

TRANSPORTATION IMPACT STUDY
 BRAKEBILL ROAD DEVELOPMENT
 Knox County, TEnNessee

-Prepared For-
Vertex Development, LLC 121 Anchor Drive Andersonville, TN 37705

Revised May 2018
DESCRIPTION OF EXISTING CONDITIONS. 4
Study Area 4
Existing Roadways 6
Photo Exhibits 10
Existing Transportation Volumes per Mode 14
On-Street Parking 14
Pedestrian and Bicycle Facilities 14
Walk Score 15
Transit Services 15
Project Description 16
Location and Site Plan 16
Proposed Uses and Zoning Requirements 18
Development Density 19
On-Site Circulation and Vehicle Parking 19
Service and Delivery Vehicle Access and Circulation 20
Traffic Analysis of Existing and Projected Conditions 21
Existing Traffic Conditions 21
Opening Year Traffic Conditions (Without project) 28
Trip Generation 31
Trip Distribution and Assignment 33
Opening Year Traffic Conditions (With project) 39
Discussion of Vehicle Speeds and Crashes on Brakebill Road 43
CONCLUSIONS \& RECOMMENDATIONS 47
Asheville Highway (US 25E/Hwy 11E) at Brakebill Road 47
Hammer Road at Brakebill Road 47
Hammer Road at Road "I". 48
Brakebill Road at Apartment Driveway 49
Brakebill Road at Mini-Warehouse Facility Driveway. 51
Brakebill Road at Road "A" 52
Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side) 55
Strawberry Plains Pike at Brakebill Road 56
Brakebill Road 63
Brakebill Road Development Roads \& Parking Area Aisle-Ways 73
ApPENDIX

APPENDIX

Appendix A -	Historical Traffic Count Data
Appendix B -	Walk Score
Appendix C -	Knoxville Area Transit Map and Information
Appendix D -	ZONING MAP
Appendix E -	Manual Traffic Count Data
Appendix F -	Existing Traffic Signal Timing Information
Appendix G -	CAPACITY ANALYSES - HCM WORKSHEETS (SYNCHRO 8)
Appendix H -	ITE and MPC Trip Generation Rates
Appendix I -	Trip Distribution Spreadsheet Calculations
Appendix J -	Spot Speed Study
Appendix K -	TDOT Statewide Crash Rates \& Spreadsheet Calculations
Appendix L -	Knox County Turn Lane Volume Threshold Worksheets
Appendix M -	SimTraffic Queue Lengths
Appendix N -	TDOT Road Safety Audit Review
Appendix O -	Traffic Signalization Warrants

LIST OF FIGURES

FIGURE

PAGE

1. LOCATION MAP 5
2. Traffic Count Locations \& Existing Lane Configurations 9
3. Proposed Plan Layout - Brakebill Road Development 17
4. 2018 Peak Hour Traffic Volumes - Existing Traffic Conditions 23
5. 2025 Peak Hour Traffic Volumes - Opening Year Traffic (Without Project) 29
6A. Entering Directional Distribution of Generated Traffic During AM and PM Peak Hour 35
6B. Exiting Directional Distribution of Generated Traffic During AM and PM Peak Hour 36
7A. Entering Traffic Assignment of Generated Traffic During AM and PM Peak Hour 37
7B. Exiting Traffic Assignment of Generated Traffic During AM and PM Peak Hour 38
6. 2025 Peak Hour Traffic Volumes - Opening Year Traffic (WITH PROJECT) 40
7. Vehicle Crash Data on Brakebill Road 45
8. Summary of Recommended External Road Improvements 72

LIST OF TABLES

TABLE
PAGE

1. Study Corridor Characteristics 6
2. LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS 25
3. Level of Service and Delay for Signalized Intersections 26
4. 2018 Peak Hour Level of Service \& Delay - Existing Traffic Conditions 27
5. 2025 Peak Hour Level of Service \& Delay - Opening Year (without Project) 30
6A. Trip Generation for Brakebill Road Development
Entire Development 31
6B. Trip Generation for Brakebill Road Development 247 Single-Family Detached Homes 32
6c. Trip Generation for Brakebill Road Development 78 Single-Family Attached Homes 32
6D. Trip Generation for Brakebill Road Development Apartments 32
6e. Trip Generation for Brakebill Road Development Mini-Warehouse Facility 32
6. 2025 Peak Hour Level of Service \& Delay - Opening Year (with Project) 42
7. CRash Rates on Brakebill Road 46
8. Traffic Signal Warrant Summary 59
9. 2025 Peak Hour Level of Service \& Delay - Opening Year (With Project) With Preliminary New Traffic Signal Design. 60
10. Turn Lane Storage \& Queue Summary 2025 PM Projected Peak Hour Traffic Volumes with Preliminary New Traffic Signal Design 60

EXECUTIVE SUMMARY

Preface:

Vertex Development, LLC is proposing a residential and commercial development consisting of single-family homes, an apartment complex and a mini-warehouse facility adjacent to Brakebill Road and Hammer Road in east Knox County, TN. Currently, the name of the proposed development is "Brakebill Road Development". The purpose of this study is to determine and evaluate the potential impacts of the proposed development on the adjacent transportation system. The study includes a review of the operating characteristics of the transportation system that will provide access to the proposed site. This study will analyze and recommend potential mitigation measures if traffic operations are estimated to be below traffic engineering standards.

Study Results:

The findings of this study include the following:

- With the 94.9-acre site being constructed with 247 single-family detached home sites, 78 single-family attached home sites (for a total of 325 single-family home sites), a 250 -unit apartment complex and a 4.1 -acre mini-warehouse facility; the development is expected to generate approximately 5,254 new trips on an average weekday. Approximately 362 of these new trips are estimated to occur during the AM peak hour of traffic and 481 trips in the PM peak hour of traffic at full buildout and occupancy. For this study, it was assumed that this development will reach full build-out and occupancy in the year 2025.
- A total of four new unsignalized intersections will be created by this new development. These intersections are projected to operate with minimal delays. Of the four existing intersections examined in the study, two of them were projected to need modifications.
- Based on the review of the vehicle crash history and the study observations on Brakebill Road, it was determined that the narrowness of Brakebill Road could be a contributing factor to vehicle crashes and could possibly be prevented with remediation strategies.

Recommendations:

An overview of the recommendations for the external roadways and intersections is provided in Figure 10 on page 72. The following recommendations are listed here and offered based on the study analyses:

- A Stop Sign (R1-1) with a 24 " white stop bar needs to be installed on the eastbound approach of Hammer Road at Brakebill Road.
- The new Road "A" at Brakebill Road intersection will require a separate northbound left turn lane on Brakebill Road with a storage length of 75 feet. This lane should be constructed prior to the 325-lot residential subdivision being opened to residents.
- The existing Strawberry Plains Pike at Brakebill Road intersection currently meets warrants for traffic signalization based on the existing traffic counts. This intersection currently is operating with a poor level of service and has high vehicle delays for eastbound left turns. It is recommended that this intersection have a traffic signal installed and coordinated with the existing traffic signal to the south at the Strawberry Plains Pike and Interstate 40 On/Off Ramps (north side) intersection. Based on the projected volumes in 2025 and a preliminary traffic signal design, the existing northbound left turn lane at the Strawberry Plains Pike at Brakebill Road will need to be increased in length to a minimum of 205 feet. This traffic signal should be constructed prior to the 325-lot residential subdivision being opened to residents.
- Based on the projected traffic volumes in 2025, the existing turn lanes at the Strawberry Plains Pike and Interstate $40 \mathrm{On} / \mathrm{Off}$ Ramps (north side) intersection will need to be modified. The projected results in the study show that an additional northbound left turn lane will be required due to this traffic movement exceeding 300 vehicles per hour in the PM peak hour. Adding an additional northbound left turn lane will require constructing a second lane on the westbound Interstate 40 On Ramp and merging these lanes prior to or on westbound Interstate 40 . The existing northbound left turn lane has approximately 190 feet of storage. Based on the projected volumes, in addition to
adding a second turn lane, these dual lanes will also need each to be increased to a length of 225 feet.
- Based on the narrowness of Brakebill Road and the recent past crash history, it is recommended that remediation strategies be employed to attempt to reduce future vehicle crashes. While this road was evaluated to not meet the benchmark for TDOT safety funding, Brakebill Road crash history indicates that a substantial amount of crashes involved head-on, opposite direction sideswipe, and road departure crashes. The recommended strategies include identifying and removing/re-locating road side hazards, installing advanced warning signage on two existing horizontal curves, and installing rumble strips on the centerline and the edge line of Brakebill Road. Eventually, Brakebill Road will need to be widened and upgraded since it is a major collector and is an important link in between Asheville Highway (US 25E/Hwy 11E) and Strawberry Plains Pike at Interstate 40. The current width of Brakebill Road adjacent to the development site is approximately 18.5 feet and it would be beneficial to widen and upgrade the road to facilitate travel in between Strawberry Plains Pike and Asheville Highway (US 25E/Hwy 11E).

DESCRIPTION OF EXISTING CONDITIONS

- STUDY AREA:

The proposed location of this new development is shown on a map in Figure 1. The proposed development is to be located adjacent to Brakebill Road and Hammer Road in east Knox County, TN. The development site is located to the south of Asheville Highway (US $25 \mathrm{E} /$ Hwy 11E), west of Strawberry Plains Pike and north of Interstate 40. The proposed development is to be comprised of several internal paved roads and will contain 247 singlefamily detached home sites, 78 single-family attached home sites, 250 apartment units, and a 4.1 acre mini-warehouse facility encompassing approximately 94.9 acres. To analyze the transportation impacts associated with the proposed development, the following roadways and intersections were reviewed where the greatest impact is expected and as requested by the Knoxville/Knox County Metropolitan Planning Commission (MPC):
o Asheville Highway (US 25E/Hwy 11E) at Brakebill Road
o Hammer Road at Brakebill Road
o Strawberry Plains Pike at Brakebill Road
o Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side)

The proposed development property is located within Knox County. However, all the study intersections, except for the Hammer Road at Brakebill Road intersection, are located within the City of Knoxville limits.

In the immediate vicinity of this development, there are several residential areas, unused/woodland properties, farm properties, and a temple. The proposed development site property currently consists almost entirely of undeveloped woodlands.

The development property is bounded by Hammer Road to the north, Brakebill Road to the east, undeveloped property and a handful of individual residences to the west, and undeveloped property to the south.

Figure 1
Location Map

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN

- Existing Roadways:

Table 1 shows the characteristics of the primary existing roadways included in the study:

TABLE 1
STUDY CORRIDOR CHARACTERISTICS

NAME	CLASSIFICATION ${ }^{1}$	SPEED LIMIT	LANES	$\begin{gathered} \text { ROAD } \\ \text { WIDTH }{ }^{2} \end{gathered}$	TRANSIT ${ }^{3}$	PEDESTRIAN FACILITIES	BICYCLE FACILITIES
Asheville Highway (US 25W / Hwy 11E)	Major Arterial	55 mph	4 divided	100 feet	None	No sidewalks along roadway	No bike lanes
Brakebill Road	Major Collector	30 mph	2 undivided	18.5 feet	None	No sidewalks along roadway	No bike lanes
Hammer Road	Minor Collector	30 mph	2 undivided	16.5 feet	None	No sidewalks along roadway	No bike lanes
Strawberry Plains Pike	Minor Arterial	40 mph	4 divided	120 feet	None	No sidewalks along roadway	No bike lanes

[^0]Asheville Highway (US 25W/Hwy 11E) is a major arterial that traverses in a general northeast-southwest direction. According to Wikipedia, US 25W is 145.7 miles in length and runs in between Newport, Tennessee to Corbin, Kentucky. Highway 11E is 120.9 miles in length and runs in between Knoxville, TN and Bristol, Virginia. Closer to the study area, Asheville Highway provides convenient access to Knoxville to the southwest, Jefferson City to the northeast (via Hwy 11E), and Dandridge to the east (via US 25W). At the intersection of Brakebill Road, Asheville Highway is a divided highway with a grass median. Traffic movements at the 4-way intersection of Brakebill Road at Asheville Highway are controlled by a traffic signal and the signal heads are supported on span wires. There are some street lights at the intersection of Asheville Highway (US 25E/Hwy 11E) at Brakebill Road.

Brakebill Road provides immediate access to the proposed Brakebill Road Development and traverses in a north-south direction. Brakebill Road is 1.3 miles in length and exists in between Asheville Highway (US 25E/Hwy 11E) to the north and Strawberry Plains Pike to the south. Commercial development is located on each end of Brakebill Road with residential, farm properties, a temple, and undeveloped land in between.

Brakebill Road has a fairly straight horizonal alignment for much of its length but does have some significant horizontal curvature. On the southern end of Brakebill Road, at the intersection with Crosswood Boulevard (prior to the terminus at Strawberry Plains Pike), there is an extreme horizontal road curve with a significant vertical change in grade. The cross slope at this horizontal curve is over 10% with a vertical grade of nearly 8%. While Brakebill Road is classified as a major collector, the road is relatively narrow in width. Evidence of wheel tracking off the pavement is present along Brakebill Road. Brakebill Road intersects Strawberry Plains Pike at a divided highway section with a grass median. At this intersection, the minor roadway, Brakebill Road, is controlled by a Stop Sign (R1-1) for eastbound traffic and Strawberry Plains Pike northbound and southbound traffic operates freely.

Hammer Road traverses in a general northeast-southwest direction between Brakebill Road on the east side and Manis Road on the west side (adjacent to Interstate 40). Hammer Road is classified as a minor collector in the study area. Hammer Road was once a continuous road from Brakebill Road to what is now known as Governor John Sevier Highway (SR 168) prior to the construction of Interstate 40. Hammer Road now officially ends on the north side of Interstate 40 at Manis Road but begins again on the south side of Interstate 40 and eventually terminates at Governor John Sevier Highway (SR 168). Hammer Road is a relatively narrow road near the project site and consists entirely of individual residences and farm properties adjacent to the proposed development. The horizontal and vertical alignment on Hammer Road is relatively calm near the proposed development. However, several hundred feet to the west, Hammer Road has two sharp horizontal 90-degree curves. Hammer Road intersects Brakebill Road at a t -intersection. Northbound and southbound traffic on Brakebill Road operates freely at this intersection while the eastbound approach at Hammer Road operates at a stop condition. However, currently, a Stop Sign (R1-1) is not provided on the Hammer Road approach.

Strawberry Plains Pike traverses in between Andrew Johnson Highway (Hwy 11E) to the northeast of the project site, past Governor John Sevier Highway (SR 168), and then ends at Thorngrove Pike to the southwest. In the study area, Strawberry Plains Pike is a divided highway with a grass median and has a significant amount of commercial businesses. Gas stations, restaurants, and hotels populate Strawberry Plains Pike adjacent to Interstate 40. Exit 398 of Interstate 40 at Strawberry Plains Pike attracts large amounts of truck traffic and motorists associated with the surrounding development. The intersection of Strawberry Plains Pike at the northern (and southern) Interstate 40 On/Off Ramps is controlled by a traffic signal and the
signal heads are supported on span wires. Roadway lighting is provided at the intersection of Strawberry Plains Pike with Brakebill Road and the Interstate 40 On/Off Ramps (north and south side).

Figure 2 shows the lane configurations of the study area roadways and intersections and shows the study traffic count locations. It also shows the posted speed limits in the area along with distances on Brakebill Road in between Asheville Highway (US 25E/Hwy 11E) and Strawberry Plains Pike. The pages following Figure 2 give an overview of the site study area with photographs.

Photo Exhibits

Interstate 40 On/Off Ramps (north side) at Strawberry Plains Pike

- Existing Transportation Volumes per Mode:

There are two annual vehicular traffic count locations adjacent to this project site.

0 Existing vehicular roadway traffic:

- Average Daily Traffic (ADT) on Brakebill Road near the project site was reported by the Tennessee Department of Transportation (TDOT) at 3,278 vehicles per day in 2016. From 2010 - 2016, this count station has indicated a -0.5% average annual growth rate.
- ADT on Strawberry Plains Pike to the south of Interstate 40 and the project site was reported by the MPC at 17,650 vehicles per day in 2016. Traffic data at this location on Strawberry Plains Pike has been collected sporadically throughout the past 10 years. Due to this lack of regular data collection, a reliable average annual growth rate for Strawberry Plains Pike is difficult to gauge. However, based on data only from 2006, 2008, 2012, and 2016; the average annual growth rate was calculated to be -1.4%. All the researched historical traffic count data for this report can be viewed in Appendix A.
o Existing bicycle and pedestrian volumes: The average daily pedestrian and bicycle traffic along the study corridor is not known. A couple of pedestrians were observed at the intersections during the manual traffic counts. A single bicyclist was also observed on Brakebill Road. It is reasonably assumed that these volumes are minimal to non-existent in the study area.

- ON-STREET PARKING:

Currently, on-street parking is not allowed on any of the studied roadways adjacent to the project site.

- Pedestrian and Bicycle Facilities:

Bicycle facilities (lanes) and pedestrian sidewalks are not currently available within the project site study area on any of the studied roadways.

- WALK SCORE:

A private company offers an online website that grades and gives scores to locations within the United States based on "walkability". According to the website, the numerical value assigned (the Walk Score) is based on the distance to the closest amenity in various relevant categories (businesses, schools, parks, etc.).

Appendix B shows a map and gives information for the proposed site development Walk Score at Brakebill Road. Based on the project location, the site is given a Walk Score of 15 at 499 Brakebill Road (close to the intersection of Brakebill Road at Hammer Road). This Walk Score indicates that the site is almost completely dependent on vehicles for errands and travel. This low walkability score is due to the complete absence of sidewalks on Brakebill Road to outside destinations/amenities even though there are several potential destinations/amenities on each end of Brakebill Road.

- Transit Services:

The City of Knoxville has a network of public transit opportunities offered by Knoxville Area Transit (KAT). Bus service is not available in this area of Knox County. The overall KAT bus system map is in Appendix C. The closest public transit bus service is located approximately 5 miles away via Asheville Highway (US 25E/Hwy 11E) at Chilhowee Drive adjacent to Holston Hills. This KAT service is Route 31 "Magnolia Avenue". It operates on weekdays and weekends and this route map is also included in Appendix C.

Other transit services include the East Tennessee Human Resource Agency (ETHRA) and Knoxville-Knox County Community Action Committee (CAC) which provides transportation services in Knox County when requested. Other services include private taxis and ride-sharing opportunities (Uber, etc.). Knox County school busses were observed traveling on the studied roadways during the traffic counts.

Project DESCRIPTION

- Location and Site Plan:

The proposed plan layout designed by Batson, Himes, Norvell, and Poe is shown in Figure 3. As can be seen in the figure, a trio of new entrances are proposed to tie into Brakebill Road and one will tie into Hammer Road. (Note: The layout for the proposed mini-warehouse is not complete and the driveway location is shown only with a call-out in Figure 3.) The proposed development is expected to be comprised of several new internal drives and parking lot areas on 94.9 acres. At this stage of design, it is proposed that the development will include the following:

0247 single-family detached home sites and 78 single-family attached home sites on approximately 76.8 acres to the south of Hammer Road and to the west of Brakebill Road.
o 250 apartment units on 14 acres at the southwest corner of the intersection of Hammer Road at Brakebill Road.
o 4.1 acres for a mini-warehouse facility to the south of the apartment complex and to the west of Brakebill Road.

The actual schedule for completion of these new residential developments and the miniwarehouse facility is dependent on economic factors and construction timelines. This project is also contingent on permitting, design, and other issues. Due to the physical location of this development within the Knox County market, the developer has estimated that the full build-out and occupancy will take a bit more than 5 years. Thus, for the purposes of this study, it was assumed that the total construction build-out and full occupancy of the entire development will occur by the year 2025 .

At this point, the development is expected to start construction initially for the residential subdivision, followed by the apartment complex, and the mini-warehouse facility last.

Figure 3
Proposed Plan Layout
Brakebill Road Development

- Proposed Uses and Zoning Requirements:

The proposed single-family detached and attached residential development is expected to be comprised of 11 new internal roadways with 325 lots on approximately 76.8 acres. The single-family residential development will also incorporate 10 lots/areas dedicated to open/common space in which some will incorporate the storm water controls for the development. The attached residential homes will have several parking lot areas for the residences.

The proposed apartment development design is in its initial stage and potentially subject to design layout revisions. Currently, the initial design plans for the apartment complex shows 11 buildings containing 250 units. Parking lot areas are shown for the complex and a single entrance/ exit is shown located approximately 250 feet to the south of the existing intersection of Hammer Road at Brakebill Road.

The plans for the mini-warehouse facility have not been formalized. It is, however, proposed to be located within 4.1 acres of the development property and will have direct access to Brakebill Road. The mini-warehouse facility property is shown on the plan layout approximately 900 feet away from the intersection of Hammer Road at Brakebill Road. Knox County Zoning Regulations (Article 4.93) state that mini-warehouse facilities must be more than 2 acres in size and must connect to either a major collector or arterial. The proposed plan for this facility meets both of these standards.

The site property was zoned as Agricultural (A). The property was recently requested to be rezoned to Planned Residential (PR). The rezoning was approved internally by the MPC on February 8th, 2018 for a density up to 9 dwelling units per acre. The official determination for rezoning was approved by the Knox County Commission on March 26th, 2018. Note: In order for the mini-warehouse facility to be allowed, this portion of the property will have to be rezoned for Planned Residential (PR) at some point in the future. The existing adjacent surrounding land uses are the following:

0 Ten properties to the north on the opposite side of Hammer Road are zoned as Agricultural (A) and two properties are zoned as Low Density Residential (RA). One property is zoned as Planned Residential (PR) with a density of 1 - 3
dwelling units per acre. Most all these properties are currently occupied with single-family homes.
$0 \quad$ Two properties are located to the west and are currently zoned Agricultural (A) and Planned Residential (PR) with a density of $1-8$ dwelling units per acre. The one property that is zoned Agricultural (A) has a single-family residence. The other property zoned Planned Residential (PR) is vacant land which appears to have been partially graded in the past in anticipation of a residential development.
0 To the south, 2 properties are zoned Agricultural (A). These two properties consist of vacant land and a single-family residence/farm property.
$0 \quad$ The properties to the east on the opposite side of Brakebill Road are also zoned Agricultural (A). They consist of single-family residences and farm property. In addition to these residential properties, there is also a Hindu temple named BAPS Shri Swaminarayan Mandir.

The Planned Residential (PR) zone allows for a variety of land uses primarily within the residential realm. Uses permitted in this zone include single-family dwellings, duplexes, and multi-dwelling structures and developments. The current zoning map prior to the requested rezoning for the project site is provided in Appendix D.

- DEVELOPMENT DENSITY:

The allowable density by Knox County for the development is 9 dwelling units per acre based on the recent rezoning. Combining 325 single-family detached and attached residential lots on 76.8 acres with the 250-unit apartment complex located on 14 acres results in a density of approximately 6.33 units per acre. This density is far below the maximum density of 9 dwelling units per acre allowed based on the rezoning.

- ON-Site Circulation and VEhicle Parking:

The proposed single-family detached and attached residential portion of the development is expected to be comprised of 11 new internal paved roadways. The eleven new internal roads will include ten cul-de-sacs and are labeled on the layout plan (Figure 3) as Road "A" thru Road "L" (Road "G" has been removed as of 5/29/18). The total length of the internal roadways in the residential subdivision will be just over 11,165 feet (2.1 miles). The internal roadways for the
single-family detached and attached residential development will be paved, include 8 " extruded concrete curbing, and the lane widths will be 13 feet for a total of 26 -foot pavement width within a 50 -foot right-of-way. The internal roadways in the layout plan are shown flanked with 5 -foot concrete sidewalks on one side of the road for most of the development.

The internal parking areas for the attached residential units is currently designed to be constructed in 9 main areas providing 75 parking spaces. The internal parking areas shown in Figure 3 include 18 -foot deep parking spaces on both sides of a 26 -foot wide aisle-way. The parking spaces are shown in the plan to be 9 feet in width. The required amount of parking spaces based on the Knoxville/Knox County regulations is 1 space per dwelling unit for onebedroom units and 1.5 spaces per dwelling unit with two or more bedrooms. The number of bedrooms for each unit is not known at this point to determine the amount of required parking spaces.

The internal parking areas for the apartment complex is currently designed to be constructed with a ringed parking area aisle-way and is approximately 1,800 feet in length. The internal parking areas shown in Figure 3 include 18-foot deep parking spaces on both sides of a 26 -foot wide aisle-way. The parking spaces are shown in the plan to be 9 feet in width. The required amount of parking spaces based on the Knoxville/Knox County regulations is 1 space per dwelling unit for one-bedroom units and 1.5 spaces per dwelling unit with two or more bedrooms. The number of bedrooms for each unit is not known at this point to determine the amount of required parking spaces.

Currently, there is not enough design information to provide details about the layout and configuration of the proposed mini-warehouse facility.

- SERvice and Delivery Vehicle Access and Circulation:

In addition to passenger vehicles, the proposed internal roadways and parking aisle-ways will also provide access to service, delivery, maintenance, and fire protection vehicles. It is not expected that any of these vehicles will impact off-site adjacent roadway operations other than when these vehicle-types will occasionally enter and exit the development. The internal roadways in all portions of the development are expected to be able to accommodate these types of vehicles along with passenger vehicles.

Traffic Analysis of Existing and Projected Conditions

- Existing Traffic Conditions

Traffic counts were conducted at the following existing unsignalized and signalized intersections as directed by the MPC:
o Asheville Highway (US 25E/Hwy 11E) at Brakebill Road
o Hammer Road at Brakebill Road
o Strawberry Plains Pike at Brakebill Road
o Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side)

Traffic counts were conducted by Quality Counts, LLC on Tuesday, March 20th, 2018. The counts were conducted during the peak periods and the local schools were in session when the traffic counts were conducted. The intersections of Asheville Highway (US 25E/Hwy 11E) at Brakebill Road and Hammer Road at Brakebill Road were counted from 7-9 am and 2-6 pm. The intersections of Strawberry Plains Pike at Brakebill Road and Strawberry Plains Pike at the Interstate $40 \mathrm{On} / \mathrm{Off}$ Ramps (north side) were counted from $7-9 \mathrm{am}, 11 \mathrm{am}-1 \mathrm{pm}$, and 2 -6 pm . Based on the traffic volumes counted at the intersections, the AM and PM peak hour of traffic were observed at the following times:

0 Asheville Highway (US 25E/Hwy 11E) at Brakebill Road 7:15-8:15 AM / 3:45-4:45 PM
o Hammer Road at Brakebill Road 7:30-8:30 AM / 4:15-5:15 PM
o Strawberry Plains Pike at Brakebill Road 7:15-8:15 AM / 4:30 - 5:30 PM
0 Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side) 7:15-8:15 AM / 4:30 - 5:30 PM

The manual tabulated traffic counts can be reviewed in Appendix E. In Figure 4, the volumes are shown from the existing traffic counts during the AM and PM peak hours observed at each intersection. (Note: For the intersection of Strawberry Plains Pike at Brakebill Road, Quality Counts, LLC data in the appendix shows the traffic count with Brakebill Road as the
southbound approach and Strawberry Plains Pike as the westbound and eastbound approach. This report shows Brakebill Road as the eastbound approach and Strawberry Plains Pike as the northbound and southbound approaches.)

Capacity analyses were undertaken to determine the existing Level of Service (LOS) for the studied intersections with respect to vehicular traffic. The capacity analyses were calculated by following the methods outlined in the Highway Capacity Manual and using Synchro Traffic Software (Version 8). LOS is a qualitative measurement developed by the transportation profession of how well an intersection or roadway performs based on a driver's perception. LOS designations include LOS A through LOS F. The designation of LOS A signifies a roadway or intersection operating at best, while LOS F signifies road operations at the worst. This grading system provides a reliable straightforward means to communicate road operations to the public. The Highway Capacity Manual (HCM) lists level of service criteria for unsignalized intersections and signalized intersections.

For unsignalized intersections, Level of Service is measured in terms of delay (in seconds). This measure is an attempt to quantify delay that includes travel time, driver discomfort, and fuel consumption. The LOS for a two-way

(Source: FDOT) stop (or yield) controlled intersection is defined by the delay for each minor approach and major street left-turn movement. Table 2 lists the level of service criteria for unsignalized intersections.

For signalized intersections, level of service is based upon control delay (in seconds) for various movements within the intersection. This delay is a measurement of driver discomfort, frustration, fuel consumption, lost travel time and is dependent on traffic signal cycle lengths, lengths of green phases, and the quality of traffic progression. This control delay includes deceleration/acceleration delay, queue move-up time, and stopped delay time. Table 3 lists the level of service criteria for signalized intersections.

The signal timing information that was used for this study for studying the signalized intersections was given by the City of Knoxville and is shown in Appendix F. The intersections of Asheville Highway (US 25E/Hwy 11E) at Brakebill Road and Strawberry Plains Pike at Interstate $40 \mathrm{On} / \mathrm{Off}$ Ramps (north side) operate with actuated traffic signals and they currently
are not in coordination with any other traffic signals.

From the capacity calculations, the results from the existing peak hour vehicular traffic can be seen in Table 4 for the intersections. The intersections in the table are shown with a LOS designation, delay (in seconds), and v/c ratio (volume/capacity) for the AM and PM peak hours. Av/c ratio of 1 would indicate that the traffic volumes are at the roadway capacity. Appendix G includes the worksheets from the capacity analyses for the existing peak hour vehicular traffic.

Most of the intersection approaches and intersections are shown to operate at an adequate level during the existing AM and PM peak hours for vehicular traffic. However, for the intersection of Strawberry Plains Pike at Brakebill Road, the existing peak hour level of service is calculated as extremely poor during the AM and PM peak hours for eastbound left turning traffic. Large delays for this movement are experienced by motorists attempting to turn left from Brakebill Road onto northbound Strawberry Plains Pike due to the large conflicting traffic volumes.

TABLE 2

LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	DESCRIPTION	DELAY RANGE (seconds /vehicle)
A	Little or no delay	≤ 10
B	Short Traffic Delays	>10 and ≤ 15
C	Average Traffic Delays	>15 and ≤ 25
D	Long Traffic Delays	>25 and ≤ 35
E	Very Long Traffic Delays	>35 and ≤ 50
F	Extreme Traffic Delays	>50

Source: Highway Capacity Manual

TABLE 3

LEVEL OF SERVICE AND DELAY FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY PER VEHICLE (seconds)
A	Operation with very low control delay. Progression is extremely favorable and most vehicles do not stop at all.	≤ 10.0
B	Generally good level of progression. More vehicles stop than with LOS A, causing higher levels of average delay.	$10.1-20.0$
C	Higher delays with individual cycle failures may begin at this level. Many vehicles may still pass through without stopping.	$20.1-35.0$
D	Approaching unstable flow. The influence of congestion becomes more noticeable. Many vehicles stop.	$35.1-55.0$
E	Considered the limit of acceptable delay. High delays indicated by poor progression, long cycle lengths, and high v/c ratios.	$55.1-80.0$
F	Unacceptable delay occurs. Progression is extremely poor with long cycle lengths and high v/c ratios.	>80.0

Source: Highway Capacity Manual

TABLE 4
2018 PEAK HOUR LEVEL OF SERVICE \& DELAY - EXISTING TRAFFIC CONDITIONS

INTERSECTION	TRAFFIC CONTROL	APPROACH	AM PEAK			PM PEAK		
			LOS	DELAY (seconds)	V/C	LOS	DELAY (seconds)	V/C
Asheville Highway (US 25E/Hwy 11E) at Brakebill Road		Eastbound	B	14.9		C	20.1	
		Westbound	B	14.0		B	12.2	
		Northbound	D	35.2		C	32.6	
		Southbound	D	38.7		D	40.6	
		Intersection Summary	B	16.2	0.630	B	18.3	0.600
Hammer Road at Brakebill Road		Northbound Left	A	7.5	0.008	A	7.7	0.012
		Eastbound Left/Right	B	10.3	0.061	B	10.8	0.061
Strawberry Plains Pike at Brakebill Road		Northbound Left	B	11.2	0.132	B	10.3	0.238
		Eastbound Left	F	56.2	0.518	E	40.5	0.420
		Eastbound Right	B	14.4	0.289	B	11.1	0.191
Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side)		Westbound	C	29.6		C	30.2	
		Northbound	A	6.5		A	9.5	
		Southbound	B	11.3		B	10.3	
		Intersection Summary	B	13.1	0.550	B	12.9	0.780

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2010 methodology for unsignalized intersections and HCM 2000 methodology for signalized intersections

Revised May 2018
Transportation Impact Study

- Opening Year Traffic Conditions (Without project):

Opening year traffic volume estimates represent the future condition the proposed study area is potentially subject to without the proposed project being developed (no-build option). As previously stated, the build-out and full occupancy for this proposed new development was assumed to occur in the year 2025. This corresponds with almost seven years for the entire development to be constructed and reach full occupancy.

Vehicular traffic on nearby roadways has shown overall negative growth over the past few years according to the TDOT and MPC count stations (historical traffic data is shown in Appendix A). Currently, there are no known significant upcoming developments adjacent to the proposed site that would indicate future increased traffic volumes in the study area. To insure a reasonable traffic growth estimate for this study, several factors were used to consider future growth in the area and potential rising travel volumes. To account for any potential traffic growth in the study area, an average annual growth rate of 2% was used to calculate future growth up to the year 2025 for the studied intersections. The results of this growth rate to the existing traffic volumes can be seen in Figure 5. Figure 5 shows the projected opening year traffic volumes in 2025 during the AM and PM peak hours without the project being developed.

The capacity analysis for the intersection of Strawberry Plains Pike at Brakebill Road was calculated to operate extremely poorly during the AM and PM peak hours for eastbound left turning traffic in the year 2025. The other intersections and intersection approaches are shown to operate at an adequate level during the AM and PM peak hours for vehicular traffic in the year 2025. It should be noted that the signalized intersection of Strawberry Plains Pike at the Interstate 40 On/Off Ramps (north side) is calculated to have an overall v/c ratio of 0.970 in the PM peak hour in the year 2025. This indicates that the projected volumes at this intersection will be nearly at capacity based on the existing number of traffic lanes. Table 5 reports the results for the projected opening year traffic conditions (without project) in 2025. Appendix G contains the LOS capacity worksheets for the opening year conditions (without project) in the year 2025. It is important to point out that these projected calculated LOS designations for the intersections could potentially exist in the future even without the proposed residential project being constructed and developed.

TABLE 5
2025 PEAK HOUR LEVEL OF SERVICE \& DELAY - OPENING YEAR (WITHOUT PROJECT)

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2010 methodology for unsignalized intersections and HCM 2000 methodology for signalized intersections

- TRIP GENERATION

A generated trip is a single or one-direction vehicle movement that is either entering or exiting the development site. The Trip Generation Manual, a publication of the Institute of Transportation Engineers, is the traditional and most-sourced resource for determining trip generation rates when traffic impact studies are produced. The Manual lists and includes data for a variety of land uses. The estimated amount of traffic that will be generated by the proposed single-family detached and attached residential lots and the mini-warehouse facility for this development was calculated based upon rates and equations for peak hour trips provided by Trip Generation Manual, 9th Edition. The estimated amount of traffic that will be generated by the proposed apartment development was calculated based upon equations for peak hour trips provided by the MPC. These equations were developed by the MPC from local studies to estimate apartment trip generation in the local area and were published in December 1999. The trip generation data and calculations for the proposed land uses are shown in Appendix H. A summary of this information is presented in the following tables. Table 6 a shows the overall total potential generated traffic for the entire development. Tables 6 b thru 6 e shows the potential generated traffic broken down into the 4-individual land uses in the development.

TABLE 6A
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Entire Development

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
Total New Volume Site Trips			5,254	85	277	362	290	191	481

With a total of 247 single-family detached residential lots, 78 single-family attached residential lots, 250 apartment units, and 4.1 acres of mini-warehouse facilities; based on the calculations, it is estimated that 85 vehicles will enter the development, 277 will exit, for a total of 362 new generated trips during the AM Peak Hour in the year 2025. Similarly, it is estimated that 290 vehicles will enter the development, 191 will exit, for a total of 481 new generated trips during the PM Peak Hour in the year 2025. The calculated trips generated for an average weekday could be expected to be 5,254 vehicles for the entire development. For this study, no trip reductions were included for pass-by or internal trips.

TABLE 6B
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
247 Single-Family Detached Homes

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	$\left\lvert\, \begin{gathered} \text { GENERATED } \\ \text { DAILY } \\ \text { TRAFFIC } \end{gathered}\right.$	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#210	Single-Family Detached Housing	247 Lots	2,414	25\%	75\%		63\%	37\%	
				46	137	183	150	88	238
Total New Volume Site Trips			2,414	46	137	183	150	88	238

ITE Trip Generation Manual, 9th Edition
TABLE 6C
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
78 Single-Family Attached Homes

ITE LAND	LAND USE	UNITS	GENERATED DAILY		NERAT RAFFIC EAK H			NERAT RAFFI EAK H	
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#230	Residential Condominium / Townhouse	78 Dwellings	519	17\%	83\%		67\%	33\%	
				7	36	43	34	16	50
Total New Volume Site Trips			519	7	36	43	34	16	50

ITE Trip Generation Manual, 9th Edition
TABLE 6D
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Apartments

ITE LAND	LAND USE	UNITS	GENERATED DAILY	AM	IERAT RAFFIC EAK H			ERAT RAFFI AK H	
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
MPC Local Rate	Dwelling Units	250 Units	2,175	22\%	78\%		55\%	45\%	
				27	98	125	98	80	178
Total New Volume Site Trips			2,175	27	98	125	98	80	178

MPC Local Rate
TABLE 6E
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Mini-Warehouse Facility

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	$\begin{aligned} & \text { GENERATED } \\ & \text { DAILY } \\ & \text { TRAFFIC } \end{aligned}$	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#151	Mini-Warehouse	4.1 acres	146	45\%	55\%		50\%	50\%	
				5	6	11	8	7	15
Total New Volume Site Trips			146	5	6	11	8	7	15

ITE Trip Generation Manual, 9th Edition

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN

- Trip Distribution and Assignment

Figures 6a and 6b show the projected distribution for traffic entering and for traffic exiting, respectively, for the proposed development during the future AM and PM peak hour at the existing studied intersections and at the new proposed intersections on Hammer Road and Brakebill Road. The percentages shown in the figures only pertain to the new trips generated by the proposed single-family detached and attached residential lots, the apartment units, and the mini-warehouse facility that were calculated from the ITE and MPC trip generation rates.

There are a variety of destinations that will potentially "attract" the projected traffic to and from the new development. These destinations will be accessed by utilizing Asheville Highway (US 25E/Hwy 11E) to the north and Strawberry Plains Pike to the south and east via Brakebill Road. In addition to employment centers and commercial development, traffic will travel to and from a variety of public and private elementary, middle, and high schools. This proposed development will be zoned for Sunnyview Primary School, Carter Middle School, and Carter High School.

To help estimate the projected trip distribution, an additional traffic count was conducted (by Ajax Engineering, LLC) just to the north of the project site at the intersection of Kilbridge Drive and Brakebill Road during the AM and PM peak hours. This intersection serves as an access point on Brakebill Road to an existing residential subdivision named Stonehaven. Stonehaven has several dozen single-family detached residential homes and has been filled out and is an established neighborhood. The results of this count are shown in Appendix E. This count was conducted to gain a better understanding of the existing traffic patterns of a nearby residential development during the peak hours of traffic. This data was then correlated to the proposed traffic for the Brakebill Road Development. Since this was an existing similar land use near this study development, the turning movement counts from Kilbridge Drive were assumed to be a reasonable estimate for the Brakebill Road Development travel patterns and were used to help allocate the future traffic distribution.

The traffic distributions shown and portioned at the new proposed intersections on Hammer Road and Brakebill Road for the single-family residential portion of the development were based on assumed internal travel times/distances and the layout within the development. Specifically, with 2 entrances, it was assumed that 70% of generated traffic will enter and exit the
intersection of Brakebill Road at Road "A". A smaller portion, 30\%, of the single-family detached and attached residences generated traffic was assumed to enter and exit at the intersection of Hammer Road at Road " I ". Also, it was assumed that none of the development traffic will enter or exit from and to the western side of Hammer Road. It is expected that only a minimal amount of traffic will enter from or travel to this direction. To facilitate these trip distribution calculations, a spreadsheet was developed, and the results of it are shown in Appendix I.

Figures 7a and 7b shows the Traffic Assignment of the computed trips for traffic entering and for traffic exiting, respectively, at the new development during the future AM and PM peak hour that will be generated by the development and applied to the various intersection movements. This is based on the assumed distribution of trips shown in Figures 6a and 6b and the total trips generated shown in Table 6a.
US 25W / Hwy IIE

US 25W / Hwy IIE

- OpENING YEAR TRAFFIC CONDITIONS (WITH PROJECT)

Overall, several additive steps were taken to estimate the total opening year projected traffic volumes at the studied intersections when the Brakebill Road Development is fully constructed and occupied in the year 2025. The steps are illustrated below for clarity:

To calculate the total future projected traffic volumes at the studied intersections, the trips generated (from the ITE and MPC trip rates) by the new proposed development were added to the 2025 opening year traffic volumes (shown in Figure 5) in accordance with the predicted directional distributions and assignments (shown in Figures 6a/6b and 7a/7b). This procedure was necessary to obtain the total projected traffic volumes at the time the development is fully built-out and occupied in the year 2025. Figure 8 shows the projected AM and PM peak hour volumes at the studied intersections for the year 2025 with the development traffic.

Capacity analyses were conducted to determine the projected Level of Service for vehicles at the existing and proposed intersections for the year 2025 with the development traffic. Appendix G includes the worksheets for these capacity analyses.

The results of the capacity calculations of the projected 2025 peak hour vehicular traffic at the studied intersections can be seen in Table 7 for the AM and PM peak hour. As can be seen in the table, the eastbound left turn movements at the intersection of Strawberry Plains Pike at Brakebill Road (previously calculated to operate poorly) will suffer intolerable delays in the projected conditions. This movement was shown to have a v/c ratio of 1.786 in the AM peak and 1.612 in the PM peak.

All the new proposed intersections on Hammer Road and Brakebill Road are shown to operate very well with respect to level of service under unsignalized conditions in the future projected conditions. The existing intersection of Strawberry Plains Pike at the Interstate 40 On/Off Ramps (north side) is projected to operate with an overall v/c ratio of 1.02 during the PM peak hour which means the projected vehicle volumes are just over capacity. This greater volume than capacity ratio could result in unstable traffic conditions and excessive vehicle queues.

TABLE 7
2025 PEAK HOUR LEVEL OF SERVICE \& DELAY - OPENING YEAR (WITH PROJECT)

INTERSECTION	TRAFFIC CONTROL	APPROACH	AM PEAK			PM PEAK		
			LOS	$\begin{array}{\|c\|} \hline \text { DELAY } \\ \text { (seconds) } \end{array}$	V/C	LOS	DELAY (seconds)	V/C
Asheville Highway (US 25E/Hwy 11E) at Brakebill Road		Eastbound	C	20.3		C	26.8	
		Westbound	C	21.1		B	18.8	
		Northbound	D	36.0		D	42.4	
		Southbound	D	43.1		D	52.0	
		Intersection Summary	C	23.1	0.770	C	26.1	0.790
Hammer Road at Brakebill Road		Northbound Left	A	7.8	0.020	A	8.3	0.054
		Eastbound Left/Right	B	13.6	0.245	C	17.9	0.271
Strawberry Plains Pike at Brakebill Road		Northbound Left	B	13.2	0.233	C	20.6	0.668
		Eastbound Left	F	483.6	1.786	F	431.2	1.612
		Eastbound Right	D	26.3	0.667	B	13.3	0.337
Strawberry Plains Pike at Interstate 40 On/ Off Ramps (north side)		Westbound	C	30.0		C	31.7	
		Northbound	B	16.0		C	29.0	
		Southbound	B	13.7		B	11.3	
		Intersection Summary	B	17.1	0.790	C	24.1	1.020
Hammer Road at Road "I"		Northbound Left/Right	A	8.6	0.053	A	8.5	0.033
		Westbound Left	A	7.3	0.012	A	7.3	0.038
Brakebill Road at Apartment Driveway		Northbound Left	A	7.7	0.009	A	8.0	0.051
		Eastbound Left/Right	B	11.1	0.156	B	14.5	0.191
Brakebill Road at Mini-Warehouse Driveway		Northbound Left	A	7.8	0.002	A	7.8	0.004
		Eastbound Left/Right	B	11.0	0.009	B	12.7	0.016
Brakebill Road at Road "A"	Unsignalized	Northbound Left	A	7.9	0.013	A	8.0	0.067
		Eastbound Left/Right	B	11.7	0.200	B	14.9	0.183

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2010 methodology for unsignalized intersections and HCM 2000 methodology for signalized intersections

Revised May 2018
Transportation Impact Study

Brakebill Road Development
Knox County, TN

Discussion of Vehicle Speeds and Crashes on Brakebill Road

There are several issues related to the safety and efficiency of vehicle traffic within the study area. These issues include high vehicle delays/high vehicle volumes, sight distances, vehicle crashes, and vehicle speeds. As part of the study process, the primary access road for this proposed development, Brakebill Road, was investigated further regarding existing vehicle speeds and vehicle crash history.

F A spot speed study was conducted on the northbound and southbound approaches of Brakebill Road at two locations to determine free-flow speeds. The equipment used for the speed study was a Bushnell Speedster III Radar Speed Gun. The results of the study indicate that most of the traffic along Brakebill Road adjacent to the proposed development travels at a greater speed than the posted speed limit of 30 mph . The results of the spot speed study indicated that the observed $85{ }^{\text {th }}$ percentile speed was 40 mph for traffic on Brakebill Road near the proposed Road "A" intersection. The results of the spot speed study also indicated that the observed $85^{\text {th }}$ percentile speed was 45 mph for traffic on Brakebill Road near the Hammer Road intersection. The spot speed field observations are provided in Appendix J.

- The MPC provided traffic crash data for Brakebill Road. This data was obtained from the TDOT E-TRIMS (Enhanced Tennessee Roadway Information Management System) database. According to the MPC, the crash data in the E-TRIMS system is from the statewide TITAN (Tennessee Integrated Traffic Analysis Network) database. The TITAN database includes all reportable vehicle crash data from Tennessee law enforcement agencies.

The crash data included the master record number, date and time, crash type, log mile location, number of injuries, weather conditions, light conditions, and number of vehicles involved. The data showed a total of 45 vehicle crashes from 2009 to the present $(4 / 3 / 18)$ occurring along Brakebill Road. During the past 3 years ($4 / 3 / 15$ to $4 / 3 / 18$), the data showed 19 vehicle crashes occurring along Brakebill Road. The total number of traffic crashes during the past 3 years is summarized in the following and further detailed in Figure 9:

Crash Data from 4/3/15 to 4/3/18:

o Brakebill Road - 19 Total Vehicle Crashes
> 18 Vehicle Crashes with no injuries (property damage only)
> 1 Vehicle Crash with one suspected non-incapacitating injury

The individual traffic crash reports were obtained for the majority of these 19 crashes from the Knox County Sheriffs Department. These individual crash reports provided more details into the specifics of each crash. Based on evaluating the obtained individual traffic crash reports from Brakebill Road, 5 of the 19 crashes indicated that the narrowness of Brakebill Road could have been a contributable factor. Of those 5 crashes, 3 were opposite direction sideswipe crashes in which vehicles suffered damage due to the vehicles swiping each other in the center of the road. The other 2 crashes involved striking off-road objects because the drivers perceived that an opposing vehicle was in their lane of traffic. These vehicles departed the roadway when their wheels left the pavement and the driver lost control of their vehicles. Based on a review of the 19 crashes; wet pavement, weather, and time of day did not appear to be a causative factor.

Based on statewide vehicle crash data, TDOT has compiled and calculated statewide crash rates for various types of intersections, road sections, and road spots in Tennessee based on rolling data from the past 3 years of current data. (TDOT defines a spot location as a section of roadway less than or equal to 0.10 mile.) This data is categorized by urban and rural locations, route type (major collector, local, etc.), type of roadway facility (number of lanes, etc.), and location type (intersection, section, or spot). The statewide crash rate tables for intersections, sections, and spots from TDOT was obtained for this study and is provided in Appendix K. As shown in Figure 9, the Brakebill Road crash rates were investigated at an intersection, 2 sections, and a spot location. To calculate the section crash rates, Brakebill Road was broken into 2 sections: Asheville Highway (US 25E/Hwy 11E) to Hammer Road and Hammer Road to Strawberry Plains Pike. The intersection of Hammer Road at Brakebill Road was calculated for an intersection crash rate. Additionally, a spot location was examined on Brakebill Road just to the north of Palmer Lane (north of Kilbridge Drive and Hammer Road) where 3 crashes have occurred in the past 3 years within 0.023 mile. Other intersections on Brakebill Road (Crosswood Boulevard, Kilbridge Drive) did not experience enough crashes to consider analyzing.

TDOT has developed a crash analysis file that compares the actual crash rates at roadway intersections, sections, and spots versus the state average. Based on the number of crashes reported at the intersection of Hammer Road at Brakebill Road, the 2 road sections, and the spot location for the past 3 years; it does not appear that the calculated crash rates are considered high enough to obtain TDOT safety funding. To obtain TDOT safety funding, the ratio of the actual crash rate to the critical crash rate (A/C ratio) would need to be 3.5 or higher. Appendix K includes the crash rate calculations for the intersection, 2 road sections, and spot location. The calculations show the actual crash rate vs. the statewide average crash rate $(\mathrm{A} / \mathrm{S})$ and the ratio of the actual crash rate vs. the critical crash rate (A / C). The critical crash rate (A/C) gives more weight to specific crash severities while the statewide average comparison (A / S) only considers total numbers. The calculated ratios are shown in the following tables for the intersection, 2 road sections, and spot location respectively:

Table 8
Crash Rates on Brakebill Road

Brakebill Road,	Knox County				LM 0.629
Intersection (Hammer Road at Brakebill Road)					
2 Crashes	- 2015 -	2018	Actual	- 0.503	Acc/MVM
State Average	- 0.121	Acc/MVM	Critical	- 0.653	Acc/MVM
AS Ratio	$=4.16$		A/C Ratio	$=0.77$	
0 Fatal Crash	0 Incap. Injury Crash			1 Other Injury Crash	
Brakebill Road,	Knox County				LM 0.000
Section 1 (Asheville Highway - Hammer Road)					
11 Crashes	- 2015-2018		Actual	- 4.725	Acc/MVM
State Average	- 2.183 Acc/MVM		Critical	- 4.651	Acc/MVM
AS Ratio	$=2.16$		A/C Ratio	$=1.02$	
0 Fatal Crash	0 Incap. Injury Crash			1 Other Injury Crash	
Brakebill Road,	Knox County				LM 0.000
Section 2 (Hammer Road - Strawberry Plains Pike)					
8 Crashes	- 2015-2018		Actual	- 3.110	Acc/MVM
State Average	- 2.183 Acc/MVM		Critical	- 4.521	Acc/MVM
AS Ratio	$=1.42$		AVC Ratio	$=0.69$	
0 Fatal Crash	0 Incap. Injury Crash			0 Other Injury Crash	
Brakebill Road,	Knox County				LM 0.000
Spot Location (just north of Palmer Lane)					
4 Crashes	- 2015-2018		Actual	- 1.081	Acc/MVM
State Average	- 0.767 Acc/MVM		Critical	- 1.961	Acc/MVM
AS Ratio	$=1.41$		AVC Ratio	$=0.55$	
0 Fatal Crash	0 Incap. Injury Crash			0 Other Injury Crash	

CONCLUSIONS AND RECOMMENDATIONS

The following discussion is an overview of recommendations to minimize the traffic impacts of the proposed development on the surrounding road system while attempting to achieve an acceptable level of traffic flow and safety. An overview of the recommendations for the external roads and intersections is shown in Figure 10 on page 72.

1) Asheville Highway (US 25E/Hwy 11E) at Brakebill Road:

This intersection was calculated to operate adequately with respect to the level of service during the existing conditions and during the projected conditions when the Brakebill Road Development is completed and fully occupied in the year 2025. Some minor signal timing changes might be required in the future at the intersection to optimize the level of service and reduce queue lengths.

2) Hammer Road at Brakebill Road

2a) The $85^{\text {th }}$ percentile spot speed that was conducted near this intersection was calculated to be 45 mph . Based on Knox County Engineering Policy, the recommended sight distance is ten times the 85th percentile speed. This would indicate a required sight distance of 450 feet looking north and south for eastbound left and right turn movements at Hammer Road. The sight distance at this intersection is more than 450 feet looking north and south from Hammer Road based on visual observation.

2b) The intersection at Hammer Road and Brakebill Road was calculated to operate very well with respect to level of service under unsignalized conditions in the year 2025. Separate left turn lanes or right turn lanes on Brakebill Road onto Hammer Road is not required based on the projected volumes. The Hammer Road at Brakebill Road intersection turn lane evaluation was evaluated based on the projected traffic volumes at the intersection and according to "Knox County's Access Control and Driveway Design Policy". The Knox County turn lane policy worksheets are in Appendix L and the results shown in the Appendix are based on the projected volumes during the PM peak hour since this time period is estimated to have the
highest volumes at the intersection.

The design policy for turn lane warrants relates volume thresholds based on prevailing speeds for two-lane roadways. The speed classification that was chosen for this intersection evaluation was based on the measured $85^{\text {th }}$ percentile speed of 45 mph near this existing intersection. Therefore, this intersection evaluation used the Knox County classification for speeds of 36 to 45 mph with the calculated projected volumes from the PM peak hour.

2c) The intersection of Hammer Road at Brakebill Road currently operates as a twoway stop-controlled t-intersection. At this intersection, Hammer Road operates under a stop condition but does not currently have a Stop Sign (R1-1) installed. A Stop Sign (R1-1) should be installed on the Hammer Road approach at Brakebill Road. A 24 " white stop bar should also be installed.

3) HAMMER ROAD AT ROAD "I"

3a) Based on a posted speed of 30 mph on Hammer Road, the recommended sight distance is 300 feet at the proposed intersection with Road "I". The sight distance at this proposed intersection has been measured by a land surveyor and is more than 400 feet looking east and west from the proposed Road "I".

3b) The intersection of Hammer Road at Road "I" was calculated to operate very well with respect to level of service under unsignalized conditions in the year 2025. The capacity analysis shows that only a single exiting lane for left and right exiting vehicles is required at the Road "I" entrance. Also, separate left turn lanes or right turn lanes on Hammer Road into the subdivision entrance are not required due to the low projected volumes. This was confirmed by an evaluation of the Knox County turn lane threshold policy.

The speed classification that was chosen for this intersection turn lane evaluation was based on the posted speed limit of 30 mph on Hammer Road. Therefore, this intersection evaluation used the Knox County classification for speeds of 35 mph or less with the calculated projected volumes.

3c) It is recommended that a Stop Sign (R1-1) and a 24 " white stop bar be applied to the pavement of the Road "I" approach at Hammer Road. The stop bar should be applied at a minimum of 4 feet away from the edge of Hammer Road and should be placed at the desired stopping point that provides the maximum sight distance.

3d) Intersection sight distance at Road "I" must not be impacted by future landscaping or signage.

3e) Due to the narrowness of Hammer Road, it is recommended that a large curb radius (a minimum of 40 feet) be designed and constructed that would facilitate right turns off and on to Hammer Road at the Road "I" intersection. This would allow school busses, and larger maintenance and delivery vehicles the opportunity to turn freely without overlapping into opposite traffic lanes.

4) Brakebill Road at Apartment Driveway

4a) The $85^{\text {th }}$ percentile spot speed that was conducted on Brakebill Road near this proposed intersection was calculated to be 45 mph . This would indicate a required sight distance of 450 feet looking north and south for eastbound left and right turn movements at the apartment driveway. While not measured in the field, these distances appear to be available from visual observation where the proposed driveway will tie into Brakebill Road. However, a land surveyor has not verified the sight distance at this proposed intersection since a design and location of the driveway for the apartment complex has not been finalized. Once the design is finalized, the sight distance will be confirmed based on the Knox County policy and standards.

4b) The intersection of Brakebill Road and the Apartment Driveway was calculated to operate very well with respect to level of service under unsignalized conditions in the year 2025. The capacity analysis shows that only a single exiting lane for left and right exiting vehicles is required at the Apartment Driveway entrance. Also, separate left turn lanes or right turn lanes on Brakebill Road into the apartment complex is not required based on the projected volumes. This was confirmed by an evaluation of the Knox County turn lane threshold policy based on the measured $85^{\text {th }}$ percentile speed of 45 mph near this proposed intersection. Therefore, this intersection
evaluation used the Knox County classification for speeds of 36 to 45 mph with the calculated projected volumes from the PM peak hour. The Knox County turn lane policy worksheets are in Appendix L.

4c) The current initial design plans for the Apartment Driveway shows an entrance/exit driveway throat length of approximately 50 feet in between the edge of Brakebill Road and the edge of the interior parking area aisleway. The final design of this driveway needs to maintain no less than 50 feet of driveway throat (storage) length. This length should be maximized if possible to keep stopped vehicles from blocking the path of entering vehicles or vehicles traveling along the internal circulation parking area aisle-ways. This length will also assist in avoiding stopped vehicles from queuing and blocking the
 parking area spaces near the driveway.

The proposed intersection of the Apartment Driveway at Brakebill Road is currently shown on the preliminary plans as being located approximately 250 feet to the south of the intersection of Hammer Road at Brakebill Road. It is recommended that the final design not allow the proposed intersection to be located any closer than this distance. Ideally, it should be designed further away to minimize the possibility of conflicts between the 2 intersections.

4d) It is recommended that a Stop Sign (R1-1) and a 24 " white stop bar be applied to the pavement of the Apartment Driveway approach at Brakebill Road. The stop bar should be applied at a minimum of 4 feet away from the edge of Brakebill Road and should be placed at the desired stopping point that provides the maximum sight distance.

4e) Intersection sight distance at the Apartment Driveway must not be impacted by future landscaping or signage.

4f) Due to the narrowness of Brakebill Road, it is recommended that a large curb radius (a minimum of 40 feet) be designed and constructed that would facilitate right turns off and on to Brakebill Road at the Apartment Driveway intersection. This would allow school busses, and larger maintenance and delivery vehicles the opportunity to turn freely without overlapping into opposite traffic lanes.

5)
 Brakebill Road at Mini-Warehouse Facility Driveway

5a) The 85th percentile spot speed that was conducted on Brakebill Road close to this proposed intersection was calculated to be 45 mph . This would indicate a required sight distance of 450 feet looking north and south for eastbound left and right turn movements at the Mini-Warehouse Facility Driveway. A land surveyor has not verified the sight distance at this proposed intersection since a design and location of the driveway for the mini-warehouse has not been finalized. Once the design is finalized, the sight distance will be confirmed based on the Knox County policy and standards.

5b) The intersection of Brakebill Road at the Mini-Warehouse Facility Driveway was calculated to operate very well with respect to level of service under unsignalized conditions in the year 2025. The capacity analysis shows that only a single exiting lane for left and right exiting vehicles is required at the Mini-Warehouse Facility Driveway entrance. Also, separate left turn lanes or right turn lanes on Brakebill Road into the Mini-Warehouse Facility is not required based on the projected volumes from the PM peak hour. This was confirmed by an evaluation of the Knox County turn lane threshold policy based on the measured $85^{\text {th }}$ percentile speed of 45 mph near this proposed intersection. Therefore, this intersection evaluation used the Knox County classification for speeds of 36 to 45 mph with the calculated projected volumes. The Knox County turn lane policy worksheets are in Appendix L.

5c) The design plans for the Mini-Warehouse Facility Driveway have not been completed. The entrance/exit driveway for this facility should be designed with
sufficient throat length to accommodate larger vehicles that are expected to enter and exit the facility.

5d) The proposed intersection of the Mini-Warehouse Facility Driveway at Brakebill Road is expected to be designed and constructed at the center of the 4.1-acre property. If this is the location of the proposed driveway, this new driveway intersection will be approximately 780 feet to the south of the Apartment Driveway and approximately 500 feet to the north of Road "A". Based on these distances, the spacing of this driveway with the other driveway and road are appropriate.

5e) It is recommended that a Stop Sign (R1-1) and a 24 " white stop bar be applied to the pavement of the Mini-Warehouse Facility Driveway approach at Brakebill Road. The stop bar should be applied at a minimum of 4 feet away from the edge of Brakebill Road and should be placed at the desired stopping point that provides the maximum sight distance.

5f) Intersection sight distance at the Mini-Warehouse Facility Driveway must not be impacted by future landscaping or signage.

5 g) Due to the narrowness of Brakebill Road, it is recommended that a large curb radius (a minimum of 50 feet) be designed and constructed that would facilitate right turns off and on to Brakebill Road at the Mini-Warehouse Facility Driveway intersection. This would allow larger vehicles that will access this type of facility the opportunity to turn freely without overlapping into opposite traffic lanes.

6) BRAKEBILL ROAD AT ROAD "A"

6a) With a posted speed limit of 30 mph , this would indicate a required sight distance of 300 feet looking north and south for eastbound left and right turn movements at Road "A". The sight distance at this proposed intersection has been measured by a land surveyor and is more than 450 feet looking north and is 325 feet looking south from the proposed Road "A".

6b) The intersection of Brakebill Road at Road "A" was calculated to operate very
well with respect to level of service under unsignalized conditions in the year 2025. The capacity analysis shows that only a single exiting lane for left and right exiting vehicles is required at the Road "A" entrance.

The Brakebill Road at Road " A " intersection was evaluated for the need for separate turn lanes on Brakebill Road for entering vehicles into the development. Based on the projected traffic volumes at the intersection on Brakebill Road and according to "Knox County's Access Control and Driveway Design Policy", a separate northbound left turn lane is warranted on Brakebill Road for entering vehicles. A separate southbound right turn lane on Brakebill Road for entering vehicles is not warranted. The Knox County turn lane policy worksheets are in Appendix L and the results shown in the Appendix are based on the projected volumes during the PM peak hour since this time period is estimated to have the highest volumes at the intersection. The speed classification that was chosen for this evaluation was based on the calculated and observed $85^{\text {th }}$ percentile speed of 40 mph near this proposed intersection. Therefore, this intersection evaluation used the Knox County classification for speeds of $36-45 \mathrm{mph}$ or less with the calculated projected volumes.

To estimate the required northbound left turn storage length, SimTraffic (Version 8) software was utilized which performs micro-simulation and animation of vehicular traffic and calculates various vehicle parameters such as intersection queue lengths. Based on the software results according to the projected volumes, the $95^{\text {th }}$ percentile queue distance was calculated. The $95^{\text {th }}$ percentile queue is the recognized measurement in the traffic engineering profession as the design standard used when considering queue distances. A 95th percentile queue means that there is a 95% certainty the queue will not extend beyond that point. (The calculated queue results were based on averaging the outcome obtained during 10 traffic simulations.) The queue results from the SimTraffic software are in Appendix M. The results shown in the Appendix indicate that the $95^{\text {th }}$ percentile queue for northbound left turns on Brakebill Road at Road "A" was calculated to be 20 feet during the projected AM peak hour and 43 feet during the projected PM peak hour. Based on these results, the proposed storage length should be a minimum distance of 75 feet which is the Knox County standard minimum length for left turn storage. (Note: the results
shown for the Level of Service in Table 7 included a separate northbound left turn lane at this intersection).

The current design for Road "A" at Brakebill Road shows a throat length (storage) of approximately 165 feet in between the edge of Brakebill Road and the edge of the internal road "B". The 95th percentile queue length for the eastbound approach at Brakebill Road was calculated to have a length of 62 feet for the AM peak and 57 feet for the PM peak. Thus, the current design length of Road "A"
 should be sufficient for exiting eastbound left and right turns at Brakebill Road. These queue results for Road "A" at Brakebill Road are in Appendix M.

6c) It is recommended that a Stop Sign (R1-1) and a 24 " white stop bar be applied to the pavement of the Road "A" eastbound approach at Brakebill Road. The stop bar should be applied at a minimum of 4 feet away from the edge of Brakebill Road and should be placed at the desired stopping point that provides the maximum sight distance.

6d) Intersection sight distance at Road "A" must not be impacted by future landscaping or signage.

6e) Due to the narrowness of Brakebill Road, it is recommended that a large curb radius (a minimum of 40 feet) be designed and constructed that would facilitate right turns off and on to Brakebill Road at the Road "A" intersection. This would allow school busses, and larger maintenance and delivery vehicles the opportunity to turn freely without overlapping into opposite traffic lanes.

7) Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side)

This intersection was calculated to operate adequately with respect to the level of service during the existing conditions and during the projected conditions when the Brakebill Road Development is completed and fully occupied in the year 2025. However, the v/c ratio of the intersection in the year 2025 even without the project generated trips included in the analysis was calculated to be 0.970 during the PM peak hour. A v/c ratio of 1 would indicate that the traffic volumes are at the roadway capacity. This high v / c ratio at this intersection is primarily due to the projected amount of northbound left turns.

The projected northbound left turn lane volume in the PM peak hour was calculated to be 360 vehicles in 2025. Single left turn lanes that are experiencing more than 300 vehicles/hour are many times recommended to be increased to dual left turn lanes. In the future, if dual left turn lanes for the northbound approach are constructed, the physical space for adding an additional northbound left turn should be available by constructing a second lane in the existing 30 -foot-wide grass median. To construct an additional lane in the grass median, the storm water drainage system will need to be re-configured and an additional lane would also need to be constructed for the westbound Interstate 40 On Ramp. Options for constructing an additional lane on the westbound Interstate 40 On Ramp could include merging the lanes downstream of the intersection and prior to the entrance to Interstate 40 or continuing the On Ramp dual lanes to the entrance of Interstate 40 and merging the lanes downstream on Interstate 40. Merging further downstream might be a better alternative due to the large amount of truck traffic.

Nonetheless, adding a second northbound left turn lane would significantly reduce the v / c ratio at this intersection and increase the level of service. This additional lane could be expected to be needed in the near future based on the projected growth.

8) Strawberry Plains Pike at Brakebill Road

8a)
 project and with the project. While there are not excessive volumes attempting this turning movement, the amount of conflicting volumes causes extreme delays for the eastbound left turns attempting to turn towards northbound Strawberry Plains Pike. Many times, eastbound left turn drivers require the median space on Strawberry Plains Pike to provide a haven prior to completing the left turn entering the flow of northbound traffic. Drivers using the median as a haven potentially obstruct and conflict with the northbound left turn vehicles. Competition for sight distance and physical space within the median occurs between northbound left turns and eastbound left turns when the eastbound left turn movement uses the median as a mid-way haven.

In 2010, the intersection of Strawberry Plains Pike at Brakebill Road was selected by TDOT to undergo a Road Safety Audit Review (RSAR). This intersection was identified by the TDOT safety needs planning process and was evaluated since the crash ratio at the time of the study in 2010 met the threshold for safety improvements. As part of the review, traffic counts were obtained, and the intersection was determined as meeting MUTCD (Manual on Uniform Traffic Control Devices) Warrants for traffic signalization. However, due to the short distance (approximately 270 feet) between this intersection and the signalized intersection of Strawberry Plains Pike at the Interstate 40 On/Off Ramps (north side) to the south, traffic signalization was deemed "undesirable". The TDOT RSAR report for this intersection in 2010 is in Appendix N. An overview of the 2010 TDOT recommended upgrades and changes at the intersection were the following:

i.	Re-striping and installation of pavement markings
ii.	Replacement and installation of new traffic signage
iii.	Vegetation removal
iv.	Relocation of an existing storm water culvert
v.	Construction of a new northbound left turn lane at the intersection of
	Strawberry Plains Pike at Brakebill Road
vi.	Construction of separate eastbound left and right turn lanes at the

From the field review for this current traffic study, it appears that these recommendations were installed and/or constructed. Most importantly, the construction of the recommended turn lanes at the intersection of Strawberry Plains Pike at Brakebill Road were completed as recommended.

8b) As an investigation into a potential remediation for this intersection, and as a follow up to the TDOT review that indicated this intersection met warrants for traffic signalization in 2010; this intersection was re-examined with the 2018 traffic volumes with respect to traffic signal warrants. The traffic counts at this intersection were conducted from $7-9 \mathrm{am}, 11 \mathrm{am}-1 \mathrm{pm}$ and $2-6 \mathrm{pm}$ for a total of 8 hours.

The Manual on Uniform Traffic Control Devices - 2009 Edition (MUTCD) presents 9 different warrants that have been developed by the traffic engineering profession to determine whether a traffic signal is warranted. These warrants cover a broad range of minimum elements required to indicate whether a traffic signal is justified for any particular location. These elements consist of traffic volumes, pedestrian volumes, crash history, and other factors. The MUTCD explicitly states that a traffic control signal should not be installed unless one or more of the signal warrants in the manual are met. However, the satisfaction of a warrant does not entirely in itself justify the need for a traffic signal. Sometimes further engineering studies and judgments also need to be applied before justifying the need for a traffic signal to be installed. These further studies are a very important step in insuring that an installation of a traffic signal will not actually bring about degradations in safety and efficiencies.

The MUTCD defines 9 different warrants, two of which are potentially applicable for this intersection at this time and are explained below:

= Warrant 1, Eight-Hour Vehicular Volume:

Warrant 1 is comprised of 2 conditions - A and B. The Minimum Vehicular Volume, Condition A, is intended for application where the volume of intersecting traffic is the principal reason for consideration of signal installation. The Interruption of Continuous Traffic, Condition B, is intended for application at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

= Warrant 2, Four-Hour Vehicular Volume:

The Four-Hour Vehicular Volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal.

The intersection of Strawberry Plains Pike at Brakebill Road was evaluated for possible justification for a traffic signal based on the MUTCD Warrants listed above and the 2018 traffic count volumes. Brakebill Road was used as the minor side street for the warrant analysis and Strawberry Plains Pike was the major street. According to the Federal Highway Administration (FHWA), the traffic signal warrants are intentionally written in a manner that provides a large amount of flexibility to engineers in terms of how they determine the number of moving lanes and the volume of approaching traffic used in the analysis. The decisions as to which approach lanes on the major and minor streets and the corresponding traffic volumes are determined by the engineering judgment of the engineer conducting the study or by the methods established by local and state agencies. Ultimately, it the decision of the reviewing agency to determine whether right turn volumes from the minor street should be included.

For the intersection of Strawberry Plains Pike at Brakebill Road, when the analysis includes right turn volumes from Brakebill Road (the minor street approach), it
appears that this intersection currently meets traffic signal warrants. The intersection meets Warrant \#1, Condition B and Warrant 2 based on the 2018 existing volumes collected for this study. However, if the right turn volumes from Brakebill Road are not included, the intersection does not meet signal warrants. Nonetheless, justification could be made for a traffic signal at this location currently since it does meet a traffic signal warrant when including right turns from the minor street approach. The results of the traffic signal warrant assessment at this intersection for the existing volumes of 2018 are in Appendix O and Table 9 presents the results.

TABLE 9
TRAFFIC SIGNAL WARRANT SUMMARY

INTERSECTION	Volume Warrant (Required Number of Hours Satisfied)			
	Warrant 1 \#1A (8 hours)			Condition \#1B (8 hours)
Condition 1A and 1B Combination (8 hours)	(4 hours)			
Strawberry Plains Pike at Brakebill Road $(100 \%$ of Right Turns Included on Brakebill Road)	Not Satisfied	Satisfied	Not Satisfied	Satisfied
2018 - Existing Volumes Strawberry Plains Pike at Brakebill Road	Not Satisfied	Not Satisfied	Not Satisfied	Not Satisfied
(0\% of Right Turns Included on Brakebill Road)				

8c) With the results of the traffic signal warrant analysis indicating that this intersection could by justified to have a traffic signal installed, Synchro Traffic Software (Version 8) was used to design a preliminary plan for traffic signalization. This preliminary design included coordinating the existing traffic signal at Strawberry Plains Pike at the Interstate 40 On/Off Ramps (north side) with the proposed traffic signal at Strawberry Plains Pike at Brakebill Road. Based on an 80 second coordinated cycle, the preliminary design resulted in a much-improved level of service for eastbound left turns at Brakebill Road. The level of service results of this preliminary design for the two intersections are shown in Table 10 and Appendix G includes the worksheets for these capacity analyses. The results shown in Table 10 includes the recommended addition of a northbound left turn lane at the intersection of Strawberry Plains Pike at the Interstate $40 \mathrm{On} / \mathrm{Off}$ Ramps. Also, the results of the
calculated queue lengths based on the preliminary traffic signal design are shown in Table 11.

TABLE 10
2025 PEAK HOUR LEVEL OF SERVICE \& DELAY - OPENING YEAR (WITH PROJECT) WITH PRELIMINARY NEW TRAFFIC SIGNAL DESIGN

INTERSECTION	TRAFFIC CONTROL	APPROACH	AM PEAK			PM PEAK		
			LOS	$\begin{array}{\|c\|} \hline \text { DELAY } \\ \text { (seconds) } \\ \hline \end{array}$	V/C	LOS	DELAY (seconds)	V/C
Strawberry Plains Pike at Brakebill Road		Eastbound	D	39.5		C	32.2	
		Northbound	A	5.1		A	9.7	
		Southbound	A	7.0		A	3.7	
		Intersection Summary	B	13.1	0.600	B	11.0	0.840
Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side)		Westbound	C	32.6		C	34.2	
		Northbound	A	5.7		A	5.8	
		Southbound	A	7.3		B	11.5	
		Intersection Summary	B	11.1	0.570	B	11.8	0.540

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology for signalized intersections

TABLE 11
TURN LANE STORAGE \& QUEUE SUMMARY 2025 PM Projected Peak Hour Traffic Volumes with Preliminary New Traffic Signal Design

Intersection Name/Turn Lane	Volume $(\mathrm{vph}) *$	Existing Storage Length (ft)	Sim Traffic 95% Queue (ft)	
Strawberry Plains Pike at Brakebill Road				
Eastbound Left	88	120	91	
Northbound Left/U-Turn	337	150	204	
Strawberry Plains Pike at I-40 On/Off Ramps				
Westbound Left	189	200	164	
Westbound Left		200	220	
Northbound Left	360	190	158	
Northbound Left **		190	269	

* Volumes are from largest volume for each individual movement during the AM or PM peak hour
** Lane assumed to be constructed

The results of the queue analysis shown in Table 11 indicate that some of the turn lane lengths may need to be increased based on the projected volumes and the preliminary signal timing design. The northbound left lane at Strawberry Plains Pike at Brakebill Road was calculated to have a $95^{\text {th }}$ percentile queue length of 204 feet
with an existing storage length of 150 feet. This would require this turn lane be lengthened to its maximum length available in between the two intersections. This additional 64 feet is potentially available but will require careful consideration since this additional length will encroach on the intersection of Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side).

Based on the 2025 projected volumes, other turn lane lengths that may need to be increased include the turn lanes at the intersection of Strawberry Plains Pike at the Interstate 40 On/Off Ramps. The results indicated that the existing Interstate 40 Off Ramp westbound dual left turn lane storage lengths could be exceeded by what is currently available by

Image from SimTraffic Software:
New Proposed Traffic Signal at Strawberry Plains Pike at Brakebill Road and Existing Traffic Signal at Strawberry Plains Pike at Interstate 40 On/Off Ramps (north side) approximately 20 feet. In actuality, the expected queue lengths would be more evenly distributed between the two lanes which would result in a required length of 192 feet in both lanes (164 feet +220 feet $/ 2$ lanes $=192$ feet) which is below the currently provided storage of 200 feet.

In addition to needing dual northbound left turn lanes at the intersection of Strawberry Plains Pike at the Interstate 40 On/Off Ramps (as discussed earlier on page 55), these dual left turn lanes will need to be extended further than the current 190 feet of storage length currently offered by the existing single left turn lane. The software modeled that the northbound left turn lanes would have a $95^{\text {th }}$ percentile queue of 158 feet and 269 feet. In actuality, the expected queue lengths would be more evenly distributed between the two lanes which would result in a required length of 213 feet in both lanes (158 feet +269 feet $/ 2$ lanes $=214$ feet). This could be
easily rectified by extending the dual northbound left turn lanes to 215 feet by adding 25 feet to the existing 190 feet of storage length (currently provided by the existing single turn lane) for a total of 215 feet.

Further analysis of the coordinated signal system at these 2 intersections should be optimized based on the actual future volumes instead of the projected volumes. Using the actual future volumes versus the projected volumes from this study could reduce the projected peak queue lengths and the potential turn lane storage extensions required.

Even though TDOT in 2010 recognized that the intersection of Strawberry Plains Pike at Brakebill Road met signal warrants but deemed the intersection as "undesirable" to be signalized, it is recommended that this intersection be signalized. This intersection currently meets warrants for signalization and is projected to continue to meet warrants for signalization in the future. If a traffic signal is not installed in the short term; at a minimum, it is recommended that this intersection be signalized prior to the Brakebill Road 325-lot residential subdivision being opened to residents. If this intersection is not signalized and experiences the potential increased traffic volumes, intolerable vehicle delays will occur. This could result in increased vehicle crashes due to impatient drivers. Potential issues to consider related to installing a traffic signal at the intersection of Strawberry Plains Pike at Brakebill Road include the following:
a. Shorter traffic signal cycles lengths are recommended since queue lengths tend to be shorter for short cycle lengths and will be necessary due to the short distance between the 2 intersections.
b. The traffic signals on Strawberry Plains Pike at both intersections in the northbound and southbound approaches need to be carefully designed with respect to placement and visibility. The signal heads on these approaches will need to be installed with louvers or optically programmed signals to restrict signal visibility to these traffic lanes. This will be required to eliminate drivers from driving thru or not recognizing the first set of signal heads in the progression thru the two sets of signalized intersections.

9) Brakebill Road

From the results earlier in this report it was shown that the calculated crash rates on Brakebill Road were not high enough to receive consideration for TDOT safety funding. Nonetheless, the narrowness of the roadway, the shoulder drop-offs, and the lack of a clear zone outside the roadway could be considered as a potential factor in the road crashes. As stated earlier, based on evaluating the obtained individual traffic crash reports from Brakebill Road over the past 3 years, 5 of the 19 crashes indicated that the narrowness of Brakebill Road could have been a contributable factor. These 5 crashes were either opposite direction sideswipes or road departures. Examining the crash data several more years back to September 2009, an additional 15 crashes on Brakebill Road occurred that either involved head-on collisions, opposite direction sideswipes, or collisions with objects off the roadway. As one can easily conclude, research has indicated that narrow roads have a significant influence on these types of crashes. Pictures showing the various pavement drop-offs and roadside hazards on Brakebill Road are shown below:

The most logical recommendation would include widening Brakebill Road. Brakebill Road is a major collector and an important link in between Asheville Highway (US 25E/Hwy 11E) and Strawberry Plains Pike at Interstate 40. Improving Brakebill Road with appropriate horizontal and vertical alignments, lane widths, shoulders, and clear zones would potentially greatly decrease the amount of vehicle crashes. It is expected that this road at some point in the future will need to be widened and improved. In the interim, and to accommodate traffic growth and development in the area, several strategies should be employed to reduce the number of opposite direction sideswipes, head-on, and roadway departure crashes.

To determine appropriate strategies to potentially reduce traffic crashes on Brakebill Road, resources from the FHWA were reviewed. The following measures are recommended to be implemented on Brakebill Road:
i. Identify and remove or re-locate roadside hazards (ditches, utility poles, and trees): Research has indicated that increasing the clear zone prevents crashes. Most of the road departure crashes since 2009 on Brakebill Road involved striking trees. The next most common object struck was utility poles followed by roadside ditch crashes. According to research, 80% of all fatal crashes at curves are roadway departure crashes. (Source: Fatality Analysis Reporting System). Roadside hazards that have been identified and documented along Brakebill Road are shown in a summary located at the end of this section.
ii. Advanced warning signs: Warning signs call attention to unexpected conditions on or next to the roadway. It is recommended that advance warning signs be installed on Brakebill Road in advance of two of the horizontal curves where evidence of crash clusters have occurred.
 Advance warning Curve Signs (W1-2) should be placed before the horizontal curve in both directions just to the north of 524 Brakebill Road. The other location where an advance warning Curve Sign (W1-2) should be installed is before the horizontal curve on Brakebill Road heading southbound near the intersection of Brakebill Road at Palmer

Lane. An advance warning curve sign is already posted for the northbound direction on Brakebill Road.

Horizontal Curve on Brakebill Road near Palmer Lane (Looking South)

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN
iii. Installation of Rumble Strips (along the edgeway and the center of the road): According to the FHWA, edgeway and center line rumble strips are an effective countermeasure to reduce vehicle departure crashes, headon collisions, and opposite direction sideswipe crashes. A table from NCHRP Report 641, Guidance for the Design and Application of Shoulder and Centerline Rumple Strips, is shown below which shows the reduction in crash history based on before and after research studies on urban and rural two-lane roads.

Center line Rumble Strip - Reduction in crash frequency from before to after rumble strip implementation for head-on and opposite direction sideswipe fatal and injury collisions		
	Percent reduction in crash frequency from before to after rumble strip implementation	Standard Error
Rural two-lane roads	45\%	6\%
Urban two-lane roads	64\%	27\%
Excerpt from Table 67 of NCHRP Report 641.		
Shoulder Rumble Strip - Reduction in crash frequency from before to after rumble strip implementation for single-vehicle run-off-road fatal and injury crashes		
	Percent reduction in crash frequency from before to after rumble strip implementation	Standard Error
Rural two-lane roads	36\%	10\%
Rural freeways	17\%	7\%
Excerpt from Table 28 of NCHRP Report 641.		

The results from the NCHRP (National Cooperative Highway Research Program) report show significant reductions in head-on, opposite direction sideswipes, and roadway departure crashes after installation of rumble strips on two lane roadways. It is recommended rumble strips should be installed on Brakebill Road at a minimum at the 2 horizontal curves identified above where advance curve signs are recommended. Over the past 3 years, clusters of crashes at these horizontal curves have occurred and could be reduced in the future with the installation of rumble strips. Other horizontal curves on Brakebill Road should be
considered as well. TDOT provides a standard (T-M-16) for asphalt shoulder rumble stripe installation details for non-access controlled routes.

Some potential issues to consider related to installing rumble strips involve the following:
a. Pavement: The asphalt pavement of the roadway needs to be of sufficient thickness and quality to install rumble strips.
b. Bicyclists: Rumble strips can be detrimental to bicycle travel and hazardous to bicyclists. However, currently, there is very little evidence of regular bicycle travel on Brakebill Road.
c. Noise: Rumble strips can be a nuisance with respect to the noise generated from vehicles traveling over the strips. The noise is beneficial to the driver inside the vehicle to give a warning but can be a nuisance to those who live nearby. Brakebill Road is not a heavily populated area, but there are residences adjacent to the two horizontal curves where rumble strips are recommended. There are options to reduce noise by reducing rumble strip widths, installing sinusoidal-shaped rumble strips which do not produce as much noise, and by discontinuing rumble strips near intersections and major driveways.

These potential issues are not expected to be a serious impediment for installing rumble strips on Brakebill Road. These measures should be beneficial to reducing the amount of head-on, sideswipe, and departure crashes on Brakebill Road.

A summary of the identified roadside hazards along Brakebill Road are listed in the following section. These identified roadside hazards are comprised of vegetation obstructions, drainage ditches, utility poles, trees, and road shoulder drop-offs.

Intersection of Brakebill Road at Crosswood Boulevard

Roadside vegetation obscures sight distance for turning vehicles at Crosswood Boulevard (Looking Northwest)

Steep road/shoulder drop-off and deteriorated pavement (Looking North)

Large trees and utility poles adjacent to roadway with shoulder drop-off into drainage ditch (Looking North)

Large trees and utility poles adjacent to roadway with shoulder drop-off into drainage ditch (Looking North)

Large trees and utility poles adjacent to roadway with shoulder drop-off into drainage ditch (Looking South)

Large trees adjacent to roadway with shoulder drop-off into drainage ditch (Looking North)

Near 428 Brakebill Road Driveway

Just South of Kilbridge Drive

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN

Large trees and large tree stump adjacent to roadway with shoulder drop-off into drainage ditch (Looking North)

Utility poles adjacent to roadway with shoulder drop-off (Looking South)

Large trees adjacent to roadway (Looking North)

Near 420
Brakebill Road

Near 322 Brakebill Road Property

Near 320
Brakebill Road Property

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN

Deep shoulder drop-off into drainage ditch with evidence of vehicle scraping asphalt (Looking North)

Just North of Suncrest Lane

Shoulder drop-off with evidence of vehicle scraping asphalt (Looking South)

Revised May 2018
Transportation Impact Study

Brakebill Road Development Knox County, TN

The current concept plan shows several new roads and parking area aisle-ways being constructed within the Brakebill Road Development as shown on Figure 3.

10a) It is recommended that a "No Outlet" (W14-2) sign is posted near the front of the apartment complex entrance and the mini-warehouse facility.

10b) It is recommended that a $25-\mathrm{mph}$ speed limit be posted at the entrances on Road "A" and Road " I " into the new residential subdivision. It is recommended that a $15-$ mph speed limit be posted at the entrance at the Apartment Driveway.

10c) All drainage grates and covers for both residential developments need to be pedestrian and bicycle safe.

10d) Sight distance at the new internal intersections must not be impacted by new signage, future landscaping, or parked vehicles.

10e) The internal sidewalks that are proposed for the development should have appropriate ADA compliant curbed ramps at intersection corners and the sidewalks are recommended to be 5 feet minimum in width.

10f) All road grade and intersection elements internally and externally should be designed to AASHTO, TDOT, and Knox County Engineering specifications and guidelines to ensure proper operation.

10 g) The intersection of Road " B " and Road " C " in the single-family residential subdivision has been designed

with a cul-de-sac on the southeast corner. This non-traditional intersection layout will require additional pavement markings and signage to reduce the possibility of vehicle conflicts. It is recommended that a white dashed line be installed in the outside path of Road "C" transitioning to Road "B". A Stop Sign (R1-1) should be installed at the Road "B" approach and at the cul-de-sac approach at the intersection of Road "B" and Road "C". A Left Direction Arrow Sign (W1-6) should be installed facing the eastbound approach of Road "C" at the curved path to Road "B". A 24" white stop bar at the cul-de-sac intersection should also be installed in front of the dashed white edge line.

10h) A total of 25 Stop Signs (R1-1) should be installed at the internal road intersections as shown below:

APPENDIX A
Historical Traffic Count Data

Historical Traffic Counts

Organization: TDOT
Station ID \#: 000472
Location: Brakebill Road (North of Strawberry Plains Pike)

2010-2016 Growth Rate $=\quad-3.1 \%$
Average Annual Growth Rate = -0.5%

TD®T

Traffic History

Historical Traffic Counts

Organization: MPC
Station ID \#: 093C327
Location: Strawberry Plains Pike (South of I-40)

2006-2016 Growth Rate $=\quad-13.2 \%$
Average Annual Growth Rate = -1.4%

Strawberry Plains Pk - N of I-40E Ex (Station ID: 093C327)

APPENDIX B

Walk Score

Walk SCORE

(from walkscore.com)

Travel Time Map

Add to your site
Explore how far you can travel by car, bus, bike and foot from 499 Brakebill Road.

APPENDIX C

Knoxville Area Transit Map and Information

35 MAGNOLIA AVENUE
 (Weekdays and Weekends)

NORTH KNOXVILLE
NORTH HILLS

-

Weekday Schedule Route 31: Magnolia

Going away from Downtown					Going toward Downtown				
(T) Transfer to:			Rts. 33 \& 34			Rts. 33 \& 34			
Knoxville StationPlatform F	Magnolia at Jessamine	Magnolia at Chestnut	Kirkwood St Superstop (Arrives) (Leaves)	Burns Rd at Asheville Hwy	Chilhowee at Holston	Kirkwood St. Superstop (Arrives) (Leaves)	Magnolia at Chestnut	Magnolia at Jessamine	Knoxville Station

WEEKDAY SCHEDULE												
A.M.	-	-	-	-	-	5:38	5:43	5:51	5:53	5:59	6:04	6:10
						5:53	5:58	6:06	6:08	6:14	6:19	6:25
	-	-	-	-	-	6:08	6:13	6:21	6:23	6:29	6:34	6:40
						6:23	6:28	6:36	6:38	6:44	6:49	6:55
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	6:30	6:34	6:40	6:45	6:48	6:53	6:58	7:06	7:08	7:14	7:19	7:25
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:00	7:04	7:10	7:15	7:18	7:23	7:28	7:36	7:38	7:44	7:49	7:55
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:30	7:34	7:40	7:45	7:48	7:53	7:58	8:06	8:08	8:14	8:19	8:25
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:00	8:04	8:10	8:15	8:18	8:23	8:28	8:36	8:38	8:44	8:49	8:55
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:30	8:34	8:40	8:45	8:48	8:53	8:58	9:06	9:08	9:14	9:19	9:25
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:00	9:04	9:10	9:15	9:18	9:23	9:28	9:36	9:38	9:44	9:49	9:55
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	10:40
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	10:45	10:49	10:55	11:00	11:03	11:08	11:13	11:21	11:23	11:29	11:34	11:40
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10
	11:45	11:49	11:55	12:00	12:03	12:08	12:13	12:21	12:23	12:29	12:34	12:40
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10
	12:45	12:49	12:55	1:00	1:03	1:08	1:13	1:21	1:23	1:29	1:34	1:40
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10
	1:45	1:49	1:55	2:00	2:03	2:08	2:13	2:21	2:23	2:29	2:34	2:40
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10
	2:45	2:49	2:55	3:00	3:03	3:08	3:13	3:21	3:23	3:29	3:34	3:40
	3:15	3:19	3:25	3:30	3:33	3:38	3:43	3:51	3:53	3:59	4:04	4:10
	-	-	-	-	-	3:53	3:58	4:06	4:08	4:14	4:19	4:25
	3:45	3:49	3:55	4:00	4:03	4:08	4:13	4:21	4:23	4:29	4:34	4:40
	4:00	4:04	4:10	4:15	4:18	4:23	4:28	4:36	4:38	4:44	4:49	4:55
	4:15	4:19	4:25	4:30	4:33	4:38	4:43	4:51	4:53	4:59	5:04	5:10
	4:30	4:34	4:40	4:45	4:48	4:53	4:58	5:06	5:08	5:14	5:19	5:25
	4:45	4:49	4:55	5:00	5:03	5:08	5:13	5:21	5:23	5:29	5:34	5:40
	5:00	5:04	5:10	5:15	5:18	5:23	5:28	5:36	5:38	5:44	5:49	5:55
	5:15	5:19	5:25	5:30	5:33	5:38	5:43	5:51	5:53	5:59	6:04	6:10
	5:30	5:34	5:40	5:45	5:48	5:53	5:58	6:06	6:08	6:14	6:19	6:25
	5:45	5:49	5:55	6:00	6:03	6:08	6:13	6:21	6:23	6:29	6:34	6:40
	6:00	6:04	6:10	6:15	6:18	6:23	6:28	6:36	6:38	6:44	6:49	6:55
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	To Garage
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	To Garage

Saturday-Sunday Schedule Route 31: Magnolia

	Going away from Downtown						Going toward Downtown					
	(T) Transfer to:			Rts. 33 \& 34				Rts. 33 \& 34				
	Knoxville StationPlatform F	Magnolia at Jessamine	Magnolia at Chestnut	Kirkwood (Arrives)	Superstop (Leaves)	Burns Rd at Asheville Hwy	Chilhowee at Holston	Kirkwood (Arrives)	Superstop (Leaves)	Magnolia at Chestnut	Magnolia at Jessamine	Knoxville Station
SATURDAY SCHEDULE												
A.M.	-	-	-	-	-	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	-	-	-	-	-	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	10:40
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	10:45	10:49	10:55	11:00	11:03	11:08	11:13	11:21	11:23	11:29	11:34	11:40
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10
	11:45	11:49	11:55	12:00	12:03	12:08	12:13	12:21	12:23	12:29	12:34	12:40
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10
	12:45	12:49	12:55	1:00	1:03	1:08	1:13	1:21	1:23	1:29	1:34	1:40
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10
	1:45	1:49	1:55	2:00	2:03	2:08	2:13	2:21	2:23	2:29	2:34	2:40
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10
	2:45	2:49	2:55	3:00	3:03	3:08	3:13	3:21	3:23	3:29	3:34	3:40
	3:15	3:19	3:25	3:30	3:33	3:38	3:43	3:51	3:53	3:59	4:04	4:10
	3:45	3:49	3:55	4:00	4:03	4:08	4:13	4:21	4:23	4:29	4:34	4:40
	4:15	4:19	4:25	4:30	4:33	4:38	4:43	4:51	4:53	4:59	5:04	5:10
	4:45	4:49	4:55	5:00	5:03	5:08	5:13	5:21	5:23	5:29	5:34	5:40
	5:15	5:19	5:25	5:30	5:33	5:38	5:43	5:51	5:53	5:59	6:04	6:10
	5:45	5:49	5:55	6:00	6:03	6:08	6:13	6:21	6:23	6:29	6:34	6:40
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	6:45	6:49	6:55	7:00	7:03	7:08	7:13	7:21	7:23	7:29	7:34	7:40
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	7:45	7:49	7:55	8:00	8:03	8:08	8:13	8:21	8:23	8:29	8:34	8:40
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	8:45	8:49	8:55	9:00	9:03	9:08	9:13	9:21	9:23	9:29	9:34	9:40
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	9:45	9:49	9:55	10:00	10:03	10:08	10:13	10:21	10:23	10:29	10:34	To Garage
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	To Garage
SUNDAY SCHEDULE												
A.M.	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:04	9:10
	9:15	9:19	9:25	9:30	9:33	9:38	9:43	9:51	9:53	9:59	10:04	10:10
	10:15	10:19	10:25	10:30	10:33	10:38	10:43	10:51	10:53	10:59	11:04	11:10
	11:15	11:19	11:25	11:30	11:33	11:38	11:43	11:51	11:53	11:59	12:04	12:10
P.M.	12:15	12:19	12:25	12:30	12:33	12:38	12:43	12:51	12:53	12:59	1:04	1:10
	1:15	1:19	1:25	1:30	1:33	1:38	1:43	1:51	1:53	1:59	2:04	2:10
	2:15	2:19	2:25	2:30	2:33	2:38	2:43	2:51	2:53	2:59	3:04	3:10
	3:15	3:19	3:25	3:30	3:33	3:38	3:43	3:51	3:53	3:59	4:04	4:10
	4:15	4:19	4:25	4:30	4:33	4:38	4:43	4:51	4:53	4:59	5:04	5:10
	5:15	5:19	5:25	5:30	5:33	5:38	5:43	5:51	5:53	5:59	6:04	6:10
	6:15	6:19	6:25	6:30	6:33	6:38	6:43	6:51	6:53	6:59	7:04	7:10
	7:15	7:19	7:25	7:30	7:33	7:38	7:43	7:51	7:53	7:59	8:04	8:10
	8:15	8:19	8:25	8:30	8:33	8:38	8:43	8:51	8:53	8:59	9:05	To Garage

Need help reading this schedule?
Need other general information on how to ride?
Click here to Download the General Schedule Information pdf available from katbus.com

APPENDIX D

Zoning MAP

Brakebill Road Development

Zoning Map

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

APPENDIX E

MANUAL Traffic Count Data

Major Street: Brakebill Road (NB - SB)
Minor Street: Kilbridge Drive (EB)
Traffic Control: Stop Control on Kilbridge Drive

3/20/2018 (Tuesday)
Cloudy/Windy
Conducted by: Ajax Engineering

	Brakebill Road		Brakebill Road		Kilbridge Drive			
TIME BEGIN	SOUTHBOUND		NORTHBOUND		EASTBOUND		VEHICLE TOTAL	PEAK HOUR
	THRU	RIGHT	LT	THRU	LT	RT		
7:00 AM	20	0	2	10	1	4	37	
7:15 AM	21	0	0	9	9	8	47	
7:30 AM	20	1	1	17	8	12	59	7:30 AM - 8:30 AM
7:45 AM	28	4	2	21	5	10	70	
8:00 AM	26	4	1	19	12	10	72	
8:15 AM	24	5	0	18	7	5	59	
8:30 AM	20	3	4	10	0	5	42	
8:45 AM	16	1	0	14	3	2	36	
TOTAL	175	18	10	118	45	56	422	
Peak \% Exit	-	-	-	-	46\%	54\%		
Peak \% Enter	-	78\%	22\%	-	-	-		
2:00 PM	28	2	4	20	1	4	59	
2:15 PM	29	3	2	24	3	2	63	
2:30 PM	27	3	0	19	4	1	54	
2:45 PM	32	5	2	30	2	1	72	
3:00 PM	39	3	1	23	4	0	70	
3:15 PM	30	5	3	22	3	2	65	
3:30 PM	35	4	3	32	2	5	81	
3:45 PM	39	4	10	34	2	5	94	
4:00 PM	36	6	3	27	4	2	78	
4:15 PM	44	7	4	36	7	2	100	4:15 PM - 5:15 PM
4:30 PM	26	9	5	46	2	6	94	
4:45 PM	28	1	8	34	3	2	76	
5:00 PM	38	8	9	40	4	1	100	
5:15 PM	35	6	5	29	4	4	83	
5:30 PM	35	7	7	31	4	1	85	
5:45 PM	43	9	5	30	1	4	92	
TOTAL	285	53	46	273	29	22	708	
Peak \% Exit	-	-	-	-	59\%	41\%		
Peak \% Enter	-	49\%	51\%	-	-	-		

2018 AM Peak Hour 7:30 AM - 8:30 AM

	Brakebill Road		Brakebill Road		Kilbridge Drive	
TIME	SOUTHBOUND		NORTHBOUND		EASTBOUND	
	BEGIN	THRU	RIGHT	LT	THRU	LT
RT						
7:30 AM	20	1	1	17	8	12
7:45 AM	28	4	2	21	5	10
8:00 AM	26	4	1	19	12	10
8:15 AM	24	5	0	18	7	5
TOTAL	98	14	4	75	32	37
PHF	0.88	0.70	0.50	0.89	0.67	0.77

2018 PM Peak Hou

4:15 PM - 5:15 PM

	Brakebill Road		Brakebill Road		Kilbridge Drive	
TIME	SOUTHBOUND		NORTHBOUND		EASTBOUND	
	BEGIN	THRU	RIGHT	LT	THRU	LT
R	RT					
4:15 PM	44	7	4	36	7	2
4:30 PM	26	9	5	46	2	6
4:45 PM	28	1	8	34	3	2
5:00 PM	38	8	9	40	4	1
TOTAL	136	25	26	156	16	11
PHF	0.77	0.69	0.72	0.85	0.57	0.46

APPENDIX F

Database Printout of $1880 E L$ Local
Page: 1
Filename: DATAIINT\#4807.EL

Startup Data:

Start Phases 2 6 UCF EntryPhases 4 8 UCF ExitPhases 2 6	
Start Overlaps Yellow at Power-up?	NO
Start in All Red at Power-up?	NO
Zone I D:	0
Controller I D:	0
Hold 2 sec. Mi ni mum Red Revert?	YES
Override Holds if	
Uniform Code Flash Active?	Y ES
Dual Entry 1256?	YES
Dual Entry 3478?	YES
Passage Interval Sequential?	YES
Si multaneous Gap?	NO
Conditional Service set by Input?	NO
Conditional Service 1256?	NO
Conditional Service 3478?	NO

Timing Data:

Interval	Time by Phase (sec.)								
	1	2	3	4	5	6	7	8	
Initial	5	$\overline{1} 5$	0	5	5	15	0	5	
Passage	3.0	3.0	0.0	3.0	3.0	3.0	0.0	3.0	
Yellow	4.0	5. 0	0.0	4.0	4.0	5.0	0.0	4.0	
Red Clear	1.0	2.0	0.0	2.5	1.0	2.0	0.0	2.5	
Max 1	20	50	0	25	20	50	0	25	
Max 2	20	50	0	25	20	50	0	25	
Wal k	0	15	0	0	0	0	0	0	
Ped Cl ear	0	0	0	0	0	0	0	0	
Max 3 Parameters									
	1	2	3	4	5	6	7	8	
Adjust (sec.)	0	0	0	0	0	0		0	
Limit (sec.)	0	0	0	0	0	0	0	0	
Set (max outs)	0	0	0	0	0	0	0	0	
CIr (gap outs)	0	0	0	0	0	0	0	0	
Functions:									
Max. Recall	N	Y	N	N	N	Y	N	N	
Ped. Recall	N	Y	N	N	N	N	N	N	
Det. Non-lock	Y	N	N	Y	Y	N	N	Y	
CNA I Active	N	Y	N	N	N	Y	N	N	
Database Printout of 1880EL Local Page:									
Filename: DATAlINT\#4807.EL									
CNA \\| Active FI ashing Walks Phase Omitted Ped Omitted Soft Recall	N	N	N	N	N	N	N	N	
	N	N	N	N	N	N	N	N	
	N	N	Y	N	N	N	Y	N	
	Y	N	Y	Y	Y	Y	Y	Y	
	N	N	N	N	N	N	N	N	
	Page 1								

Asheville Hwy and BRAKE. TXT									
Ped Cl	I thru Red	N	N	N	N	N	N	N	N
Begin	Daylight	Savi	in w	15					
End	Daylight	Savi	in w	45					
Ti me of Day Changepoints:									
Week	Plan:								
		Sun	Mon	Tue	Wed	Thu	Fri	Sat	
Plan:	0	0	0	0	0	0	0	0	
Plan:	1	0	0	0	0	0	0	0	
Plan:	2	0	0	0	0	0	0	0	
Plan:	3	0	0	0	0	0	0	0	
Plan:	4	0	0	0	0	0	0	0	
Plan:	5	0	0	0	0	0	0	0	
Plan:	6	0	0	0	0	0	0	0	
Plan:	7	0	0	0	0	0	0	0	
Plan:	8	0	0	0	0	0	0	0	
Plan:	9	0	0	0	0	0	0	0	

Week PIan Implementation:

Week	1 :	0	Week	14:	0	Week	27:	0	Week	40:	0
Week	2 :	0	Week	15:	0	Week	28:	0	Week	41 :	0
Week	3 :	0	Week	16:	0	Week	29:	0	Week	42 :	0
Week	4	0	Week	17:	0	Week	30:	0	Week	43 :	0
Week	5 :	0	Week	18:	0	Week	$31:$	0	Week	44 :	0
Week	6 :	0	Week	19:	0	Week	32 :	0	Week	45 :	0
Week	7 :	0	Week	20:	0	Week	33 :	0	Week	46 :	0
Week	8	0	Week	21:	0	Week	34:	0	Week	47:	0
Week	$9:$	0	Week	22 :	0	Week	$35:$	0	Week	48:	0
Week	10:	0	Week	23:	0	Week	36 :	0	Week	49 :	0
Week	11:	0	Week	24:	0	Week	37:	0	Week	50 :	0
Week	12:	0	Week	25:	0	Week	38:	0	Week	51 :	0
Week	13:	0	Week	26:	0	Week	39:	0	Week	52 :	0

Special Day PIan Implementation (PIan-Week-Day):

Coordination Operating Modes:

							sh		Hwy	and	BRAK	TXT			
Split	3	40	40	0	20	0	0	0	0	0	10	0	20	0	30
Split	4	40	40	0	20	0	0	0	0	0	10	0	20	0	30
Split	5	40	40	0	20	0	0	0	0	0	10	0	20	0	30
Split	6	50	36	0	14	0	0	0	0	0	10	0	20	0	30
Split	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Split Matrix:

Database Printout of 1880 EL Local
Page: 5
Fil ename: DATAIINT\#4807.EL
Intersecton BRAKEBIL
Offset Times:

Cycle Times:

Cycle		
1	80	sec.
2	95	sec.
3		120
sec.		
4	0	sec.
5	0	sec.
6	0	sec.

Closed Loop Options:
TOD FI ash/Aux? NO
Free w/ Ckt 0? YES
Report Channel Failures to Central
Conflict Flash
(3) Occurence and Resume Normal

Manual/Auto FIash
(3) Occurence and Resume Normal

MCE
(3) Occurence and Resume Normal

Preempt
(0) Auto-log only

Channel \# 5
(0) Auto-log only

Page 4

```
Channel # 6
Channel # 7
Channel # 8
Door Open
                                    Asheville Hwy and BRAKE.TXT
                                    (0) Auto-log only
    (0) Auto-log only
    (0) Auto-log only
    (3) Occurence and Resume Normal
Main Street Phs for Out of Step Test
    Ring 1 - 2
Speed Trap Sensor Pairs
        1-2 3-4 5-6 7-8
        NO NO NO NO
Standard Overlaps:
O
Database Printout of 1880EL Local
Page: 6
Fil ename: DATA\INT#4807.EL
Intersection B BRAKEBILL
```



```
Internal Overlap Program? YES
    Phase
Program 1 2 3 4 5 6 7 8
Ov| A . . . . . . . .
Ov| B . . . . . . . .
OvI C
Ov| D
ᄋ
```


Asheville Hwy

08
Brakebill

Database Printout of 1880 EL Local
Page: 1
Fil ename: DATAl। NT\#9103.EL
Intersection: I-40, WB RAMP \quad Thu Mar 29, 14:59:41. 2018

Startup Data:
$\begin{array}{llll} & \text { Ring } & 1 & - \\ \text { Start Phases } & 2 & 0 \\ \text { UCF EntryPhases } & 4 & 0 \\ \text { UCF Exit Phases } & 2 & 0\end{array}$
Start Overlaps Yellow at Power-up? NO
Start in All Red at Power-up? NO
Zone | D:
Controller ID:
Hold 2 sec. Minimum Red Revert? NO
Override Holds if
Uniform Code FIash Active? YES
Dual Entry 1256? NO
Dual Entry 3478?
Passage Interval Sequential?
Red Revert Time: 0.0 sec.

Si mult aneous Gap?
NO
Conditional Service set by Input?
Conditi anal Service 1256 ?
NO
Conditional Service 1256 ? NO
Conditional Service 3478 ? NO
Timing Data:

Interval	Time by Phase (sec.)							
	1	2	3	4	5	6	7	8
Initial	6	20	0	7	0	0		0
Passage	3.0	3.0	0.0	3.0	0.0	0.0	0.0	0.0
Yellow	4.0	4.0	0.0	4.0	0.0	0.0	0.0	0.0
Red Clear	1. 0	1.0	0.0	1. 0	0.0	0.0	0.0	0.0
Max 1	14	45	0	18	0	0	0	0
Max 2	14	45	0	18	0	0	0	0
Wal k	0	20	0	0	0	0	0	0
Ped Clear	0	0	0	0	0	0	0	0

Max 3 Parameters
Adjust (sec.)

Set (max outs)
Clr (gap outs)
Functions:
Min. Recall
Max. Recall
Ped. Recall
Det. Non-lock
CNA I Active

Database Printout of 1880 EL Local
Fil ename: DATAl। NT \#9103.EL

CNA II Active N
FI ashing Walks
Phase Omitted
Ped Omitted
Soft Recall
N
N
N
N
N

N	N
N	N
N	Y
N	Y
N	N

N
N
N
Y
Y
Page
N
N
N
Y
Y
N
$\begin{array}{lll}N & N & N \\ N & N & N \\ Y & Y & Y \\ Y & Y & Y \\ N & N & N\end{array}$

Week PIan Implementation:
Week 1: 0 Week 14: 0 Week 27: 0 Week 40: 0
아
Database Printout of 1880 EL Local
Page: 3
Fil ename: DATAlINT\#9103.EL

Special Day PIan Implementation (PIan-Week-Day):

Phase Relationships:

Split Plans:

	1	2	$\begin{gathered} \mathrm{Perc} \\ 3 \end{gathered}$	$\begin{array}{r} \text { ent } \\ 4 \end{array}$	$\begin{array}{r} \text { per } \\ 5 \end{array}$	$\begin{gathered} \text { Phase } \\ 6 \end{gathered}$	7	8	Begin		missi Begi		Begin	End	
Split 1	25	52	0	23	0	0	0	0	0	5	0	10	0	15	
Split 2	21	55	0	24	0	0	0	0	0	5	0	10	0	15	
Split 3	20	60	0	20	0	0	0	0	0	5	0	10	0	15	
Split 4	20	50	0	30	0	0	0	0	0	0	0	0	0	0	
Split 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Split 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Split 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Split 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	우
Database	Pri	nto	t of	188	0 EL	Local									Page:
Fil ename:		TAl	NT \#	103.	EL										
			1-40	WB WB	$\begin{aligned} & \text { RAMP } \\ & \text { TIII } \end{aligned}$	íiíi			Thu Ma Ma	$\text { C1 } 29$		ílí í	2018	Í í í	IIIIi í

Split	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Split	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Split Matrix:

Offset Times:

Cycle Times:

```
Cycle
\begin{tabular}{lrl} 
& 70 & sec. \\
1 & 75 & sec. \\
2 & 80 & sec. \\
3 & 90 & sec. \\
4 & 100 & sec. \\
5 & 100 & sec.
\end{tabular}
Closed Loop Options:
TOD FI ash/Aux? YES
Free w/ Ckt 0? YES
Report Channel Failures to Central
Conflict Flash (3) Occurence and Resume Normal
&
Database Printout of 1880EL Local
Page: 6
Fi| ename: DATA\INT#9103.EL
Intersection: I-40,WB RAMP Thu Mar 29 14:59:41.2018
```



```
Manual/Auto Flash (3) Occurence and Resume Normal
Manual/Auto Flash (3) Occurence and Resume Normal
Preempt
Channel# 5 (3) Occurence and Resume Normal
Channel # 6
Channel# 7
Channel# 8
Channel# 8
Manual/Auto Flash (3) Occurence and Resume Normal
Main Street Phs for Out of Step Test
    Ring 1 - 2
Speed Trap Sensor Pairs
        1-2 3-4 5-6 7-8
        NO NO NO NO
St andard Overlaps:
Internal OverIap Program? YES
Program 1 2 3 4 4 5 5 6 7 8
OvI A X X . . . . . .
Ov| B . . . . . . . .
Ov| C . . . . . . . .
Ov| D . . . . . . . .
우
```


Strawberry Plains Pk \& I-40 WB Ramps

Strawberry Plains Pk
02

Strawberry Plains Pk

APPENDIX G

Capacity Analyses - HCM Worksheets (Synchro 8)

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Approach	EB	NB	SB
HCM Control Delay, s	10.3	0.9	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1427	-	722	-
HCM Lane V/C Ratio	0.008	-	-0.061	-
HCM Control Delay (s)	7.5	0	10.3	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.2	-

Approach	EB	NB	SB
HCM Control Delay, s	27.5	1.9	0.5
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR	
Capacity (veh/h)	665	-138	539	-	-
HCM Lane V/C Ratio	0.132	-0.518	0.289	-	-
HCM Control Delay (s)	11.2	-56.2	14.4	-	-
HCM Lane LOS	B	-	F	B	-
HCM 95th \%tile Q(veh)	0.5	-	2.5	1.2	-

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Intersection						
Int Delay, s/veh 1.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	11	11	12	167	130	17
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	3	-	-	3	-2	-
Peak Hour Factor	55	55	75	91	77	85
Heavy Vehicles, \%	9	18	8	2	1	6
Mvmt Flow	20	20	16	184	169	20
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	395	179	189	0	-	0
Stage 1	179	-	-	-	-	-
Stage 2	216	-	-	-	-	-
Critical Hdwy	7.09	6.68	4.18	-	-	-
Critical Hdwy Stg 1	6.09	-	-	-	-	-
Critical Hdwy Stg 2	6.09	-	-	-	-	-
Follow-up Hdwy	3.581	3.462	2.272	-	-	-
Pot Cap-1 Maneuver	558	812	1350	-	-	-
Stage 1	811	-	-	-	-	-
Stage 2	775	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	551	812	1350	-	-	-
Mov Cap-2 Maneuver	551	-	-	-	-	-
Stage 1	811	-	-	-	-	-
Stage 2	765	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	10.8	0.6	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1350	-657	-	-	
HCM Lane V/C Ratio	0.012	-0.061	-	-	
HCM Control Delay (s)	7.7	0	10.8	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.2	-	-

Approach	EB	NB	SB
HCM Control Delay, S	21.1	2.1	0.2
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR		
Capacity (veh/h)	890	-	171	729	-	-
HCM Lane V/C Ratio	0.238	-	0.42	0.191	-	-
HCM Control Delay (s)	10.3	-	40.5	11.1	-	-
HCM Lane LOS	B	-	E	B	-	-
HCM 95th \%tile Q(veh)	0.9	-	1.9	0.7	-	-

Opening Year Traffic Conditions (Without Project)

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Intersection						
Int Delay, s/veh 1.9						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	19	11	9	73	145	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	3	-	-	3	-2	-
Peak Hour Factor	50	75	58	72	85	56
Heavy Vehicles, \%	6	0	0	0	0	0
Mvmt Flow	38	15	16	101	171	20
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	312	180	190	0	-	0
Stage 1	180	-	-	-	-	-
Stage 2	132	-	-	-	-	-
Critical Hdwy	7.06	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6.06	-	-	-	-	-
Critical Hdwy Stg 2	6.06	-	-	-	-	-
Follow-up Hdwy	3.554	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	638	855	1396	-	-	-
Stage 1	817	-	-	-	-	-
Stage 2	865	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	630	855	1396	-	-	-
Mov Cap-2 Maneuver	630	-	-	-	-	-
Stage 1	817	-	-	-	-	-
Stage 2	855	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	10.7	1	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1396	-	680	-
HCM Lane V/C Ratio	0.011	-	-0.077	-
HCM Control Delay (s)	7.6	0	10.7	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.3	-

Intersection							
Int Delay, s/veh 7.7							
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR
Vol, veh/h	46	167	67	461	56	833	42
Conflicting Peds, \#/hr	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	-	None
Storage Length	120	0	150	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	-	0	-
Grade, \%	-3	-	-	1	-	-2	-
Peak Hour Factor	56	93	66	91	92	79	69
Heavy Vehicles, \%	0	6	9	7	0	7	3
Mvmt Flow	82	180	102	507	61	1054	61
Major/Minor	Minor2		Major1		ajor2		
Conflicting Flow All	1663	558	1115	0	370	-	0
Stage 1	1207	-	-	-	-	-	-
Stage 2	456	-	-	-	-	-	-
Critical Hdwy	6.2	6.72	4.28	-	6.4	-	-
Critical Hdwy Stg 1	5.2	-	-	-	-	-	-
Critical Hdwy Stg 2	5.2	-	-	-	-	-	-
Follow-up Hdwy	3.5	3.36	2.29	-	2.5	-	-
Pot Cap-1 Maneuver	118	485	583	-	846	-	-
Stage 1	306	-	-	-	-	-	-
Stage 2	659	-	-	-	-	-	-
Platoon blocked, \%				-		-	-
Mov Cap-1 Maneuver	97	485	583	-	846	-	-
Mov Cap-2 Maneuver	97	-	-	-	-	-	-
Stage 1	306	-	-	-	-	-	-
Stage 2	544	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	52.7	2.1	0.5
HCM LOS	F		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR		
Capacity (veh/h)	583	-	97	485	-	-
HCM Lane V/C Ratio	0.174	-	0.847	0.37	-	-
HCM Control Delay (s)	12.5	-131.5	16.7	-	-	
HCM Lane LOS	B	-	F	C	-	-
HCM 95th \%tile Q(veh)	0.6	-	4.7	1.7	-	-

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Approach	EB	NB	SB
HCM Control Delay, S	11.4	0.6	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1317	-611	-	-	
HCM Lane V/C Ratio	0.014	-0.077	-	-	
HCM Control Delay (s)	7.8	0	11.4	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.3	-	-

Intersection									
Int Delay, s/veh									
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR	
Vol, veh/h	65	143	17	185	875	12	530	54	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	None	-		None	-	-	None	
Storage Length	120	0	-	150	-	-	-	-	
Veh in Median Storage, \#	0	-	-	-	0	-	0	-	
Grade, \%	-3	-	-	-	1	-	-2	-	
Peak Hour Factor	78	89	92	82	92	92	94	59	
Heavy Vehicles, \%	0	2	0	6	4	0	7	2	
Mvmt Flow	83	161	18	226	951	13	564	92	
Major/Minor	Minor2		Major1			Major2			
Conflicting Flow All	1600	328	816	655	0	694	-	0	
Stage 1	636	-	-	-	-	-	-	-	
Stage 2	964	-	-	-	-	-	-	-	
Critical Hdwy	6.2	6.64	6.4	4.22	-	6.4	-	-	
Critical Hdwy Stg 1	5.2	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	5.2	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	3.32	2.5	2.26	-	2.5	-	-	
Pot Cap-1 Maneuver	129	686	442	902	-	528	-	-	
Stage 1	550	-	-	-	-	-	-	-	
Stage 2	394	-	-	-	-	-	-	-	
Platoon blocked, \%					-		-	-	
Mov Cap-1 Maneuver	129	686	806	806	-	528	-	-	
Mov Cap-2 Maneuver	129	-	-	-	-	-	-	-	
Stage 1	550	-	-	-	-	-	-	-	
Stage 2	394	-	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	32.9	2.3	0.2
HCM LOS	D		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR	
Capacity (veh/h)	806	-129	686	-	-
HCM Lane V/C Ratio	0.303	-0.646	0.234	-	-
HCM Control Delay (s)	11.4	-73.5	11.8	-	-
HCM Lane LOS	B	-	F	B	-
HCM 95th \%tile Q(veh)	1.3	-	3.4	0.9	-
(ven	-				

Opening Year Traffic Conditions (With Project)

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Intersection						
Int Delay, s/veh 2.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	48	32	59	287	230	39
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	53	36	66	319	256	43
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	727	277	299	0	-	0
Stage 1	277	-	-	-	-	-
Stage 2	450	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	394	767	1274	-	-	-
Stage 1	774	-	-	-	-	-
Stage 2	647	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	369	767	1274	-	-	-
Mov Cap-2 Maneuver	369	-	-	-	-	-
Stage 1	774	-	-	-	-	-
Stage 2	606	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	14.5	1.4	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1274	-	466	-	-
HCM Lane V/C Ratio	0.051	-	0.191	-	-
HCM Control Delay (s)	8	0	14.5	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0.2	-	0.7	-	-

Intersection						
Int Delay, s/veh 4.7						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	30	0	17	20	0	50
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	6	0	0	0	0	0
Mvmt Flow	33	0	19	22	0	56
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	33	0	93	33
Stage 1	-	-	-	-	33	-
Stage 2	-	-	-	-	60	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1592	-	912	1046
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	968	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1592	-	901	1046
Mov Cap-2 Maneuver	-	-	-	-	901	-
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	956	-

Approach	EB	WB	NB
HCM Control Delay, s	0	3.3	8.6
HCM LOS		A	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	1046	-	-	1592	-	
HCM Lane V/C Ratio	0.053	-	-	0.012	-	
HCM Control Delay (s)	8.6	-	-	7.3	0	
HCM Lane LOS	A		-	A	A	
HCM 95th \%tile Q(veh)	0.2	-	-	0		

Approach	EB	NB	SB
HCM Control Delay, S	170.1	2.7	0.5
HCM LOS	F		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	EBLn2	SBT	SBR
Capacity (veh/h)	573	-82	479	-	-
HCM Lane V/C Ratio	0.233	-1.786	0.667	-	-
HCM Control Delay (s)	13.2	$-\$ 483.6$	26.3	-	-
HCM Lane LOS	B	-	F	D	-
HCM 95th \%tile Q(veh)	0.9	-12.5	4.8	-	-
Notes					

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh 3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	48	73	15	100	249	22
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	75	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	53	81	17	111	277	24
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	433	289	301	0	-	0
Stage 1	289	-	-	-	-	-
Stage 2	144	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	584	755	1272	-	-	-
Stage 1	765	-	-	-	-	-
Stage 2	888	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	576	755	1272	-	-	-
Mov Cap-2 Maneuver	576	-	-	-	-	-
Stage 1	765	-	-	-	-	-
Stage 2	876	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	11.7	1	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1272	-	672	-
HCM Lane V/C Ratio	0.013	-	0.2	-
HCM Control Delay (s)	7.9	-	11.7	-
HCM Lane LOS	A	-	B	-
HCM 95th \%tile Q(veh)	0	-	0.7	-

Intersection						
Int Delay, s/veh 0.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	2	3	2	146	268	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	25	25	0	0	0	0
Mvmt Flow	2	3	2	162	298	3
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	466	299	301	0	-	0
Stage 1	299	-	-	-	-	-
Stage 2	167	-	-	-	-	-
Critical Hdwy	6.65	6.45	4.1	-	-	-
Critical Hdwy Stg 1	5.65	-	-	-	-	-
Critical Hdwy Stg 2	5.65	-	-	-	-	-
Follow-up Hdwy	3.725	3.525	2.2	-	-	-
Pot Cap-1 Maneuver	515	689	1272	-	-	-
Stage 1	703	-	-	-	-	-
Stage 2	810	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	514	689	1272	-	-	-
Mov Cap-2 Maneuver	514	-	-	-	-	-
Stage 1	703	-	-	-	-	-
Stage 2	808	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	11	0.1	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1272	-	606	-	-
HCM Lane V/C Ratio	0.002	-0.009	-	-	
HCM Control Delay (s)	7.8	0	11	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0	-	-

Intersection						
Int Delay, s/veh 3.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	40	42	15	162	186	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	3	-	-	3	-2	-
Peak Hour Factor	50	75	58	72	85	56
Heavy Vehicles, \%	6	0	0	0	0	0
Mvmt Flow	80	56	26	225	219	38
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	515	238	256	0	-	0
Stage 1	238	-	-	-	-	-
Stage 2	277	-	-	-	-	-
Critical Hdwy	7.06	6.5	4.1	-	-	-
Critical Hdwy Stg 1	6.06	-	-	-	-	-
Critical Hdwy Stg 2	6.06	-	-	-	-	-
Follow-up Hdwy	3.554	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	471	790	1321	-	-	-
Stage 1	761	-	-	-	-	-
Stage 2	726	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	461	790	1321	-	-	-
Mov Cap-2 Maneuver	461	-	-	-	-	-
Stage 1	761	-	-	-	-	-
Stage 2	710	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	13.6	0.8	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1321	-	556	-	-
HCM Lane V/C Ratio	0.02	-	0.245	-	-
HCM Control Delay (s)	7.8	0	13.6	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0.1	-	1	-	-

HCM Signalized Intersection Capacity Analysis
5: Brakebill Road/Neals Landing Road \& Asheville Highway

Intersection						
Int Delay, s/veh 2.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	39	59	11	138	212	16
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	43	66	12	153	236	18
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	422	244	253	0	-	0
Stage 1	244	-	-	-	-	-
Stage 2	178	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	592	800	1324	-	-	-
Stage 1	801	-	-	-	-	-
Stage 2	858	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	586	800	1324	-	-	-
Mov Cap-2 Maneuver	586	-	-	-	-	-
Stage 1	801	-	-	-	-	-
Stage 2	849	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	11.1	0.6	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1324	-	698	-
HCM Lane V/C Ratio	0.009	-	-.156	-
HCM Control Delay (s)	7.7	0	11.1	-
HCM Lane LOS	A	A	B	-
HCM 95th \%tile Q(veh)	0	-	0.6	-

Intersection						
Int Delay, s/veh 4.5						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Vol, veh/h	26	0	55	34	0	31
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	27	0	0	14	0	0
Mvmt Flow	29	0	61	38	0	34
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	29	0	189	29
Stage 1	-	-	-	-	29	-
Stage 2	-	-	-	-	160	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1597	-	805	1052
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	874	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1597	-	774	1052
Mov Cap-2 Maneuver	-	-	-	-	774	-
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	840	-

Approach	EB	WB	NB
HCM Control Delay, s	0	4.5	8.5
HCM LOS			A

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	1052	-	-	1597	-	
HCM Lane V/C Ratio	0.033	-	-	0.038	-	
HCM Control Delay (s)	8.5	-	-	7.3	0	
HCM Lane LOS	A		-	A	A	
HCM 95th \%tile Q(veh)	0.1	-	-	0.1		

Approach	EB	NB	SB
HCM Control Delay, s	154.9	6.6	0.3
HCM LOS	F		

Minor Lane/Major Mvmt	NBL	NBT EBLn1 EBLn2	SBT	SBR	
Capacity (veh/h)	664	-	70	654	-

~: Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh 2.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	44	29	77	303	212	52
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	75	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	49	32	86	337	236	58
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	772	264	293	0	-	0
Stage 1	264	-	-	-	-	-
Stage 2	508	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	371	780	1280	-	-	-
Stage 1	785	-	-	-	-	-
Stage 2	608	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	346	780	1280	-	-	-
Mov Cap-2 Maneuver	346	-	-	-	-	-
Stage 1	785	-	-	-	-	-
Stage 2	567	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	14.9	1.6	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1280	-	444	-
HCM Lane V/C Ratio	0.067	-0.183	-	-
HCM Control Delay (s)	8	-	14.9	-
HCM Lane LOS	A	-	B	-
HCM 95th \%tile Q(veh)	0.2	-	0.7	-

Intersection						
Int Delay, s/veh 0.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	4	3	5	342	259	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, \%	25	25	0	0	0	0
Mvmt Flow	4	3	6	380	288	3
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	680	289	291	0	-	0
Stage 1	289	-	-	-	-	-
Stage 2	391	-	-	-	-	-
Critical Hdwy	6.65	6.45	4.1	-	-	-
Critical Hdwy Stg 1	5.65	-	-	-	-	-
Critical Hdwy Stg 2	5.65	-	-	-	-	-
Follow-up Hdwy	3.725	3.525	2.2	-	-	-
Pot Cap-1 Maneuver	383	699	1282	-	-	-
Stage 1	710	-	-	-	-	-
Stage 2	636	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	381	699	1282	-	-	-
Mov Cap-2 Maneuver	381	-	-	-	-	-
Stage 1	710	-	-	-	-	-
Stage 2	632	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	12.7	0.1	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1282	-	473	-	-
HCM Lane V/C Ratio	0.004	-0.016	-	-	
HCM Control Delay (s)	7.8	0	12.7	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.1	-	-

Intersection						
Int Delay, s/veh 2.8						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	32	25	47	288	244	42
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	3	-	-	3	-2	-
Peak Hour Factor	55	55	75	91	77	85
Heavy Vehicles, \%	9	18	8	2	1	6
Mvmt Flow	58	45	63	316	317	49
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	784	342	366	0	-	0
Stage 1	342	-	-	-	-	-
Stage 2	442	-	-	-	-	-
Critical Hdwy	7.09	6.68	4.18	-	-	-
Critical Hdwy Stg 1	6.09	-	-	-	-	-
Critical Hdwy Stg 2	6.09	-	-	-	-	-
Follow-up Hdwy	3.581	3.462	2.272	-	-	-
Pot Cap-1 Maneuver	309	647	1160	-	-	-
Stage 1	665	-	-	-	-	-
Stage 2	588	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	289	647	1160	-	-	-
Mov Cap-2 Maneuver	289	-	-	-	-	-
Stage 1	665	-	-	-	-	-
Stage 2	549	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	17.9	1.4	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1160	-	382	-
HCM Lane V/C Ratio	0.054	-	-.271	-
HCM Control Delay (s)	8.3	0	17.9	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0.2	-	1.1	-

Opening Year Traffic Conditions (With Project) with revised Traffic Signals

	4		4	\dagger	14	$\frac{1}{\dagger}$	\pm	
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR	
Lane Configurations	${ }^{7}$	「	\#	中4		${ }_{4} \uparrow$		
Volume (vph)	82	297	88	461	56	833	55	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Grade (\%)	-3\%			1\%		-2\%		
Total Lost time (s)	5.0	5.0	5.0	5.0		5.0		
Lane Util. Factor	1.00	1.00	1.00	0.95		0.95		
Frt	1.00	0.85	1.00	1.00		0.99		
Flt Protected	0.95	1.00	0.95	1.00		1.00		
Satd. Flow (prot)	1832	1546	1648	3357		3385		
Flt Permitted	0.95	1.00	0.20	1.00		0.90		
Satd. Flow (perm)	1832	1546	351	3357		3045		
Peak-hour factor, PHF	0.56	0.93	0.66	0.91	0.92	0.79	0.69	
Adj. Flow (vph)	146	319	133	507	61	1054	80	
RTOR Reduction (vph)	0	110	0	0	0	6	0	
Lane Group Flow (vph)	146	209	133	507	0	1189	0	
Heavy Vehicles (\%)	0\%	6\%	9\%	7\%	0\%	7\%	3\%	
Turn Type	Prot	Perm	Perm	NA	Perm	NA		
Protected Phases	4			2		6		
Permitted Phases		4	2		6			
Actuated Green, G (s)	14.1	14.1	55.9	55.9		55.9		
Effective Green, g (s)	14.1	14.1	55.9	55.9		55.9		
Actuated g/C Ratio	0.18	0.18	0.70	0.70		0.70		
Clearance Time (s)	5.0	5.0	5.0	5.0		5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		
Lane Grp Cap (vph)	322	272	245	2345		2127		
v/s Ratio Prot	0.08			0.15				
v/s Ratio Perm		c0.13	0.38			c0.39		
v/c Ratio	0.45	0.77	0.54	0.22		0.56		
Uniform Delay, d1	29.5	31.4	5.8	4.3		6.0		
Progression Factor	1.00	1.00	0.90	0.64		1.00		
Incremental Delay, d2	1.0	12.2	8.2	0.2		1.1		
Delay (s)	30.5	43.6	13.5	3.0		7.0		
Level of Service	C	D	B	A		A		
Approach Delay (s)	39.5			5.1		7.0		
Approach LOS	D			A		A		
Intersection Summary								
HCM 2000 Control Delay			13.1		HCM 2000	evel of S	ervice	B
HCM 2000 Volume to Capacity ratio			0.60					
Actuated Cycle Length (s)			80.0		Sum of los	ime (s)		10.0
Intersection Capacity Utilization			70.0\%		CU Level	Service		C
Analysis Period (min)			15					
c Critical Lane Group								

	4		71	4	\dagger	4	$\frac{1}{1}$	\downarrow	
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR	
Lane Configurations	${ }^{7}$	7		\%	中4		$\uparrow \uparrow$		
Volume (vph)	88	196	17	320	875	12	530	95	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
Grade (\%)	-3\%				1\%		-2\%		
Total Lost time (s)	5.0	5.0		5.0	5.0		5.0		
Lane Util. Factor	1.00	1.00		1.00	0.95		0.95		
Frt	1.00	0.85		1.00	1.00		0.97		
Flt Protected	0.95	1.00		0.95	1.00		1.00		
Satd. Flow (prot)	1832	1607		1706	3454		3332		
Flt Permitted	0.95	1.00		0.37	1.00		0.92		
Satd. Flow (perm)	1832	1607		656	3454		3077		
Peak-hour factor, PHF	0.78	0.89	0.32	0.82	0.92	0.63	0.94	0.59	
Adj. Flow (vph)	113	220	53	390	951	19	564	161	
RTOR Reduction (vph)	0	192	0	0	0	0	24	0	
Lane Group Flow (vph)	113	28	0	443	951	0	720	0	
Heavy Vehicles (\%)	0\%	2\%	0\%	6\%	4\%	0\%	7\%	2\%	
Turn Type	Prot	Perm	Perm	Perm	NA	Perm	NA		
Protected Phases	4				2		6		
Permitted Phases		4	2	2		6			
Actuated Green, G (s)	10.2	10.2		59.8	59.8		59.8		
Effective Green, g (s)	10.2	10.2		59.8	59.8		59.8		
Actuated g/C Ratio	0.13	0.13		0.75	0.75		0.75		
Clearance Time (s)	5.0	5.0		5.0	5.0		5.0		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		
Lane Grp Cap (vph)	233	204		490	2581		2300		
v/s Ratio Prot	c0.06				0.28				
v/s Ratio Perm		0.02		c0.68			0.23		
v/c Ratio	0.48	0.14		0.90	0.37		0.31		
Uniform Delay, d1	32.5	31.0		7.9	3.5		3.3		
Progression Factor	1.00	1.00		0.73	0.37		1.00		
Incremental Delay, d2	1.6	0.3		21.3	0.4		0.4		
Delay (s)	34.0	31.3		27.1	1.7		3.7		
Level of Service	C	C		C	A		A		
Approach Delay (s)	32.2				9.7		3.7		
Approach LOS	C				A		A		
Intersection Summary									
HCM 2000 Control Delay			11.0	HCM 2000 Level of Service					B
HCM 2000 Volume to Capacity ratio			0.84						
Actuated Cycle Length (s)			80.0		Sum of lost	time (s)			10.0
Intersection Capacity Utilization			66.9\%		CU Level of	Service			C
Analysis Period (min)			15						
c Critical Lane Group									

APPENDIX H

ITE AND MPC LOCAL TRIP GENERATION RATES

Land Use: 210 Single-Family Detached Housing

Description

Single-family detached housing includes all single-family detached homes on individual lots. A typical site surveyed is a suburban subdivision.

Additional Data

The number of vehicles and residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it was usually readily available, easy to project and had a high correlation with average weekday vehicle trip ends.

This land use included data from a wide variety of units with different sizes, price ranges, locations and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Single-family detached units had the highest trip generation rate per dwelling unit of ail residential uses because they were the largest units in size and had more residents and more vehicles per unit than other residential land uses; they were generally located farther away from shopping centers, employment areas and other trip attractors than other residential land uses; and they generally had fewer alternative modes of transportation available because they were typically not as concentrated as other residential land uses.

The peak hour of the generator typically coincided with the peak hour of the adjacent street traffic.
The sites were surveyed between the late 1960s and the 2000s throughout the United States and Canada.

Source Numbers

$1,4,5,6,7,8,11,12,13,14,16,19,20,21,26,34,35,36,38,40,71,72,84,91,98,100,105$,
$108,110,114,117,119,157,167,177,187,192,207,211,246,275,283,293,300,319,320,357$,
$384,435,550,552,579,598,601,603,611,614,637,711,735$

Single-Family Detached Housing

(210)

Average Vehicle Trip Ends vs: Dwelling Units
 On a: Weekday

Number of Studies: 355
Avg. Number of Dwelling Units: 198
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per Dwelling Unit

Average Rate		Range of Rates	Standard Deviation
9.52	$4.31-21.85$	3.70	

Data Plot and Equation

Single-Family Detached Housing
 (210)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 292
Avg. Number of Dwelling Units: 194
Directional Distribution: 25% entering, 75% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.75	$0.33-2.27$	0.90

Data Plot and Equation

Single-Family Detached Housing
 (210)

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 321
Avg. Number of Dwelling Units: 207
Directional Distribution: 63\% entering, 37\% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
1.00	$0.42-2.98$	1.05

Data Plot and Equation

Land Use: 230 Residential Condominium/Townhouse

Description

Residential condominiums/townhouses are defined as ownership units that have at least one other owned unit within the same building structure. Both condominiums and townhouses are included in this land use. The studies in this land use did not identify whether the condominiums/townhouses were low-rise or high-rise. Low-rise residential condominium/townhouse (Land Use 231), high-rise residential condominium/townhouse (Land Use 232) and luxury condominium/townhouse (Land Use 233) are related uses.

Additional Data

The number of vehicles and the number of residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it is usually readily available, easy to project and had a high correlation with average weekday vehicle trip ends.

The peak hour of the generator typically coincided with the peak hour of the adjacent street traffic.
The sites were surveyed between the mid-1970s and the 2000s throughout the United States and Canada.

Source Numbers

$4,92,94,95,97,100,105,106,114,168,186,204,237,253,293,319,320,321,390,412,418$, 561, 562, 583, 638

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Number of Studies: 56
Avg. Number of Dwelling Units: 179
Directional Distribution: 50\% entering, 50\% exiting

Trip Generation per Dwelling Unit

| Average Rate | Range of Rates | Standard Deviation |
| :---: | :---: | :---: | :---: |
| 5.81 | $1.53-11.79$ | 3.11 |

Data Plot and Equation

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units

Ona: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 59
Avg. Number of Dwelling Units: 213
Directional Distribution: 17% entering, 83% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates		Standard Deviation
0.44	$0.15-1.61$	0.69	

Data Plot and Equation

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units
 On a: Weekday,
 Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 62
Avg. Number of Dwelling Units: 205
Directional Distribution: 67\% entering, 33\% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.52	$0.18-1.24$	0.75

Data Plot and Equation

Fitted Curve Equation: $\operatorname{Ln}(T)=0.82 \operatorname{Ln}(X)+0.32$ $\mathrm{R}^{2}=0.80$

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: Dwelling Units
Ona: Weekday

Number of Studies: 13
Average Number of Dwelling Units: 193
Directional Distribution: 50% entering, 50% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
9.03	$6.59-17.41$	2.47

Data Plot and Equation

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Number of Studies:
Average Number of Dwelling Units:
Directional Distribution:
13
193
22\% entering, 78% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
0.55	$0.14-0.78$	0.18

Data Plot and Equation

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m
Number of Studies:
13
Average Number of Dwelling Units: 193
Directional Distribution: $\quad 55 \%$ entering, 45% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
0.72	$0.32-1.66$	0.25

Data Plot and Equation

Land Use: 151
 Mini-Warehouse

Description

Mini-warehouses are buildings in which a number of storage units or vaults are rented for the storage of goods. They are typically referred to as "self-storage" facilities. Each unit is physically separated from other units, and access is usually provided through an overhead door or other common access point.

Additional Data

Truck trips accounted for 2 to 15 percent of the weekday traffic at the sites where data were available.

Vehicle occupancy ranged from 1.2 to 1.9 persons per automobile on an average weekday.
Peak hours of the generator-
The weekday P.M. peak hour was between 12:00 p.m. and 7:00 p.m. The Saturday peak hour was between 10:00 a.m. and 1:00 p.m. The Sunday peak hour was between 1:00 p.m. and 6:00 p.m.

For the purpose of this land use, the independent variable "occupied storage units" is defined as the number of units that have been rented.

The sites were surveyed between 1979 and 2008 in California, Colorado, Massachusetts, New Jersey and Texas.

Source Numbers

$113,212,403,551,568,642,708,724$

Mini-Warehouse
 (151)

Average Vehicle Trip Ends vs: Acres

On a: Weekday

Number of Studies: 13
Average Number of Acres: 4
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per Acre

Average Rate	Range of Rates	Standard Deviation
35.43	14.78 - 64.67	15.63

Data Plot and Equation

Average Vehicle Trip Ends vs: Acres

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 10
Average Number of Acres: 4
Directional Distribution: 45\% entering, 55\% exiting
Trip Generation per Acre

-	Average Rate	Range of Rates	
2.58	$1.05-4.00$	Standard Deviation	

Data Plot and Equation

Mini-Warehouse

(151)

Average Vehicle Trip Ends vs: Acres

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 14
Average Number of Acres: 4
Directional Distribution: 50\% entering, 50% exiting
Trip Generation per Acre

Average Rate	Range of Rates	Standard Deviation
	$\frac{1.29-11.33}{2.57}$	

Data Plot and Equation

TABLE 6A
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Entire Development

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
Total New Volume Site Trips			5,254	85	277	362	290	191	481

TABLE 6B
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
247 Single-Family Detached Homes

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	$\begin{aligned} & \text { GENERATED } \\ & \text { DAILY } \\ & \text { TRAFFIC } \end{aligned}$	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#210	Single-Family Detached Housing	247 Lots	2,414	25\%	75\%		63\%	37\%	
				46	137	183	150	88	238
Total New Volume Site Trips			2,414	46	137	183	150	88	238

TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT

247 single family detached homes

$$
247 \text { Residential Units }=\mathbf{X}
$$

Weekday:

Fitted Curve Equation:

$$
\operatorname{Ln}(\mathrm{T})=0.92 \operatorname{Ln}(\mathrm{X})+2.72
$$

$$
\begin{aligned}
\operatorname{Ln}(\mathrm{T}) & =0.92 * 5.51+2.72 \\
\operatorname{Ln}(\mathrm{~T}) & =7.79 \\
\mathbf{T} & =\mathbf{2 , 4 1 4} \text { trips }
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation:

$$
\begin{aligned}
& \mathrm{T}=0.70(\mathrm{X})+9.74 \\
& \mathrm{~T}=0.70 \quad 0.247 \quad+9.74 \\
& \mathrm{~T}= \\
& \hline \hline
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 4 and 6 pm :

Fitted Curve Equation:

$$
\operatorname{Ln}(\mathrm{T})=0.90 \operatorname{Ln}(\mathrm{X})+0.51
$$

$$
\begin{aligned}
\operatorname{Ln}(\mathrm{T}) & =0.90 * 5.51+0.51 \\
\operatorname{Ln}(\mathrm{~T}) & =5.47 \\
\mathbf{T} & =\mathbf{2 3 8} \text { trips }
\end{aligned}
$$

TABLE 6C
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
78 Single-Family Attached Homes

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATEDDAILYTRAFFIC	GENERATED TRAFFIC AM PEAK HOUR			GENERATED TRAFFIC PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#230	Residential Condominium / Townhouse	78 Dwellings	519	17\%	83\%		67\%	33\%	
				7	36	43	34	16	50
Total New Volume Site Trips			519	7	36	43	34	16	50

TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT

78 attached homes

$$
78 \text { Dwelling Units }=X
$$

Weekday:

Fitted Curve Equation:

$$
\operatorname{Ln}(\mathrm{T})=0.87 \operatorname{Ln}(\mathrm{X})+2.46
$$

$$
\begin{aligned}
\operatorname{Ln}(\mathrm{T}) & =0.87 * 4.36+2.46 \\
\operatorname{Ln}(\mathrm{~T}) & =6.25 \\
\mathbf{T} & =519 \text { trips }
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 7 and 9 am:

Fitted Curve Equation:

$$
\operatorname{Ln}(\mathrm{T})=0.80 \operatorname{Ln}(\mathrm{X})+0.26
$$

$$
\begin{aligned}
\operatorname{Ln}(\mathrm{T}) & =0.80 * 4.36+0.26 \\
\operatorname{Ln}(\mathrm{~T}) & =3.75 \\
\mathbf{T} & =43 \text { trips }
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 4 and 6 pm :

Fitted Curve Equation:

$$
\begin{aligned}
\operatorname{Ln}(T) & =0.82 \operatorname{Ln}(\mathrm{X})+0.32 \\
\operatorname{Ln}(\mathrm{~T}) & =0.82 * 4.36+0.32 \\
\operatorname{Ln}(\mathrm{~T}) & =3.89 \\
\mathbf{T} & =50 \text { trips }
\end{aligned}
$$

TABLE 6D
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Apartments

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	$\begin{aligned} & \text { GENERATED } \\ & \text { DAILY } \\ & \text { TRAFFIC } \end{aligned}$	GENERATED TRAFFIC AM PEAK HOUR			GENERATEDTRAFFICPM PEAK HOUR		
				ENT'ER	EXIT	TOTAL	ENTER	EXIT	TOTAL
MPC Local Rate	Dwelling Units	250 Units	2,175	22\%	78\%		55\%	45\%	
				27	98	125	98	80	178
Total New Volume Site Trips			2,175	27	98	125	98	80	178

TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
250 Apartments
250 Residential Units $=\mathbf{X}$

Weekday:
Fitted Curve Equation: $\quad \mathrm{T}=15.193(\mathrm{X})^{0.899}$

$$
\mathrm{T}=15.193 * 143.136
$$

$\underline{\underline{T}=\quad 2,175 \text { trips }}$

Peak Hour of Adjacent Traffic between 7 and 9 am:
Fitted Curve Equation: $\quad \mathrm{T}=0.758(\mathrm{X})^{0.924}$

$$
\begin{array}{lc}
\mathrm{T}= & 0.758 * 164.322 \\
\mathbf{T}= & \mathbf{1 2 5} \text { trips }
\end{array}
$$

Peak Hour of Adjacent Traffic between 4 and $6 \mathrm{pm}:$

Fitted Curve Equation:

$$
\begin{array}{ll}
\mathrm{T}=0.669(\mathrm{X})+10.069 \\
\mathrm{~T}= & 0.669 \quad * \quad 250 \\
\mathbf{T}= & \mathbf{1 7 8} \text { trips }
\end{array}
$$

TABLE 6E
TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT
Mini-Warehouse Facility

ITE LAND USE CODE	LAND USE DESCRIPTION	UNITS	GENERATED DAILY TRAFFIC	GENERATED TRAFFIC AM PEAK HOUR				ERAT RAFFIC AK H	
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#151	Mini-Warehouse	4.1 acres	146	45\%	55\%		50\%	50\%	
				5	6	11	8	7	15
Total New Volume Site Trips			146	5	6	11	8	7	15

TRIP GENERATION FOR BRAKEBILL ROAD DEVELOPMENT

4.1 acres of Mini-Warehouse Facility

4.1 acres $=\mathbf{X}$

Weekday:
Average Rate:

$$
\begin{aligned}
& \mathrm{T}=35.43(\mathrm{X}) \\
& \\
& \mathrm{T}=35.43 * 4.10 \\
& \mathbf{T}=\quad 146 \text { trips }
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 7 and 9 am:
Average Rate:

$$
\begin{aligned}
& \mathrm{T}=2.58(\mathrm{X}) \\
& \mathrm{T}= \\
& \mathbf{T}= \\
& \mathbf{T}= \\
& \hline \hline
\end{aligned}
$$

Peak Hour of Adjacent Traffic between 4 and $6 \mathrm{pm}:$
Average Rate:

$$
\begin{aligned}
& \mathrm{T}=3.57(\mathrm{X}) \\
& \mathrm{T}= \\
& \mathbf{T} .57 * 4.10 \\
& \mathbf{T}= \\
& \hline \hline
\end{aligned}
$$

APPENDIX I

Trip Distribution Spreadsheet Calculations

APPENDIX J

Spot Speed Study

SPOT SPEED STUDY

Location: Brakebill Road at Hammer Road Posted Speed Limit: $\quad 30 \mathrm{mph}$

Equipment: Bushnell Speedster III Radar Speed Gun
Direction: Northbound and Southbound

Date: 3/20/18

Weather: Overcast/Windy
Time: 4:00 PM
Pavement Conditions: Dry

Vehicle \#	Speed (mph)
1	39
2	44
3	43
4	46
5	46
6	45
7	51
8	45
9	39
10	40
11	42
12	42
13	38
14	42
15	34
16	44
17	39
18	42
19	41
20	43
21	39
22	40
23	37
24	41
25	38

Average speed $=$ 50th percentile speed $=$
85th percentile speed $=$

Vehicle \#	$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$
26	40
27	44
28	40
29	49
30	37
31	46
32	46
33	40
34	41
35	37
36	42
37	44
38	38
39	45
40	40
41	42
42	41
43	36
44	42
45	42
46	44
47	39
48	42
49	46
50	41

41.7 mph
42.0 mph
45.0 mph

Sample Size Re$\mathrm{N}=(\mathrm{S} * \mathrm{~K} / \mathrm{E})^{2}$	airements (ITE Manual of Transportation Engineering Studies)		
	N S $=$ minimum number of measured speeds K $=$ estimated sample standard deviation (mph) E $=$ permitted error in the average speed estimate (mph) $\mathrm{S}=$ 5 mph (Table 3-2, page 38) $\mathrm{K}=$ 2.58 (Confidence level of 99\% - Table 3-3, page 38) $\mathrm{E}=$ 2 mph assumed error range $\mathrm{N}=$ $42 \quad$ observations needed		
where:			
Therefore,			

SPOT SPEED STUDY

Location: Brakebill Road at Proposed Entrance (adjacent to Hindu temple)
Posted Speed Limit: $\quad 30 \mathrm{mph}$
Equipment: Bushnell Speedster III Radar Speed Gun
Direction: Northbound and Southbound

Date: 3/20/18

Weather: Overcast/Windy
Time: 4:30 PM
Pavement Conditions: D
36.2 mph
36.0 mph
40.0 mph

Sample Size Requirements (ITE Manual of Transportation Engineering Studies)			
$\mathrm{N}=(\mathrm{S} * \mathrm{~K} / \mathrm{E})^{2}$			
where:	N	mini	m number of measur
		stim	d sample standard d
		ons	t corresponding to de
		perm	ed error in the average
	$\mathrm{S}=$		mph (Table 3-2, page
	$\mathrm{K}=$		(Confidence level of
	$\mathrm{E}=$		mph assumed error ra
Therefore,	$\mathrm{N}=$	42	observations needed

Vehicle \#	$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$
26	39
27	36
28	40
29	44
30	43
31	40
32	30
33	34
34	34
35	37
36	35
37	35
38	37
39	39
40	32
41	26
42	31
43	37
44	29
45	36
46	35
47	44
48	38
49	39
50	39

Average speed $=$
Average speed $=$
50th percentile speed $=$
85th percentile speed $=$

Vehicle \#	Speed (mph)
1	43
2	35
3	35
4	38
5	38
6	39
7	31
8	29
9	32
10	33
11	31
12	33
13	31
14	43
15	38
16	36
17	44
18	37
19	36
20	35
21	36
22	34
23	37
24	43
25	36

APPENDIX K

TDOT Statewide Crash Rates \& Spreadsheet Calculations

11/20/2017 9:39 AM										Page 3 of 3
Tennessee Department of Transportation										
Statewide Average Crash Rates for Sections and Spots										
Study: OFFICIAL HSIP STUDY 2014-2016										
Begin Date: 1/1/2014 End Date: 12/31/2016										
										Total
Route Type	Rural / Urban	Location Type	Highway Type	Fatal Rate	Incap. Rate	Other Inj. Rate	Pd. Rate	Total Rate	Severe Crash Rate	Veh. Miles (in millions)
High Risk Rural Roads										
MAJOR COL.	Rural	Section	2 OR 3 LN	0.029	0.151	0.533	1.470	2.183	0.181	7,712
MAJOR COL.	Rural	Section	2 OR 3 LN W/TL	0.016	0.087	0.309	1.774	2.186	0.103	126
MAJOR COL.	Rural	Section	4 OR MORE UNDIV	0.001	0.214	0.357	1.928	2.500	0.214	14
MAJOR COL.	Rural	Section	4 OR MORE DIV	0.001	0.001	0.687	1.899	2.585	0.001	25
MAJOR COL.	Rural	Section	4 OR MORE W TL	0.018	0.071	0.285	1.017	1.391	0.089	56
MAJOR COL.	Rural	Section	FREEWAY	0.001	0.001	0.535	2.407	2.942	0.001	4
MAJOR COL.	Rural	Spot	2 OR 3 LN	0.010	0.053	0.187	0.517	0.767	0.063	22,204
MAJOR COL.	Rural	Spot	2 OR 3 LN W/TL	0.002	0.016	0.062	0.357	0.437	0.018	675
MAJOR COL.	Rural	Spot	4 OR MORE UNDIV	0.001	0.036	0.072	0.346	0.453	0.036	84
MAJOR COL.	Rural	Spot	4 OR MORE DIV	0.001	0.001	0.159	0.484	0.642	0.001	126
MAJOR COL.	Rural	Spot	4 OR MORE W TL	0.003	0.012	0.047	0.186	0.249	0.015	338
MAJOR COL.	Rural	Spot	FREEWAY	0.001	0.001	0.071	0.318	0.388	0.001	28
MIN COL.	Rural	Section	2 OR 3 LN	0.034	0.180	0.663	1.891	2.768	0.214	6,421
MIN COL.	Rural	Section	2 OR 3 LN W/TL	0.001	0.081	0.269	1.022	1.372	0.081	37
MIN COL.	Rural	Section	4 OR MORE UNDIV	0.001	0.001	1.814	4.405	6.219	0.001	4
MIN COL.	Rural	Section	4 OR MORE DIV	0.001	0.001	0.001	0.001	0.001	0.001	0
MIN COL.	Rural	Section	4 OR MORE W TL	0.001	0.001	0.001	0.001	0.001	0.001	0
MIN COL.	Rural	Section	FREEWAY	0.001	2.484	2.484	4.968	9.936	2.484	0
MIN COL.	Rural	Spot	2 OR 3 LN	0.017	0.089	0.327	0.934	1.366	0.105	13,065
MIN COL.	Rural	Spot	2 OR 3 LN W/TL	0.001	0.018	0.053	0.260	0.331	0.018	169
MIN COL.	Rural	Spot	4 OR MORE UNDIV	0.001	0.041	0.326	0.856	1.223	0.041	25
MIN COL.	Rural	Spot	FREEWAY	0.001	0.483	0.483	1.448	2.414	0.483	2

TENNESSEE DEPARTMENT OF TRANSPORTATION

Brakebill Road Intersection (H	Knox County oad at Brakebill Ro		LM 0.629
2 Crashes	2015-2018	Actual	0.503 Acc/MVM
State Average	- 0.121 Acc/MVM - 4.16		- 0.653 Acc/MVM

TENNESSEE DEPARTMENT OF TRANSPORTATION

Brakebill Road, Knox County LM 0.000

Section 1 (Asheville Highway - Hammer Road)

11 Crashes	$-2015-2018$	Actual	-4.725 Acc/MVM
State Average	-2.183 Acc/MVM	Critical	-4.651 Acc/MVM
A/S Ratio	$=2.16$	A/C Ratio	$=1.02$

TENNESSEE DEPARTMENT OF TRANSPORTATION

* Severe Crashes are the sum of fatal and incapacitating injury crashes
Brakebill Road, Knox County LM 0.000

Section 2 (Hammer Road - Strawberry Plains Pike)

8 Crashes	$-2015-2018$	Actual	$-3.110 \mathrm{Acc} / \mathrm{MVM}$
State Average	-2.183 Acc/MVM	Critical	$-4.521 \mathrm{Acc} / \mathrm{MVM}$
A/S Ratio	$=1.42$	A/C Ratio	$=0.69$

TENNESSEE DEPARTMENT OF TRANSPORTATION

Brakebill Road Spot Location	Knox County of Palmer Lane)		LM 0.000
4 Crashes	-2015-2018	Actual	- 1.081 Acc/MVM
State Average	- 0.767 Acc/MVM	Critical	- 1.961 Acc/MVM
A/S Ratio	= 1.41	A/C Ratio	$=0.55$

APPENDIX L

Knox County Turn Lane Volume Threshold Worksheet

TABLE 5A
LEFT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH
(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	100-149	150-199	200-249	250-299	300-349	350-399
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 180 \\ & 140 \end{aligned}$	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	$\begin{gathered} 110 \\ 90 \end{gathered}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$
$200-249$ $250-299$	$\begin{aligned} & 160 \\ & 130 \end{aligned}$	$\begin{aligned} & 115 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & -75 \end{aligned}$	75 -65	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	90 80	$\underbrace{70}_{\text {er Road at }}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	70 65	bill Road ected PM	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{array}{r} 70 \\ +\quad 65 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	urns $=46$ urn Lane	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \hline \end{aligned}$
$\begin{array}{r} 600-649 \\ 650-699 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	Warranted	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	35 35	30 25	25 25	20 20	$\begin{aligned} & 20 \\ & 20 \end{aligned}$

$\begin{gathered} \text { OPPOSING } \\ \text { VOLUME } \end{gathered}$	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-599	$=f>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
$\begin{array}{r} 500-549 \\ 550-599 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$

* Or through volume only if a right-turn lane exists

TABLE 5B
RIGHT-TURN LANE YOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	<100	100-199	200-249	250-299	300-349	350-399
$\begin{aligned} & \text { Fewer Than } 25 \\ & \hline 25-49 \\ & \hline 50-99 \end{aligned}$						
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		her Road at bill Road				
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$		$\begin{aligned} & \text { ected PM } \\ & \text { Turns }=42 \end{aligned}$			Yes	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$		Turn Lane Warranted	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-600	$+I>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$		*		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS

 FOR TWO-LANE ROADWAYS WITH A PREVARLING SPEED OF 35 MPH OR LESS(If the Ieft-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
VOLUME	100-149	150-199	200-249	250-299	300-349	350-399
100-149	300	235	185	145	120	100
150-199	245	nom	160	130	110	90
200-2.29	205	"I"	140	115	160	80
250-299	175	ed PM	125	105	90	70
30n-349	155	ns $=54$	110	95	S0	65
350-39\%	135		100	85	70	60
400.449	120	arranted	90	75	65	55
450-499	105	unu	80	70	60	50
500-549	95	80	70	65	55	50
550-399	85	70	65	60	50	45
6(k) - 649	75	65	60	55	45	40
650-699	70	60	55	50	40	35
700-749	65	55	50	45	35	30
750 or More	60	50	45	40	35	30

$\begin{aligned} & \text { OPPOSING } \\ & \text { VOLUME } \end{aligned}$	THROUGH YOLUMLE PLUS RIGETT-TURN VOLUME *					
	350-399	$400-449$	450-494	510-549	$550-599$	$=1>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	55 50	50 45
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	72 65	$\begin{gathered} -460 \\ 55 \end{gathered}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	50	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450.499 \end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$
$\begin{array}{r} 500-549 \\ 550-599 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	30 30	30 30	30 30	30 30	30 30	30 30

* Or through volume only if a right-turn lane exists.

TABLE 4B
RIGHT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	<100	- 199	200-249	250-299	300-349	350-399
Fewer Than 25 $25-49$ $50-99$		Road at		.		
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		$\begin{aligned} & \text { d "I" } \\ & \text { ted PM } \\ & \text { urns }=0 \end{aligned}$				
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$		urn Lane				Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$		~		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$			$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Y'es Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	$400 \cdot 449$	450-499	$500-549$	550.600	$+1>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$					Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$			Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 306-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-509 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a lefl-turn lane exists.

TABLE 5A
LEFT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH
(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	100-149	150-199	200-249	250-299	300-349	350-399
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 180 \\ & 140 \end{aligned}$	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	$\begin{gathered} 110 \\ 90 \end{gathered}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$
$200-249$ $250-299$	$\begin{aligned} & 160 \\ & 130 \end{aligned}$	$\begin{aligned} & 115 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & -75 \end{aligned}$	75 -65	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	90 80		$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	70 65	nt Drivew cted PM	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{array}{r} 70 \\ +\quad 65 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	urns $=59$ urn Lane	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \hline \end{aligned}$
$\begin{array}{r} 600-649 \\ 650-699 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	Warranted	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	35 35	30 25	25 25	20 20	$\begin{aligned} & 20 \\ & 20 \end{aligned}$

$\begin{gathered} \text { OPPOSING } \\ \text { VOLUME } \end{gathered}$	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-599	$=f>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
$\begin{array}{r} 500-549 \\ 550-599 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$

* Or through volume only if a right-turn lane exists

TABLE 5B
RIGHT-TURN LANE YOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	<100	100-199	200-249	250-299	300-349	350-399
$\begin{aligned} & \text { Fewer Than } 25 \\ & \hline 25-49 \\ & \hline 50-99 \end{aligned}$						
$\begin{aligned} & 100-149 \\ & 150-199 \\ & \hline \end{aligned}$		bill Road at ent Driveway				
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$		$\begin{aligned} & \text { ected PM } \\ & \text { Turns }=39 \end{aligned}$			Yes	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$		Turn Lane Warranted	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-600	$+I>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$		*		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

TABLE 5A
LEFT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH
(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	100-149	150-199	200-249	250-299	300-349	350-399
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 180 \\ & 140 \end{aligned}$	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	$\begin{gathered} 110 \\ 90 \end{gathered}$	80 70	$\begin{aligned} & 70 \\ & 60 \end{aligned}$
$200-249$ $250-299$	$\begin{array}{r} 160 \\ 130 \\ \hline \end{array}$	$\begin{array}{r} 115 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 85 \\ & -75 \end{aligned}$	$\begin{aligned} & 75 \\ & -65 \end{aligned}$	65 60	$\begin{aligned} & 55 \\ & 50 \\ & \hline \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	90 80	ill Road at	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	70 65	Warehouse ected PM	$\begin{array}{r} 50 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{array}{r} 70 \\ +\quad 65 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	urns $=5$ urn Lane	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \hline \end{aligned}$
$\begin{array}{r} 600-649 \\ 650-699 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	Warranted	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	35 35	30 25	25 25	20 20	$\begin{aligned} & 20 \\ & 20 \end{aligned}$

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-599	$=f>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$

* Or through volume only if a right-turn lane exists

TABLE 5B
RIGHT-TURN LANE YOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-600	$+1>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$		*		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

TABLE 5A
LEFT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPE
(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	100-149	150-199	200-249	250-299	300-349	350-399
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 180 \\ & 140 \end{aligned}$	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	$\begin{gathered} 110 \\ 90 \end{gathered}$	80 70	$\begin{aligned} & 70 \\ & 60 \end{aligned}$
$200-249$ $250-299$	$\begin{aligned} & 160 \\ & 130 \end{aligned}$	$\begin{aligned} & 115 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & -75 \end{aligned}$	$\begin{aligned} & 75 \\ & -65 \end{aligned}$	$\begin{array}{r}65 \\ \hline 60\end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	90 80	\qquad 11 Road a	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	70 65	ad "A" cted PM	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{array}{r} 70 \\ +\quad 65 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\text { urns }=75$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \hline \end{aligned}$
$\begin{array}{r} 600-649 \\ 650-699 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$	rranted Cys	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	35 35	30 25	25 25	20 20	$\begin{aligned} & 20 \\ & 20 \end{aligned}$

$\begin{gathered} \text { OPPOSING } \\ \text { VOLUME } \end{gathered}$	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-599	$=f>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$
$\begin{array}{r} 500-549 \\ 550-599 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$

* Or through volume only if a right-turn lane exists

TABLE 5B
RIGHT-TURN LANE YOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	<100	100-199	200-249	250-299	300-349	350-399
$\begin{aligned} & \text { Fewer Than } 25 \\ & \begin{array}{\|c\|} \hline 25-49 \\ \hline 50-99 \\ \hline \end{array} \end{aligned}$						
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		Brakebill Road at Road "A"				
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$		Projected PM Right Turns $=50$			Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \\ & \hline \end{aligned}$		Right Turn Lane NOT Warranted	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \\ & \hline \end{aligned}$	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	400-449	450-499	500-549	550-600	$+I>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$		*		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$		Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 200-249 \\ 250-299 \\ \hline \end{array}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{array}{r} 400-449 \\ 450-499 \end{array}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

APPENDIX M

SimTraffic Queue Lengths

Intersection: 21: Brakebill Road \& Road "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	75	31
Average Queue (tt)	39	3
95th Queue (ft)	62	20
Link Distance (tt)	212	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 21: Brakebill Road \& Road "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	66	40
Average Queue (tt)	33	16
95th Queue (ft)	57	43
Link Distance (tt)	212	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 10: Strawberry Plains Pike \& Brakebill Road

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	R	UL	T	T	UT	TR
Maximum Queue (ft)	194	269	122	124	113	292	353
Average Queue (ft)	54	142	54	19	31	96	137
95th Queue (ft)	153	254	102	80	84	210	277
Link Distance (ft)		248		180	180	461	461
Upstream Blk Time (\%)		5		0	0	0	0
Queuing Penalty (veh)		0		0	0	0	0
Storage Bay Dist (ft)	120		150				
Storage Blk Time (\%)	0	20	0	0			
Queuing Penalty (veh)	0	17	0	0			

Intersection: 14: Strawberry Plains Pike \& Interstate 40 On Ramp/Interstate 40 Off Ramp

Movement	WB	WB	WB	NB	NB	NB	NB	SB	SB
Directions Served	L	L	R	L	L	T	T	T	TR
Maximum Queue (ft)	189	257	68	190	228	147	67	196	197
Average Queue (ft)	48	133	2	28	113	45	19	108	161
95th Queue (ft)	164	220	48	119	190	104	53	187	219
Link Distance (ft)			358			451	451	180	180
Upstream Blk Time (\%)			0					0	5
Queuing Penalty (veh)			0					2	28
Storage Bay Dist (ft)	200	200		190	190				
Storage Blk Time (\%)	0	2		0	1				
Queuing Penalty (veh)	0	3		0	2				
Network Summary									

Network wide Queuing Penalty: 52

Intersection: 10: Strawberry Plains Pike \& Brakebill Road

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	R	UL	T	T	UT	TR
Maximum Queue (ft)	115	163	180	246	242	174	193
Average Queue (ft)	46	62	134	118	79	54	61
95th Queue (ft)	91	118	204	273	211	129	145
Link Distance (ft)		248		180	180	461	461
Upstream Blk Time (\%)		0	11	13	5		
Queuing Penalty (veh)		0	0	79	31		
Storage Bay Dist (ft)	120		150				
Storage Blk Time (\%)	0	1	22	6			
Queuing Penalty (veh)	0	1	97	20			

Intersection: 14: Strawberry Plains Pike \& Interstate 40 On Ramp/Interstate 40 Off Ramp

Movement	WB	WB	WB	NB	NB	NB	NB	SB	SB
Directions Served	L	L	R	L	L	T	T	T	TR
Maximum Queue (ft)	219	273	195	219	289	455	334	180	186
Average Queue (ft)	61	154	18	46	147	151	90	91	123
95th Queue (ft)	191	251	131	158	269	351	227	154	190
Link Distance (ft)			358			451	451	180	180
Upstream BIk Time (\%)			1			3	0	0	1
Queuing Penalty (veh)			0			0	0	0	3
Storage Bay Dist (ft)	200	200		190	190				
Storage Blk Time (\%)	0	4	1	0	2	9			

Network Summary

Network wide Queuing Penalty: 286

APPENDIX N

TDOT Road Safety Audit Review

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

SUITE 1000 , JAMES K. POLK BUILDING
505 DEADERICK STREET
NASHVILLE, TENNESSEE 37243-0334

Phil Bredesen Governor

MEMORANDUM

To: Mr. Paul Degges, Chief Engineer

From: Steve Allen, Director
Project Planning Division

Date: March 16, 2010

Subject: RSAR INTERSECTION OF STRAWBERRY PLAINS PIKE AND BRAKEBILL ROAD, KNOX COUNTY

The Road Safety Audit Review for the intersection of Strawberry Plains Pike and Brakebill Road, Knox County, has been completed and the report is attached. This project was identified through the TDOT safety needs planning process. Strawberry Plains Pike is a divided four lane urban collector roadway. The intersection of Strawberry Plains Pike and Brakebill Road appears on the Highway Safety Improvement Program (HSIP) and qualifies for Hazard Elimination Safety Program (HESP) funds because the crash ratio (actual crash rate divided by the critical crash rate) was 4.10 , which is greater than 3.5 (the minimum threshold).

The following guidance was provided:

- Figure 1

1. Restripe all edgelines along the I-40 entrance and exit ramps extending approximately 500 feet from the intersection of Strawberry Plains Pike and the I-40 ramps.
2. Install a (36 " $\times 36$ ") Stop Ahead (W3-1) warning sign approximately but not less than 400 feet in advance of the intersection on Brakebill Road. A " 400 FEET" (30 " $\times 18$ ") supplemental plate (W16-2a) should be mounted underneath this sign.
3. Construct separate left and right turn lanes (within the existing right-of-way) on the Brakebill Road approach. The left turn lane should have at least 100 feet of storage.
4. Install a $24^{\prime \prime}$ thermoplastic stop bar and left and right turn lane arrows on the Brakebill Road approach.
5. Replace existing Stop signs with (36 " $\times 36$ ") Stop (R1-1) signs on the Brakebill approach.
6. Install a "Brakebill Rd." Street Name (D3-1) sign above the Stop sign in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
7. Remove the vegetation (within the existing right-of-way) in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
8. Relocate the culvert on the north side of Brakebill Road and install a standard end treatment and backfill (see inset on Figure 1).
9. Install yellow-red retroreflective bi-directional raised pavement markings spaced at 20 feet center-to-center on the inside edge lines outside the median opening area so that the red lens is only visible to wrong-way traffic.
10. Restripe all edge and centerlines along Strawberry Plains Pike extending 100 feet north and 200 feet south of Brakebill Road.
11. Place 12 " diagonal chevron channelization pavement markings spaced at 10 feet apart between the northbound left turn lane and northbound through lanes along Strawberry Plains Pike.
12. Install a thermoplastic left turn lane arrow in the northbound left turn lane.
13. Construct a 12 foot wide northbound left turn lane having 75 feet of storage in the median of Strawberry Plains Pike.
14. Install yellow-yellow retroreflective bi-directional raised pavement markings spaced at 10 feet center-to-center on the edge lines inside the median opening area.
15. Relocate "WRONG WAY" sign approximately 45 feet north of existing location within median.
16. Install (30 " $\times 30$ ") "DO NOT ENTER" (R5-1) signs north of Brakebill Road on both sides of southbound Strawberry Plains Pike.
17. Install a (30"x30") Intersection Ahead (W2-2) warning sign approximately but not less than 400 feet in advance of the intersection on Strawberry Plains Pike. A ($24 " \times 12$ ") " 400 FEET" supplemental plate (W16-2a) should be mounted underneath this sign.
18. Install "Rear Access to McDonalds" (30"x54") sign facing south-westbound traffic on the northeast side of the median opening located approximately 475 feet northeast of the intersection of Strawberry Plains Pike and Brakebill Road.

The estimated cost of improvements listed in this report is $\$ 181,200$. This includes $\$ 13,600$ of 100% federally funded items, $\$ 150,800$ of 90% federally funded items, and $\$ 16,800$ of 10% locally funded items. The local match to be provided by the City of Knoxville is $\$ 16,800$. These proposed improvements will be let to contract.

If you should need any further information, please contact me at (615) 741-2208.

Attachment
CC: Ed Cole, Gary Ogletree, Mike Tugwell, Steve Borden, Amanda Snowden, Jim Moore, FILE

ROAD SAFETY AUDIT REPORT

INTERSECTION OF STRAWBERRY PLAINS PIKE AND BRAKEBILL ROAD

L.M. 8.80
KNOX COUNTY
PIN 113344.00

PREPARED BY
RPM TRANSPORTATION CONSULTANTS, LLC
FOR THE
TENNESSEE DEPARTMENT OF TRANSPORTATION
PROJECT PLANNING DIVISION

Approved by:	Signature	DATE
DIRECTOR		$3-16-10$
Project Planning Division		3

This document is covered by 23 USC § 409 and its production pursuant to fulfilling public planning requirements does not waive the provisions of § 409.

Project Location Map

 (Not to Scale)

Project Area Map
(Not to Scale)

Road Safety Audit Review

Description of Project and Background

This project was identified through the TDOT safety needs planning process. The intersection of Strawberry Plains Pike and Brakebill Road appears on the Highway Safety Improvement Program (HSIP) and qualifies for Hazard Elimination Safety Program (HESP) funds because the crash ratio (actual crash rate divided by the critical crash rate) was 4.10, which is greater than 3.5 (the minimum threshold).

RSAR Team Members

A RSAR team was assembled to evaluate the intersection of Strawberry Plains Pike and Brakebill Road in Knoxville, Knox County to determine appropriate safety measures.

Team Members

Name	Organization	Phone	Email
Paul Lane	TDOT - Project Planning	615-253-2432	paul.lane@tn.gov
Glenda Tyus	TDOT - Project Planning	615-741-1816	glenda.tyus@tn.gov
Randy Plummer	TDOT- Region 1 Design	865-594-2400	randy.plummer@tn.gov
Jay Morgan	TDOT- Region 1 Design	865-594-2400	jay.morgan@tn.gov
Henry Reid	TDOT- Region 1 Design	865-594-2400	henry.reid@tn.gov
Stephen Millsaps	City of Knoxville	865-215-6100	smillsaps@cityofknoxville.org
Bill Cole	City of Knoxville	865-215-6100	bcole@cityofknoxville.org
Jim Pointer	TDOT- District 15 Highway Maintenance	865-594-2718	N/A
John Sexton	Knox County Department of Engineering and Public Works	865-215-5860	iohn.sexton@knoxcounty.org
Amanda Snowden	TDOT- Region 1 Traffic	865-594-2400	amanda.snowden@tn.gov
Andy Padgett	TDOT- Region 1 Traffic	865-594-2456	andrew.padgett@tn.gov
Nathan Benditz	Knoxville TPO	865-215-2826	nathan.benditz@knoxtrans.org
Eric Jackson	TDOT- Traffic	615-741-0802	eric.jackson@tn.gov
Jeff Hammond	RPM Transportation	615-370-8410	jeffhammond@rpmtraffic.net
Blake Turner	RPM Transportation	615-370-8410	blaketurner@rpmtraffic.net

Information used in the Review

- City of Knoxville street map
- TRIMS Route Feature Description Listing
- TRIMS Highway Log Report
- TRIMS Geometric Report
- TRIMS Traffic Report
- TRIMS Road Segment Report
- ADAM historical traffic report
- TDOT Signal Warrant Study
- Hourly turning movements counts (included in appendix)
- Aerial photography
- Crash rate summary (included in appendix)
- Crash reports: 50090192, 50064350, 50064365, 50131679, 50075792, 50113006, 9858299, 50053558, 9275906, 9856871, 8115074, 9228217, 9229551, 8112521, 8551111, 9741760, 9737013

Pre-Briefing Summary

This project was identified through the TDOT safety needs planning process. The intersection of Strawberry Plains Pike and Brakebill Road appears on the Highway Safety Improvement Program (HSIP) and qualifies for Hazard Elimination Safety Program (HESP) funds because the crash ratio (actual crash rate divided by the critical crash rate) was 4.10, which is greater than 3.5 (the minimum threshold).

A pre-brief meeting was held at 1:00 PM on Monday, October 12 at TDOT headquarters in Nashville. The following aspects of the intersection were discussed:

- The I-40 interchange location results in significant volumes of truck and tourism traffic.
- No turn lanes exist on Strawberry Plains Pike at this intersection.
- A study performed by TDOT Region I showed that MUTCD warrants for signalization are met.
- The intersection of Strawberry Plains Pike and Brakebill Road is located approximately 280 feet north of the signalized intersection of Strawberry Plains Pike and westbound I-40 ramps. This spacing would be undesirable for two signalized intersections.
- The intersection of Region Lane and Strawberry Plains Pike is approximately 480 feet south of the intersection of Strawberry Plains Pike and the eastbound I-40 ramps. These intersections are both signalized and operate acceptably.
- A slight downgrade exists on southbound Strawberry Plains Pike approaching the Brakebill Road intersection.

This intersection has experienced seventeen (17) crashes over the past three (3) years. The seventeen (17) crashes included fifteen (15) property damage, one (1) incapacitating injury crash, and one (1) non-incapacitating injury crash. Ten (10) (59\%) of these were right angle crashes, and six (6) (35\%) were rear end crashes, involving both northbound and southbound traffic along Strawberry Plains Pike. It was discussed that a northbound left turn lane and signalization would likely mitigate the rear end and right angle crashes, but that the signal spacing was undesirable.

Observations

An onsite field review was held at 2:00 PM ET on Monday, October 19, 2009. The following observations are provided concerning the location:

- Due to the lack of a northbound turn lane on Strawberry Plains Pike, vehicles queue inside the median opening in order to make a left turn onto Brakebill Road.
- A single eastbound lane on Brakebill Road serves both left and right turning traffic.
- The culvert opening north of Brakebill Road does not have a standard end treatment.
- A previous study called the Huckleberry Springs Loop Study had identified a possible connection from Huckleberry Springs Road to Brakebill Road.
- The unsignalized intersection of Strawberry Plains Pike and Brakebill Road is located 280 feet north of the signalized intersection of Strawberry Plains Pike and the westbound I-40 ramps.
- The "Brakebill Road" street name signs appeared to be undersized.
- Stop signs are located on both sides of Brakebill Road at its approach to Strawberry Plains Pike; both Brakebill Road stop signs appeared to be undersized.
- The edgelines and centerlines along Brakebill Road had limited visibility.
- No advance intersection warning sign was present north of Brakebill Road for southbound Strawberry Plains Pike traffic.
- A "Stop Ahead" sign was not present west of Strawberry Plains Pike on Brakebill Road.
- A high number of southbound to northbound U-turns on Strawberry Plains Pike were noted at the Brakebill Road median opening, particularly during the AM peak period. It is likely that these vehicles are accessing the McDonald's restaurant.

Guidance

The following recommendations were developed by the RSAR team during the field review:

- Figure 1

1. Restripe all edgelines along the I-40 entrance and exit ramps extending approximately 500 feet from the intersection of Strawberry Plains Pike and the l-40 ramps.
2. Install a (36 "x 36 ") Stop Ahead (W3-1) warning sign approximately but not less than 400 feet in advance of the intersection on Brakebill Road. A " 400 FEET" (30"x18") supplemental plate (W16-2a) should be mounted underneath this sign.
3. Construct separate left and right turn lanes (within the existing right-of-way) on the Brakebill Road approach. The left turn lane should have at least 100 feet of storage.
4. Install a 24 " thermoplastic stop bar and left and right turn lane arrows on the Brakebill Road approach.
5. Replace existing Stop signs with (36 " $\times 36$ ") Stop (R1-1) signs on the Brakebill approach.
6. Install a "Brakebill Rd." Street Name (D3-1) sign above the Stop sign in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
7. Remove the vegetation (within the existing right-of-way) in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
8. Relocate the culvert on the north side of Brakebill Road and install a standard end treatment and backfill (see inset on Figure 1).
9. Install yellow-red retroreflective bi-directional raised pavement markings spaced at 20 feet center-to-center on the inside edge lines outside the median opening area so that the red lens is only visible to wrong-way traffic.
10. Restripe all edge and centerlines along Strawberry Plains Pike extending 100 feet north and 200 feet south of Brakebill Road.
11. Place 12" diagonal chevron channelization pavement markings spaced at 10 feet apart between the northbound left turn lane and northbound through lanes along Strawberry Plains Pike.
12. Install a thermoplastic left turn lane arrow in the northbound left turn lane.
13. Construct a 12 foot wide northbound left turn lane having 75 feet of storage in the median of Strawberry Plains Pike.
14. Install yellow-yellow retroreflective bi-directional raised pavement markings spaced at 10 feet center-to-center on the edge lines inside the median opening area.
15. Relocate "WRONG WAY" sign approximately 45 feet north of existing location within median.
16. Install (30"x30") "DO NOT ENTER" (R5-1) signs north of Brakebill Road on both sides of southbound Strawberry Plains Pike.
17. Install a (30"x30") Intersection Ahead (W2-2) warning sign approximately but not less than 400 feet in advance of the intersection on Strawberry Plains Pike. A (24"x12") "400 FEET" supplemental plate (W16-2a) should be mounted underneath this sign.
18. Install "Rear Access to McDonalds" (30"x54") sign facing south-westbound traffic on the northeast side of the median opening located approximately 475 feet northeast of the intersection of Strawberry Plains Pike and Brakebill Road.

The estimated cost of improvements listed in this report is $\$ 181,200$. This includes $\$ 13,600$ of 100% federally funded items, $\$ 150,800$ of 90% federally funded items, and $\$ 16,800$ of 10% locally funded items. The local match to be provided by the City of Knoxville is $\$ 16,800$. These proposed improvements will be let to contract. All items removed as part of this project shall be returned to the City of Knoxville.

COST DATA SHEET

TOTAL PROJECT COST

Route: LOCAL ROUTE 1124
Description: INTERSECTION OF STRAWBERRY PLAINS PIKE AND BRAKEBILL ROAD
County: KNOX INTERSECTION 1/25/2010

RIGHT-OF-WAY
UTILITY RELOCATION
CLEAR AND GRUBBING
EARTHWORK
PAVEMENT REMOVAL
DRAINAGE
STRUCTURES
RAILROAD CROSSING OR SEPARATION
PAVING
RETAINING WALLS
MAINTENANCE OF TRAFFIC
TOPSOIL
SEEDING
SODDING
SIGNING AND STRIPING
LIGHTING
SIGNALIZATION
FENCE
GUARDRAIL
RIP RAP OR SLOPE PROTECTION OTHER CONST. ITEMS (15\%)
MOBILIZATION
CONSTRUCTION COST 10\% ENG. \& CONT.

TOTAL CONSTRUCTION COST 10\% PRELIMINARY ENGINEERING TOTAL COST *

[^1] the date of this estimate.

COST DATA SHEET
 100\% Federally Funded Items

Route: LOCAL ROUTE 1124
Description: INTERSECTION OF STRAWBERRY PLAINS PIKE AND BRAKEBILL ROAD
County:
KNOX
INTERSECTION
1/25/2010

RIGHT-OF-WAY
UTILITY RELOCATION
CLEAR AND GRUBBING
EARTHWORK
PAVEMENT REMOVAL
DRAINAGE
STRUCTURES
RAILROAD CROSSING OR SEPARATION
PAVING
RETAINING WALLS
MAINTENANCE OF TRAFFIC
TOPSOIL
SEEDING
SODDING
SIGNING AND STRIPING
LIGHTING
SIGNALIZATION
FENCE
GUARDRAIL
RIP RAP OR SLOPE PROTECTION
OTHER CONST. ITEMS (15\%)
MOBILIZATION
CONSTRUCTION COST 10\% ENG. \& CONT.
TOTAL CONSTRUCTION COST 10\% PRELIMINARY ENGINEERING TOTAL COST *

[^2] the date of this estimate.

COST DATA SHEET
 90\% Federally Funded

Route: Description:	LOCAL ROUTE 1124		
	INTERSECTION OF STRAWBERRY PLAINS PIKE AND		
	BRAKEBILL ROAD		
County:	KNOX		
Length:	INTERSECTION		
Date:	1/25/2010		
RIGHT-OF-WAY		\$	9000
UTILITY RELOCATION		\$	21600
CLEAR AND GRUBBING		\$	900
EARTHWORK		\$	15,300
PAVEMENT REMOVAL		\$	900
DRAINAGE		\$	13,500
STRUCTURES		\$	0
RAILROAD CROSSING OR SEPARATION		\$	0
PAVING		\$	45,900
RETAINING WALLS		\$	0
MAINTENANCE OF TRAFFIC		\$	2,700
TOPSOIL		\$	900
SEEDING		\$	0
SODDING		\$	2,700
SIGNING AND STRIPING		\$	0
LIGHTING		\$	0
SIGNALIZATION		\$	0
FENCE		\$	0
GUARDRAIL		\$	0
RIP RAP OR SLOPE PROTECTION		\$	0
OTHER CONST. ITEMS (15\%)		\$	12,420
MOBILIZATION		\$	4,860
	CONSTRUCTION COST	\$	100,080
	10\% ENG. \& CONT.	\$	10,080
	TOTAL CONSTRUCTION COST	\$	110,160
	10\% PRELIMINARY ENGINEERING	\$	10,080
	TOTAL COST *	\$	150,800

[^3]
COST DATA SHEET

10\% Locally Funded

Route: Description:	LOCAL ROUTE 1124		
	INTERSECTION OF STRAWBERRY PLAINS PIKE AND		
	BRAKEBILL ROAD		
County:	KNOX		
Length:	INTERSECTION		
Date:	1/25/2010		
RIGHT-OF-WAY		\$	1000
UTILITY RELOCATION		\$	2400
CLEAR AND GRUBBING		\$	100
EARTHWORK		\$	1,700
PAVEMENT REMOVAL		\$	100
DRAINAGE		\$	1,500
STRUCTURES		\$	0
RAILROAD CROSSING OR SEPARATION		\$	0
PAVING		\$	5,100
RETAINING WALLS		\$	0
MAINTENANCE OF TRAFFIC		\$	300
TOPSOIL		\$	100
SEEDING		\$	0
SODDING		\$	300
SIGNING AND STRIPING		\$	0
LIGHTING		\$	0
SIGNALIZATION		\$	0
FENCE		\$	0
GUARDRAIL		\$	0
RIP RAP OR SLOPE PROTECTION		\$	0
OTHER CONST. ITEMS (15\%)		\$	1,380
MOBILIZATION		\$	540
	CONSTRUCTION COST	\$	11,120
	10\% ENG. \& CONT.	\$	1,120
	TOTAL CONSTRUCTION COST	\$	12,240
	10\% PRELIMINARY ENGINEERING	\$	1,120
	TOTAL COST *	\$	16,800

[^4]Strawberry Plains Pike (Local Route 1124) at Brakebill Road - L.M. 8.80 Knoxville, Knox County Road Safety Audit Review

Strawberry Plains Pike (Local Route 1124) at Brakebill Road - L.M. 8.80 Knoxville, Knox County Road Safety Audit Review

10/19/09: Looking east onto Strawberry Plains Pk. from Brakebill Rd.

10/19/09: Looking at the northern culvert opening at Brakebill Rd.

GUIDANCE

1. Restripe all edgelines along the I-40 entrance and exit ramps extending approximately 500 feet from the intersection of Strawberry Plains Pike and the I-40 ramps.
2. Install a (36"x36") Stop Ahead (W3-1) warning sign approximately but not less than 400 feet in advance of the intersection on Brakebill Road. A " 400 FEET" (30 "x18") supplemental plate (W16-2a) should be mounted underneath this sign.
3. Construct separate left and right turn lanes (within the existing right-of-way) on the Brakebill Road approach. The left turn lane should have at least 100 feet of storage.
4. Install a 24 " thermoplastic stop bar and left and right turn lane arrows on the Brakebill Road approach. 5. Replace existing Stop signs with (36"x36") Stop (R1-1) signs on the Brakebill approach.
5. Install a "Brakebill Rd." Street Name (D3-1) sign above the Stop sign in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
6. Remove the vegetation (within the existing right-of-way) in the southwest corner of the intersection of Strawberry Plains Pike and Brakebill Road.
7. Relocate the culvert on the north side of Brakebill Road and install a standard end treatment and backfill (see inset).

8. Install yellow-red retroreflective bi-directional raised pavement markings spaced at 20 feet center-to-center on the inside edge lines outside the median opening area so that the red lens is only visible to wrong-way traffic 10. Restripe all edge and centerlines along Strawberry Plains Pike extending 100 feet north and 200 feet south of Brakebill Road.
9. Place 12" diagonal chevron channelization pavement markings spaced at 10 feet apart between the northbound left turn lane and northbound through lanes along Strawberry Plains Pike. 12. Install a thermoplastic left turn lane arrow in the northbound left turn lane.

ROAD SAFETY AUDTT REVIEW
strawberry plains pike and brakebill road
L.M. 8.80
kNOX COUNTY
13. Construct a 12 foot wide northbound left turn lane having 75 feet of storage in the median of Strawberry Plains Pike.
14. Install yellow-yellow retroreflective bi-directional raised pavement markings spaced at 10 feet center-to-center on the edge lines inside the median opening area.
15. Relocate "WRONG WAY" sign approximately 45 feet north of existing location within median.
16. Install (30"x30") "DO NOT ENTER" (R5-1) signs north of Brakebill Road on both sides of southbound Strawberry Plains Pike.
17. Install a ($30^{\prime \prime} \times 30^{\prime \prime}$) Intersection Ahead (W2-2) warning sign approximately but not less than 400 feet in advance of the intersection on Strawberry Plains Pike. A (24 "x12") " 400 FEET" supplemental plate (W16-2a) should be mounted underneath this sign.
18. Install "Rear Access to McDonalds" (30"x54") sign facing south-westbound traffic on the northeast side of the median opening located approximately 475 feet northeast of the intersection of Strawberry Plains Pike and Brakebill Road.

Strawberry Plains Pike (Local Route 1124) at Brakebill Road - L.M. 8.80 Knoxville, Knox County Road Safety Audit Review

APPENDIX

Tennessee Department of Transportation

Counted By: RH \& RN
Weather:
Major: 4L div
Minor: 2L

Region 1 Traffic Office File Name : Strawberry Plains@Brakebill Site Code : 00000047
Start Date : 2/10/2009
Page No : 1

Groups Printed- Unshifted

	STRAWBERRY PLAINS Southbound					BRAKEBILL Westbound					STRAWBERRY PLAINS Northbound					BRAKEBILL Eastbound					
Start Time	Utums	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	APP Total	Left	Thru	Right	Peds	Agp. Total	Left	Thru	Right	Peds	Apo Totar	Int Total
07:00 AM	7	133	8	0	148	0	0	0	0	0	8	60	0	0	68	8	0	24	0	32	248
07:15 AM	4	144	19	0	167	0	0	0	0	0	19	47	0	0	66	7	0	28	0	35	268
07:30 AM	15	187	5	0	207	0	0	0	0	0	19	66	0	0	85	12	0	38	0	50	342
07:45 AM	14	156	5	0	175	0	0	0	0	0	17	79	0	0	96	12	0	39	0	51	322
Total	40	620	37	0	697	0	0	0	0	0	63	252	0	0	315	39	0	129	0	168	1180
08:00 AM	15	136	8	0	159	0	0	0	0	0	11	104	0	0	115	12	0	20	0	32	306
08:15 AM	8	123	4	0	135	0	0	0	0	0	13	70	0	0	83	8	0	20	0	28	246
08:30 AM	9	98	8	0	115	0	0	0	0	0	18	80	0	0	98	9	0	50	0	59	272
08:45 AM	5	101	9	0	115	0	0	0	0	0	11	64	0	0	75	11	0	31	0	42	232
Total	37	458	29	0	524	0	0	0	0	0	53	318	0	0	371	40	0	121	0	161	1056

11:00 AM	2	83	17	0	102	0	1	0	0	1	19	81	0	0	100	7	0	14	0	21	224
11:15 AM	4	76	11	0	91	0	0	0	0	0	25	72	0	0	97	16	0	23	0	39	227
11:30 AM	0	75	9	0	84	0	0	0	0	0	25	84	0	0	109	13	0	17	0	30	223
11:45 AM	4	74	15	0	93	0	0	0	0	0	15	79	0	0	94	3	0	29	0	32	219
Total	10	308	52	0	370	0	1	0	0	1	84	316	0	0	400	39	0	83	0	122	893
12:00 PM	9	70	13	0	92	0	0	0	0	0	21	92	0	0	113	17	0	17	0	34	239
12:15 PM	8	106	6	0	120	0	0	0	0	0	17	93	0	0	110	15	0	30	0	45	275
12:30 PM	7	92	14	0	113	0	0	0	0	0	15	89	0	0	104	17	0	21	0	38	255
12:45 PM	3	71	10	1	85	0	0	0	0	0	21	99	0	0	120	18	0	23	0	41	246
Total	27	339	43	1	410	0	0	0	0	0	74	373	0	0	447	67	0	91	0	158	1015

02:00 PM	5	75	10	0	90	0	0	0	0	0	15	87	0	0	102	17	0	28	1	46	238
02:15 PM	1	90	12	0	103	0	0	0	0	0	21	119	0	0	140	12	0	29	0	41	284
02:30 PM	3	104	14	0	121	0	0	0	0	0	15	115	0	0	130	11	0	28	0	39	290
02:45 PM	4	77	11	0	92	0	0	0	0	0	24	105	0	0	129	12	0	19	0	31	252
Total	13	346	47	0	406	0	0	0	0	0	75	426	0	0	501	52	0	104	1	157	1064
03:00 PM	6	72	9	0	87	0	0	0	0	0	27	120	0	0	147	23	0	36	0	59	293
03:15 PM	5	82	7	0	94	0	0	0	0	0	28	145	0	0	173	10	0	22	0	32	299
03:30 PM	3	100	10	0	113	0	0	0	0	0	25	137	0	0	162	16	0	27	0	43	318
03:45 PM	5	116	19	0	140	0	0	0	0	0	22	154	0	0	176	15	0	35	0	50	366
Total	19	370	45	0	434	0	0	0	0	0	102	556	0	0	658	64	0	120	0	184	1276
04:00 PM	3	92	8	0	103	0	0	0	0	0	33	131	0	0	164	17	0	30	0	47	314
04:15 PM	3	90	9	0	102	0	0	0	0	0	38	167	0	0	205	15	0	22	0	37	344
04:30 PM	5	94	18	0	117	0	0	0	0	0	33	172	0	0	205	16	0	27	0	43	365
04:45 PM	4	111	18	0	133	0	0	0	0	0	23	231	0	0	254	14	0	22	0	36	423
Total	15	387	53	0	455	0	0	0	0	0	127	701	0	0	828	62	0	101	0	163	1446
05:00 PM	4	100	15	0	119	0	0	0	0	0	47	170	0	0	217	16	0	32	0	48	384
05:15 PM	3	96	7	0	106	0	0	0	0	0	42	179	0	0	221	20	0	25	0	45	372
05:30 PM	3	101	9	0	113	0	0	0	0	0	37	195	0	0	232	23	0	22	0	45	390
05:45 PM	4	112	11	0	127	0	0	0	0	0	39	170	0	0	209	20	0	32	0	52	388
Total	14	409	42	0	465	0	0	0	0	0	165	714	0	0	879	79	0	111	0	190	1534
Grand Total	175	3237	348	1	3761	0	1	0	0	1	743	3656	0	0	4399	442	0	860	1	1303	9464
Apprch \%	4.7	86.1	9.3	0		0	100	0	0		16.9	83.1	0	0		33.9	0	66	0.1		
Total \%	1.8	34.2	3.7	0	39.7	0	0	0	0	0	7.9	38.6	0	0	46.5	4.7	0	9.1	0	13.8	

TDOT
Tennessee Department of Transportation
Region 1 Traffic Office File Name : Strawberry Plains@Brakebill
Site Code : 00000047
Start Date : 2/10/2009
Page No : 2

Intersection of Strawberry Plains Pike and Brakebill Rd. Crash Summary 2005-2007

Collision Type	Cause	Number of Crashes	Total	Percent of Total
Rear End	Stopped Quickly	5	6	35\%
	Distracted	1		
	Hydroplane	0		
Right Angle	Pulled in Front	8	10	59\%
	Distracted	1		
	Wreckless	1		
Head on	Wreckless	1	1	6\%
	Total Crashes	17		

Damage	Number of Crashes	Percentage of Total
Property Damage	15	88%
Injury	1	6%
Incapacitating Injury	1	6%
Fatality	0	0%
Total	17	

Time of Day	Number of Crashes	Percentage of Total	
Day	12	71%	
Night	5	29%	
Total	17		

Conditions	Number of Crashes	Percentage of Total	
C/D	16	94%	
R/W	1	6%	
Fog	0	0%	
Total	17		

State Wide Average Crash Rating	Ra	0.19
Intersection Actual Accident Rate	R	2.6
Intersection Critical Accident Rate	Rc	0.63
Severity Index	SI	0.21
Ratio	R / Rc	4.1

APPENDIX O

Traffic Signalization Warrants

Traffic Signal Warrant Analysis

Project Name	Brakebill Road Development
Project/File \#	1803
Scenario	2018 - Existing Traffic Volumes

Intersection Information	
Major Street Name	Strawberry Plains Pike
North/South or East/West	N/S
Speed Limit > 40 mph	No
\# of Approach Lanes	2 or more
\% of Right Turn Traffic to Include	100%
Minor Street Name	Brakebill Road
\# of Approach Lanes	2 or more
\% of Right Turn Traffic to Include	100%
Isolated Community < 10,000 pop	No

Additional Warrants to Consider

Warrant 3, Peak Hour (A - Volume and Delay)	No
All-Way Stop Warrant	No

Traffic Signal Warrant Analysis

Strawberry Plains Pike (Major Street) Volume

Northbound Volume by Hour				
Time	Left + U Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	56	369		
8-9 AM	56	324		
9-10 AM				
10-11 AM				
11-12 PM	71	407		
12-1 PM	91	449		
1-2 PM				
2-3 PM	83	465		
3-4 PM	103	579		
4-5 PM	140	705		
5-6 PM	152	720		
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	Vehicles (unadju	ed)	4,770	0

Southbound Volume by Hour				
Time	U Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	38	717	36	
8-9 AM	34	516	29	
9-10 AM				
10-11 AM				
11-12 PM	16	401	38	
12-1 PM	29	432	52	
1-2 PM				
2-3 PM	10	371	48	
3-4 PM	26	444	54	
4-5 PM	16	439	57	
5-6 PM	11	440	44	
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	hicles (una	sted)	4,298	0

Brakebill Road (Minor Street) Volume

Eastbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	37		140	
8-9 AM	25		112	
9-10 AM				
10-11 AM				
11-12 PM	43		104	
12-1 PM	58		122	
1-2 PM				
2-3 PM	61		101	
3-4 PM	67		108	
4-5 PM	58		109	
5-6 PM	67		124	
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	hicles (unad	ed)	1,336	0

Westbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
$12-1$ AM				
$1-2 \mathrm{AM}$				
$2-3 \mathrm{AM}$				
$3-4 \mathrm{AM}$				
$4-5 \mathrm{AM}$				
$5-6 \mathrm{AM}$				
$6-7 \mathrm{AM}$				
$7-8 \mathrm{AM}$				
$8-9 \mathrm{AM}$				
$9-10 \mathrm{AM}$				
$10-11 \mathrm{AM}$				
$11-12 \mathrm{PM}$				
$12-1 \mathrm{PM}$				
$1-2 \mathrm{PM}$				
$2-3 \mathrm{PM}$				
$3-4 \mathrm{PM}$				
$4-5 \mathrm{PM}$				
$5-6 \mathrm{PM}$				
$6-7 \mathrm{PM}$				
$7-8 \mathrm{PM}$				
$8-9 \mathrm{PM}$				
$9-10 \mathrm{PM}$				
$10-11 \mathrm{PM}$				
$11-12 \mathrm{AM}$				

Traffic Signal Warrant Analysis

Warrants 1-3 (Volume Warrants)

Project Name	Brakebill Road Development
Project/File \#	1803
Scenario	2018 - Existing Traffic Volumes

Intersection Information			
Major Street (N/S Road)	Strawberry Plains Pike	Minor Street (E/W Road)	Brakebill Road
Analyzed with	2 or more approach lanes	Analyzed with	2 or more approach lanes
Total Approach Volume	9068 vehicles	Total Approach Volume	1336 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

No speed or isolated community reduction applied to the warrant thresholds

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not satisfied	Satisfied	Not satisfied
Required values reached for	0 hours	8 hours	6 (Cond. A) \& 8 (Cond. B)
Criteria - Major Street (veh/hr)	600	900	480 (Cond. A) \& 720 (Cond. B)
Criteria - Minor Street (veh/hr)	200	100	160 (Cond. A) \& 80 (Cond. B)

* Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume	
Condition Satisfied?	
Required values reached for	Satisfied
Criteria	5 hours

Warrant 3, Peak Hour Vehicular Volume		
Condition Satisfied?	Condition A	Condition B
Required values reached for		Not Satisfied
Criteria - Total Approach Volume (veh in one hour)		0 hours
Criteria - Minor Street High Side Volume (veh in one hour)		See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)		

Figure 4C-1 (Warrant 2) \& Figure 4C-3 (Warrant 3)

Traffic Signal Warrant Analysis

Project Name	Brakebill Road Development
Project/File \#	1803
Scenario	2018 - Existing Traffic Volumes

Intersection Information	
Major Street Name	Strawberry Plains Pike
North/South or East/West	N/S
Speed Limit > 40 mph	No
\# of Approach Lanes	2 or more
\% of Right Turn Traffic to Include	100%
Minor Street Name	Brakebill Road
\# of Approach Lanes	1
\% of Right Turn Traffic to Include	0%
Isolated Community < 10,000 pop	No

Additional Warrants to Consider

Warrant 3, Peak Hour (A - Volume and Delay)	No
All-Way Stop Warrant	No

Traffic Signal Warrant Analysis

Strawberry Plains Pike (Major Street) Volume

Northbound Volume by Hour				
Time	Left + U Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	56	369		
8-9 AM	56	324		
9-10 AM				
10-11 AM				
11-12 PM	71	407		
12-1 PM	91	449		
1-2 PM				
2-3 PM	83	465		
3-4 PM	103	579		
4-5 PM	140	705		
5-6 PM	152	720		
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	Vehicles (unadju	ed)	4,770	0

Southbound Volume by Hour				
Time	U Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	38	717	36	
8-9 AM	34	516	29	
9-10 AM				
10-11 AM				
11-12 PM	16	401	38	
12-1 PM	29	432	52	
1-2 PM				
2-3 PM	10	371	48	
3-4 PM	26	444	54	
4-5 PM	16	439	57	
5-6 PM	11	440	44	
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	hicles (una	sted)	4,298	0

Brakebill Road (Minor Street) Volume

Eastbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
12-1 AM				
1-2 AM				
2-3 AM				
3-4 AM				
4-5 AM				
5-6 AM				
6-7 AM				
7-8 AM	37		140	
8-9 AM	25		112	
9-10 AM				
10-11 AM				
11-12 PM	43		104	
12-1 PM	58		122	
1-2 PM				
2-3 PM	61		101	
3-4 PM	67		108	
4-5 PM	58		109	
5-6 PM	67		124	
6-7 PM				
7-8 PM				
8-9 PM				
9-10 PM				
10-11 PM				
11-12 AM				
Total	hicles (unad	ed)	1,336	0

Westbound Volume by Hour				
Time	Left Turns	Through	Right Turns	Peds/Bikes
$12-1$ AM				
$1-2 \mathrm{AM}$				
$2-3 \mathrm{AM}$				
$3-4 \mathrm{AM}$				
$4-5 \mathrm{AM}$				
$5-6 \mathrm{AM}$				
$6-7 \mathrm{AM}$				
$7-8 \mathrm{AM}$				
$8-9 \mathrm{AM}$				
$9-10 \mathrm{AM}$				
$10-11 \mathrm{AM}$				
$11-12 \mathrm{PM}$				
$12-1 \mathrm{PM}$				
$1-2 \mathrm{PM}$				
$2-3 \mathrm{PM}$				
$3-4 \mathrm{PM}$				
$4-5 \mathrm{PM}$				
$5-6 \mathrm{PM}$				
$6-7 \mathrm{PM}$				
$7-8 \mathrm{PM}$				
$8-9 \mathrm{PM}$				
$9-10 \mathrm{PM}$				
$10-11 \mathrm{PM}$				
$11-12 \mathrm{AM}$				

Traffic Signal Warrant Analysis

Warrants 1-3 (Volume Warrants)

Project Name	Brakebill Road Development
Project/File \#	1803
Scenario	2018 - Existing Traffic Volumes

Intersection Information			
Major Street (N/S Road)	Strawberry Plains Pike	Minor Street (E/W Road)	Brakebill Road
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	9068 vehicles	Total Approach Volume	1336 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	1 percent applied

No speed or isolated community reduction applied to the warrant thresholds

Warrant 1, Eight Hour Vehicular Volume				
	Condition A	Condition B	Condition A+B*	
Condition Satisfied?	Not satisfied	Not satisfied	Not satisfied	
Required values reached for	0 hours	0 hours	0 (Cond. A) \& 3 (Cond. B)	
Criteria - Major Street (veh/hr)	600	900	480 (Cond. A) \& 720 (Cond. B)	
Criteria - Minor Street (veh/hr)	150	75	120 (Cond. A) \& 60 (Cond. B)	

* Should be applied only after an adequate trail of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume	
Condition Satisfied?	
Required values reached for	Not satisfied
Criteria	0 hours

Warrant 3, Peak Hour Vehicular Volume		
Condition Satisfied?	Condition A	Condition B
Required values reached for		Not Satisfied
Criteria - Total Approach Volume (veh in one hour)		0 hours
Criteria - Minor Street High Side Volume (veh in one hour)		See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)		

Figure 4C-1 (Warrant 2) \& Figure 4C-3 (Warrant 3)

11812 Black Road
Knoxville, Tennessee 37932
Phone (865) 556-0042
ajaxengineering@gmail.com
May 30, 2018

PROJECT NAME: Brakebill Road Development

TO: Knoxville/Knox County Metropolitan Planning Commission (MPC) City of Knoxville Engineering Department
 Knox County Engineering Department

SUBJECT: TIS Comment Response Document for Brakebill Road Development Review Comments Dated May 24, 2018

Dear MPC, City of Knoxville, and Knox County Staff,
The following comment response document is submitted to address comments dated May 24, 2018. Below, the first set of reviewer comments is from John Sexton, PE, Knox County Engineering and the second set of reviewer comments is from Tarren Barrett, MPC. Comments that were noted by both reviewers are addressed in the responses given under John Sexton's review comments.

John Sexton, PE, Knox County Engineering:

Reviewer Comment: Page i: The section headings for pages 51 and 52 should read "Brakebill Road" instead of "Hammer Road".

Response: On Page i, the section headings for pages 51 and 52 have been changed to "Brakebill Road" instead of "Hammer Road".

Reviewer Comment: Page 1: Under Study Results, first bullet, first line, change "constructing" to "constructed".

Response: On Page 1, under Study Results, first bullet, first line, "constructing" was changed to "constructed".

Reviewer Comment: Page 7: Under the discussion of Hammer Road, add a statement that it is classified as a minor collector in the study area.

Response: On Page 7, under the discussion of Hammer Road in the $2^{\text {nd }}$ paragraph, second sentence, a statement was added that Hammer Road is classified as a minor collector in the study area.

Reviewer Comment: Page 16: In the first paragraph, please add a statement that the layout for the proposed warehouse/storage including its driveway is not complete and that the approximate driveway is indicated only with a call-out in Figure 3.

Response: On Page 16, in the first paragraph, a note has been added that the mini-warehouse driveway location is shown only with a call-out in Figure 3.

Reviewer Comment: Page 28: Third paragraph, second line change "poor" to "poorly".

Response: On Page 28, third paragraph, on the second line, the word "poor" was changed to "poorly".

Reviewer Comment: Page 34: First paragraph, last line change "show" to "shown". It would be helpful to have separate trip distribution and traffic assignment figures for each land use, especially since they each have their own access points. The spreadsheet was hard to follow.

Response: On Page 34, on the last line, the word "show" was changed to "shown". It was decided that it would be less confusing to keep the same trip distribution and assignment figures since there is overlap with entering and exiting trips at the different intersections. The spreadsheet located in the appendix was enhanced and revised.

Reviewer Comment: Pages 35-38: Some of the percentages do not add up. In Figure 6A, the split entering from the south on Strawberry Plains Pike and from the east on $1-40$ is 24% ($18 \% \mathrm{NB}+6 \%$ WB). However, the entering northbound split at Strawberry Plains Pike/Brakebill Road is 25%. Other similar rounding errors in 6 A , 6B, 7A and 7B. Please make sure the math adds up throughout by adjusting rounded values.

Response: On Pages 35-38, the percentages were re-calculated from the trip distribution spreadsheet located in the appendix and the numbers shown in $6 \mathrm{~A}, 6 \mathrm{~B}, 7 \mathrm{~A}$, and 7 B were adjusted to account for rounding values from the spreadsheet. The trip assigned values from 7A and 7B were also updated in Figure 8.

Reviewer Comment: Page 46: Rewrite part of line 6 as follows: "TDOT safety funding, the ratio of the actual crash rate to the critical crash rate (A/C ratio)" (add italicized text)

Response: Line 6 on Page 46 has been rewritten as "To obtain TDOT safety funding, the ratio of the actual crash rate to the critical crash rate (A/C ratio) would need to be 3.5 or higher."

Reviewer Comment: Page 47: Section 2a- Please measure sight distance in the field per County criteria and report here. Section 2b- Please evaluate left- and right-turn lane warrants for this intersection and report here.

Response: On Page 47, section 2a, a sentence has been included that states that "The sight distance at this intersection is in excess of 450 feet looking north and south from Hammer Road". The evaluation for left and right turn lane warrants for this intersection has been added to Section 2 b and the graphs for this evaluation has been added to Appendix L.

Reviewer Comment: Page 48: Section 3a- Please measure sight distance in the field at the edge of Hammer Road at the location of Road I and report here.

Response: On Page 48, section 3a, a sentence has been included that states that "The sight distance at this proposed intersection has been measured by a land surveyor and is more than 400 feet looking east and west from the proposed Road "I"."

Reviewer Comment: Page 49: Section 4a- Please measure sight distance in the field at the edge of Brakebill Road at the location of the apartment driveway and report here.

Response: On Page 49, section 4a, a sentence has been included that states that "However, a land surveyor has not verified the sight distance at this proposed intersection since a design and location of the driveway for the apartment complex has not been finalized. Once the design is finalized, the sight distance will be confirmed based on the Knox County policy and standards."

Reviewer Comment: Page 51: The section heading for section 5 should read "Brakebill Road" instead of "Hammer Road". Section 5a- Please measure sight distance in the field at the edge of Brakebill Road at the location of the warehouse/storage driveway and report here.

Response: On Page 51, the section heading for section 5 has been changed to "Brakebill Road" instead of "Hammer Road". On Page 51, section 5a, a sentence has been included that states that "A land surveyor has not verified the sight distance at this proposed intersection since a design and location of the driveway for the mini-warehouse facility has not been finalized. Once the design is finalized, the sight distance will be confirmed based on the Knox County policy and standards."

Reviewer Comment: Page 52: The section heading for section 6 should read "Brakebill Road" instead of "Hammer Road". Section 6a- Please measure sight distance in the field at the edge of Brakebill Road at the location of Road A and report here.

Response: On Page 52, the section heading for section 6 has been changed to "Brakebill Road" instead of "Hammer Road". Section 6a has been changed to "With a posted speed limit of 30 mph , this would indicate a required sight distance of 300 feet looking north and south for eastbound left and right turn movements at Road "A". The sight distance at this proposed intersection has been measured by a land surveyor and is more than 450 feet looking north and is 325 feet looking south from the proposed Road "A".

Reviewer Comment: Page 53: Third paragraph, first line change "southbound" to "northbound".

Response: On Page 53, third paragraph, the first line was changed from "southbound" to "northbound".

Reviewer Comment: Page 54: Section 6e, third line change Hammer Road to Brakebill Road and change Road I to Road A.

Response: On Page 54, section 6e, the third line was changed from "Hammer Road" to "Brakebill Road" and changed from "Road I" to "Road A".

Reviewer Comment: Page 67: Insert a figure following the discussions of existing public roads to summarize the improvements explicitly recommended in the TIS:

- Adjust signal timing at Asheville Highway/Brakebill Road
- Add STOP sign and stop bar on Hammer Road at Brakebill Road
- Build a northbound left-turn lane on Brakebill Road at Road A
- Build a second northbound left-turn lane on Strawberry Plains Pike at the I-40 westbound on-ramp
- Signalize the intersection of Brakebill Road/Strawberry Plains Pike
- Remove roadside hazards from Brakebill Road
- Install warning signs for two horizontal curves on Brakebill Road
- Install centerline and edgeline rumblestripes on Brakebill Road

Response: Figure 10 on page 72 has been included in the report and shows an overview of the external road and intersection recommendations.

Tarren Barrett, MPC:

Reviewer Comment: Page 1: Change 301 single-family detached home sites to 309 detached and attached home sites. "Self-storage" has been determined as a land use not available.

Response: The text on page 1 has been changed from 301 single-family detached homes sites to 247 detached and 78 attached homes sites. Also, throughout the report, the amount of residential single-family lots has been updated to include the mix of detached and attached homes. This mix of attached and detached lots has also been updated in the Trip Generation calculations and the subsequent analyses. The term "Self-storage" has been eliminated in all parts of the report. A sentence has been added on Page 18 that mentions that the miniwarehouse facility property will need to be re-zoned in the future to allow this land use.

Reviewer Comment: Page 2: All recommendations should have a figure or map showing improvements recommended.

Response: Figure 10 on page 72 has been included in the report and shows an overview of the external road and intersection recommendations.

Reviewer Comment: Page 3: What is the width of pavement on Brakebill Road?

Response: On Page 3, the existing width of pavement on Brakebill Road has been added in the discussion at the end of the paragraph.

Reviewer Comment: Page 4: Concept plan shows 309 attached and detached home sites.

Response: Throughout the report, the amount of residential single-family lots has been updated to include the mix of detached and attached homes. This mix of attached and detached lots have been updated in the Trip Generation calculations and the subsequent analyses.

Reviewer Comment: Page 31: Remove blank rows in Table 6a.

Response: \quad On Page 31, the blank rows have been removed in Table 6a.

Reviewer Comment: Page 35: Figure 6a shows discrepancies in percentages for directional distribution.

Response: On Pages 35-38, the percentages were re-calculated from the trip distribution spreadsheet located in the appendix and the numbers shown in $6 \mathrm{~A}, 6 \mathrm{~B}, 7 \mathrm{~A}$, and 7 B were adjusted to account for rounding values from the spreadsheet. The trip assigned values from 7A and 7B were also updated in Figure 8.

Reviewer Comment: Page 56: Last paragraph, what is the distance in between Strawberry Plains Pike at Interstate 40 On/Off Ramps and the intersection of Strawberry Plains Pike at Brakebill Road?

Response: On Page 56, in the last paragraph, the sentence discussing the short distance in between Strawberry Plains Pike at Interstate 40/Off Ramps has been updated that states the distance is approximately 270 feet.

Reviewer Comment: Page 61: Last paragraph, rephrase first sentence.

Response: On Page 61, last paragraph, the first sentence has been rephrased and the entire paragraph has been revised to improve its readability.

Reviewer Comment: Page 64: Under section I, where are the roadside hazards located?

Response: At the end of section 9 under the Conclusions and Recommendations, starting on page 68, photographs of the roadside hazards that have been located on Brakebill Road have been added to the report.

In addition to the requested revisions, other changes in the report include the following:

- Updated Page Footers
- Updated Title Page
- Updated Table of Contents
- Updated Figures 6A, 6B, 7A, 7B, and 8
- Added Figure 10
- Updated Tables 6A-6E, 7, 10, and 11
- Updated Appendix G, H, I, L, and M

If you have any questions or further comments, please feel free to contact me at any time. I look forward to your review and approval.

Sincerely,
Ajax Engineering, LLC
Robert W. Jacks, P.E.

[^0]: ${ }^{1}$ Major Road Plan - May 2011 by Knoxville/Knox County Metropolitan Planning Commission
 ${ }^{2}$ Edge of curb to edge of curb or edge of pavements near project site
 ${ }^{3}$ According to Knoxville Area Transit System Map

[^1]: * For estimating future project costs, a compounded inflation rate of 10% per year will be applied from

[^2]: * For estimating future project costs, a compounded inflation rate of 10% per year will be applied from

[^3]: * For estimating future project costs, a compounded inflation rate of 10% per year will be applied from the date of this estimate.

[^4]: * For estimating future project costs, a compounded inflation rate of 10% per year will be applied from the date of this estimate.

