} 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 10\\ 10\\ 10\\ 10\\ 12\\ 5\\ 2\\ 2\\ 0\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\$	19 2 1 4 3 10 12 0.18 3 15 4 3 10 0.18 3 10 0.25 4 3 10 0.25 4 2 14 7 0.255 21 1 5 0 3	519 108 104 120 150 488 586 595 164 184 212 205 164 184 307 0 932 223 205 208 894 1073 10095 0 1089 2777 248 245 213	2 0 1 1 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 19 19 19 19 10 285 6 25 3 7 7 7 3 20 24 0.36 7 7 3 20 24 0.345 7 7 3 20 24 0.345 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 3 1 12 0.18 4 16 3 4 16 3 4 13 0.195 5 18 5 2 4 1		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	44% <u>I for SB Right Turne:</u> ily Taps * (1/7)) * 25% Entering * 459 25 x, 45 x, 072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	Trips (at 7-8 AM)	
Tear 202 2-00 PM 2-15 PM 2-35 PM 2-45 PM 3-245 PM 4-20% Increase General Growth Ying Generated 2-3 pm Year 2022 3:00 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 3:30 PM 4:30 PM 4:20% Increase General Growth Trips Generated 3-4 pm Year 2022 4:00 PM 4:315 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM 5:00 PM 5:15 PM 5:00 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM	$\begin{array}{c} 11\\ 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 7\\ -7\\ -0.105\\ 0\\ 0\\ -7\\ -7\\ -4\\ -2\\ -3\\ -7\\ -7\\ -4\\ -2\\ -3\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7\\ -7$	$\begin{array}{c} 360\\ 360\\ 1122\\ 145\\ 122\\ 145\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120$	16 3 5 3 2 13 6 23 6 23 6 23 6 23 6 23 6 24	4 2 0 0 2 0.03 0 2 0 1 2 0 5 0 5 1 0 1 2	1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 2 2 0 0 0 2 2 0 0 1 0 1 0.015 0 1 0.015 0 1 0.015 0 1 0.015 0 1 0.015 0 1 0.01 1 0 1 0.01 1	7 1 3 4 2 10 12 5 2 0 12 5 2 0 6 0.24 13 16 0 16 17 0 10 10 12 0.18 0 12 3 2 5 3 2 3 13	19 2 1 4 3 10 12 0.18 3 15 4 3 16 0.24 13 16 0.24 2 14 17 0.255 3 11 5 0 3 9	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 70 918 13.77 0 932 205 205 208 258 894 1003 16.095 0 92 233 245 213 983	2 0 1 1 2 2 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 0.285 6 6 25 3 7 7 7 3 3 20 0 24 0.36 7 7 3 3 20 0 24 0.36 7 7 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 12 0.18 4 3 1 2 10 12 0.18 4 16 3 11 13 0.195 5 2 4 1 11 13 5 2 4 1 12		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Traps * (1/7)) * 25% Entering * 459 25 x,45 x,072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Tear 202 2:00 PM 2:15 PM 2:35 PM 2:45 PM 3:245 PM 4:20% Increase General Growth Trips Generated 2:3 pm Year 2022 3:00 PM 3:15 PM 3:30 PM 3:30 PM 3:345 PM Year 2022 4:00 PM 4:15 PM 4:20% Increase General Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:15 PM 4:20% Increase General Growth Trips Generated 4:5 pm 4:20% Increase General Growth Trips Generated 4:5 pM 5:15 PM 5:30 PM 5:30 PM 5:45 PM 5:30 PM 5:45 PM 5:30 PM 5:45 PM 5:30 PM 5:45 PM 5:30 PM	$\begin{array}{c} 11\\ 3\\ 3\\ 1\\ 1\\ 1\\ 1\\ 1\\ 6\\ 6\\ 7\\ -\\ 0.105\\ 0\\ 7\\ -\\ 4\\ 2\\ -\\ 3\\ 1\\ 1\\ 10\\ -\\ 12\\ 0.18\\ 0\\ 0\\ -\\ 12\\ 0.18\\ 0\\ 0\\ -\\ 12\\ 0.18\\ 0\\ 0\\ 12\\ -\\ 12\\ 0.18\\ 0\\ 0\\ -\\ 2\\ 5\\ -\\ 6\\ -\\ 5\\ -\\ 6\\ -\\ 5\\ -\\ 6\\ -\\ $	360 122 145 122 145 120 511 613 9,195 6 6 622 110 124 124 120 513 613 6 62 110 124 132 136 542 650 9,75 0 660 660 660 660 148 145 145 152 0 0 706 10.59 0 129 146 168 145 588	16 3 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 20 23 5 7 7 2 25 0.375 7 7 21 25 0.375 8 3 3 0 3 34 3 10 3 24 29	4 2 0 0 2 0.03 0 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 5 1 1 2 4 5	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} 7\\ 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 2\\ 10\\ 12\\ 0.18\\ 0\\ 12\\ 5\\ 2\\ 0\\ 12\\ 0\\ 6\\ 13\\ 16\\ 0\\ 2\\ 0\\ 12\\ 0.18\\ 0\\ 12\\ 0.18\\ 0\\ 12\\ 0.18\\ 0\\ 12\\ 3\\ 3\\ 13\\ 16\\ \end{array}$	19 2 1 4 3 10 12 0.18 3 15 4 3 13 16 0.24 3 5 4 17 0.255 3 11 5 0 3 9 11	519 108 104 120 156 488 586 8.79 0 595 164 184 212 205 918 13.7 9.2 205 205 205 205 208 258 854 1073 16.095 0 1089 277 248 243 243 243 243 243 983 1180	2 0 1 1 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 16 19 19 0.285 6 25 3 7 7 7 7 3 20 24 0.36 7 3 10 4 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 3 2 3 2 10 11 16 4 3 1 1 1 10 11 12 10 12 10 12 10 12 10 12 10 12 4 16 3 3 4 11 13 0.195 5 2 4 12 2 4 12 12 14		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turns:</u> ily Trops * (1/7)) * 25% Entering * 45% 25 x.45 x.072 seed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	n Trips (at 7-8 AM)	
Tear 2022 2:00 PM 2:15 PM 2:35 PM 2:45 PM Sum +20% Increase General Growth Trips Generated 2:3 pm 3:00 PM 3:315 PM 3:315 PM 3:30 PM 3:345 PM Ceneral Growth Trips Generated 3:4 pm Year 2022 4:00 PM 4:15 PM 4:30 PM 4:35 PM Year 2022 4:00 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM Sum +20% Increase General Growth Trips Generated 4:5 pm Year 2022 5:00 PM 5:15 PM 5:30 PM 5:15 PM 5:30 PM 5:40 PM 5:40 PM 5:40 PM 5:40 PM 5:40 PM	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 3 3 5 3 2 13 16 0.24 6 23 6 4 8 3 21 25 0.375 7 7 3 5 7 7 2 21 25 0.375 8 3 10 3 24 8 3 10 3 24 29 0.435	4 2 0 0 0 2 0.03 0 2 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0.075	$\begin{array}{c c} 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0.015\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 2\\ 2\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 7\\ 1\\ 1\\ 3\\ 4\\ 2\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	19 2 1 4 3 10 12 0.18 3 15 4 3 10 0.18 3 10 0.25 4 3 10 0.24 3 5 4 2 14 77 0.255 21 1 5 0 3 9 11 0.165	519 108 104 120 150 488 586 595 164 184 212 205 918 13.7 0 932 223 205 208 884 1073 10.095 0 1089 277 248 245 213 983 1180	2 0 1 1 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	22 6 4 3 3 16 19 9 9 9 9 9 9 9 9 9 9 9 9 9	2 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 16\\ 3\\ 2\\ 2\\ 3\\ 2\\ 10\\ 12\\ 0.18\\ 4\\ 1\\ 1\\ 2\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 10\\ 12\\ 11\\ 13\\ 0.195\\ 5\\ 18\\ 5\\ 2\\ 2\\ 4\\ 1\\ 12\\ 14\\ 14\\ 12\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$		57.1 For example, 7-8 AM Volume = (4,420 Dai Volume = 5 Trips This spreadsheet is us will meet traffic signa	14% <u>I for SB Right Turne:</u> ily Teps * (1/7)) * 25% Entering * 459 25 x.45 x.072 sed to estimate the future project hourd al warrants	% Trips from SB RT * 7.20%	intersection	

APPENDIX J

RESPONSE LETTER TO ADDRESS REVIEW COMMENTS

11812 Black Road Knoxville, Tennessee 37932 Phone (865) 556-0042 ajaxengineering@gmail.com

February 26, 2021

PROJECT NAME: Innsbruck Farms Subdivision TIS

- TO: Knoxville-Knox County Planning
- SUBJECT: TIS Comment Response Document for Innsbruck Farms Subdivision (3-SB-21-C) Review Comments dated February 22, 2021

Dear Knoxville-Knox County Planning Staff:

The following comment response document is submitted to address comments dated February 22, 2021 and is included at the end of the revised report.

- 1. Please show recommended improvements in figures for intersections within the Conclusions and Recommendations section.
 - a. Has the skewed angle of N Ruggles Ferry Pike to AJ Highway been discussed with Knox County? Is there right-of-way to realign it?
 - <u>Response</u>: The revised report has included Figures 9a and 9b showing the recommendations for the intersections of Asheville Highway at North Ruggles Ferry Pike and Andrew Johnson Highway at North Ruggles Ferry Pike.

The County has not been contacted regarding the skewed intersection of Andrew Johnson Highway at North Ruggles Ferry Pike. Based on property lines shown in KGIS (rough approximation), it does not appear that this skewed intersection could be re-aligned within the existing rightof-way, especially on the northwest and southwest corner of the intersection.

2. During the Developer Review meeting on February 16, 2021, there was a concern for the two current access points for the subdivision, off Burris Road and a new access off N Ruggles Ferry Pike. The two access points are very close together and do not give

proper circulation for the remainder of the subdivision. A connection to Blake Lane was mentioned and recommended by the review team as providing better ingress/egress for the other part of the subdivision as a secondary access point. This will need to be evaluated.

- <u>Response</u>: The revised report has been updated to reflect this requested change. The revised site plan showing the abandonment a connection to Burris Road and changing to a Blake Lane connection has been fully incorporated in the revised report. Revisions reflecting these changes are made throughout the report.
- 3. The review team has evaluated that there needs to be an eastbound right-turn lane at the intersection of N Ruggles Ferry Pike with AJ Highway. These right-turn volumes are minor approaches and they do not need to be included in the signal warrant justifications.
 - a. At this intersection a signal is recommended. The crash history does not substantiate the need for a traffic signal at this time. You can keep this in the recommendations, but Knox County will not be requiring a signal due to this part of the development at this time. Another update to the study will be required if there are any additions to the subdivision.
 - Response: An eastbound right-turn lane recommendation for North Ruggles Ferry Pike at Andrew Johnson Highway has been added to the report based on the review team's input. This additional recommendation has been added to the report in the Executive Summary section, the Conclusions and Recommendations section discussing the intersection, and in the new Figure 9b. The recommendation is made such that this right-turn lane should be added only if the intersection re-examination in the future warrants the construction. As suggested in the comment letter, the traffic signal recommendation for this intersection has been preserved in the report.

In addition to the requested revisions, other changes in the report include the following:

- Updated Title Page
- Updated Table of Contents
- Updated Page Footers
- Added "R3-2" to discussion regarding "No Left Turn" signage on Pages 2, 7, and 65
- Added Road "R" to discussion regarding future phases on Pages 3, 21, and 83
- Updated report to reflect the change from twenty internal roads to twenty-one on Pages 4, 20, 24, and 83
- Revised Photo Exhibits to include Blake Lane at North Ruggles Ferry Pike
- Updated report to reflect the change in the number of common areas from eight to nine on Page 20

- Updated report to reflect the change in the number of existing parcel areas from six to five on Page 21 and 23
- Updated Location Map on Figure 1
- Updated Table 1 to include Blake Lane
- As requested, a discussion regarding right-of-way width of North Ruggles Ferry Pike at Road "A" has been added on Page 59
- Updated Figures 2b, 3, 4b and 4d (site property boundary), 5b (site property boundary), 6b, 7a, 7b, 8a, and 8b
- Updated Tables 6, 7a, 7b, 7c, 7d,8b, and 9b
- Added Figures 9a and 9b (Summary of External Recommendations)
- Updated Internal Sign Locations on Page 83
- Updated Appendix F calculations
- Updated Appendix H calculations
- Added Appendix J to include this response letter

If you have any questions or further comments, please feel free to contact me at any time. I look forward to your review and approval.

Sincerely,

Ajax Engineering, LLC Robert W. Jacks, P.E.

Ajax Engineering, LLC 11812 Black Road Knoxville, TN 37932 ajaxengineering@gmail.com © 2021 Ajax Engineering, LLC