6-SD-24-C / 6-H-24-DP TIS Version 2 5/28/2024

# **EBENEZER ROAD SUBDIVISION**

Transportation Impact Analysis Ebenezer Road Knoxville, TN

# A Transportation Impact Analysis for the Ebenezer Road Subdivision

Submitted to

# **Knoxville-Knox County Planning**

Revised May 28, 2024 April 26, 2024 Ardurra Project No. 330.029



Submitted By:



| TAB | BLE OF CONTENTS                                                                                             |            |
|-----|-------------------------------------------------------------------------------------------------------------|------------|
| EXE | CUTIVE SUMMARY                                                                                              | 3          |
| 1   |                                                                                                             | 5          |
|     | 1.1 Project Description                                                                                     | 5          |
|     | 1.2 Study Area                                                                                              | 8          |
|     | TABLE 1.2-1 EBENEZER ROAD SUBDIVISION STUDY AREA         1.3 EXISTING SITE CONDITIONS                       | 8          |
| 2   | TABLE 1.3-1 EBENEZER ROAD SUBDIVISION EXISTING SITE CONDITIONS         EXISTING TRAFFIC VOLUMES             | 10         |
| 3   | BACKGROUND GROWTH                                                                                           | 12         |
|     | 3.1 FUTURE DEVELOPMENT AREA                                                                                 | 14         |
| 4   | TABLE 3.1-1 FUTURE DEVELOPMENT AREA TRIP GENERATION SUMMARY         TRIP GENERATION AND TRIP DISTRIBUTION   | 17         |
| 5   | TABLE 4-1 EBENEZER ROAD SUBDIVISION TRIP GENERATION SUMMARY         PROJECTED CAPACITY AND LEVEL OF SERVICE | 21         |
| 6   | Table 5-1 Level of Service (LOS) Index<br>Table 5-2 Intersection Analysis Level of Service (LOS) Summary    | <b>7</b> 2 |
| 0   |                                                                                                             | 23         |
| 7   | TABLE 6-T SYNCHRO QUEUE SUMMARY TURN LANE WARRANT ANALYSIS                                                  | 24         |
| 8   | CONCLUSIONS AND RECOMMENDATIONS                                                                             | 24         |
|     | 8.1 Kingston Pike (US 11/US 70) at Ebenezer Road                                                            | 24         |
|     | 8.2 Ebenezer Road at Future Development Area                                                                | 25         |
|     | 8.3 EBENEZER ROAD AT EBENEZER SUBDIVISION                                                                   | 26         |

#### **FIGURES**

| 1 | LOCATION MAP                            | 6  |
|---|-----------------------------------------|----|
| 2 | SITE PLAN                               | 7  |
| 3 | 2024 Existing Peak Hour Traffic         | 11 |
| 4 | 2027 Background Peak Hour Traffic       | 13 |
| 5 | Apartment Peak Hour Trip Distribution   | 15 |
| 6 | Apartment Peak Hour Site Trips          | 16 |
| 7 | SUBDIVISION PEAK HOUR TRIP DISTRIBUTION | 18 |
| 8 | Subdivision Peak Hour Site Trips        | 19 |
| 9 | 2027 Full Buildout Peak Hour Traffic    | 20 |

#### ATTACHMENTS

- 1 AERIAL PHOTOS
- 2 TRAFFIC COUNTS
- 3 ADT TRENDS
- 4 TRIP GENERATION
- 5 SIGNAL TIMING
- 6 INTERSECTION WORKSHEETS EXISTING AM/PM PEAKS
- 7 INTERSECTION WORKSHEETS BACKGROUND AM/PM PEAKS
- 8 INTERSECTION WORKSHEETS FULL BUILDOUT AM/PM PEAKS
- 9 TURN LANE WARRANTS
- 10 SIGHT DISTANCE

### **Executive Summary**

S&E Properties, LLC is proposing a residential development. The project is located south of the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road in Knox County, Tennessee. The full buildout of the Ebenezer Road Subdivision proposes 113 single-family residential lots and a future development area by others. The current plan for the Future Development Area is a proposed apartment complex with 278 garden style apartment units. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2027.

The Ebenezer Road Subdivision has a proposed single roadway connection to Ebenezer Road and the proposed future development area has a separate proposed single roadway connection to Ebenezer Road. A roadway connection between the two developments is under consideration for the purpose of emergency access. The exact location will need to be coordinated between the property owners as well as Knox County Engineering and Public Works.

In order to maintain or provide an acceptable level-of-service for each of the intersections studied, some recommendations are presented.

#### Kingston Pike (SR 70) at Ebenezer Road

After the completion of the Ebenezer Road Subdivision including the future development area the traffic conditions for the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road will operate at an acceptable LOS C during the AM peak hour and a LOS D during the PM peak hour.

The northbound right turn lane (Ebenezer Road) will exceed the available queue storage length of 50 feet less than 50% of the time after the completion of the Ebenezer Road Subdivision and Future Development Area.

There are several existing constraints including the location of guard rails and power poles and the proximity to Ten Mile Creek that would make extending the storage length of the right turn lane difficult to construct.

The existing geometry of the northbound right turn lane is a 50-foot storage length and a 30-foot taper ending at the start of the existing commercial driveway. In order to maximum storage capacity Ardurra recommends relocating the communication pole and widening the 80-foot length of Ebenezer Road between the stop bar and the commercial driveway to match the existing width of 20 feet to allow additional vehicle stacking. Ardurra recommends that any future intersection improvements be reviewed, coordinated and approved by both the City of Knoxville Department of Engineering and Knox County Engineering and Public Works.

#### Ebenezer Road at Future Development Area

A southbound left turn lane is warranted at the intersection of Ebenezer Road at Future Development Area Roadway per the Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy." The southbound left turn lane has a recommended minimum storage length of 50 feet per the AASHTO Greenbook "A Policy on Geometric Design of Highways and Streets."

After the completion of the full buildout of the Ebenezer Road Subdivision including the proposed roadway improvements the intersection of Ebenezer Road at Future Development Area Roadway will operate at an acceptable LOS B or better for each approach during both the AM and PM peak hours.

#### Ebenezer Road at Subdivision

Neither a southbound left turn lane nor a northbound right turn lane is warranted at the intersection of Ebenezer Road at Ebenezer Subdivision Roadway per the Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy."

After the completion of the full buildout of the Ebenezer Road Subdivision the intersection of Ebenezer Road at Subdivision Roadway will operate at an acceptable LOS B or better for each approach during both the AM and PM peak hours.

## 1 Introduction

#### **1.1 Project Description**

This report provides a summary of a transportation impact analysis that was performed for the Ebenezer Road Subdivision residential development. The Ebenezer Road Subdivision proposes 113 single-family residential lots and a future development area by others. The current plan for the Future Development Area is a proposed apartment complex with 278 garden style apartment units. The project is located south of the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road in Knox County, Tennessee. The location of the site is shown in Figure 1.

Construction is proposed to take place this year and this study assumes full build out for the subdivision and the future development area will occur in 2027.

The Ebenezer Road Subdivision has a proposed single roadway connection to Ebenezer Road and the proposed future development area has a separate proposed single roadway connection to Ebenezer Road. A roadway connection between the two developments is under consideration for the purpose of emergency access. The exact location will need to be coordinated between the property owners as well as Knox County Engineering and Public Works.

The proposed site layout is shown in Figure 2.



Figure 1: Location Map



Figure 2: Site Plan

#### 1.2 Study Area

The purpose of this study is to evaluate the impacts to the traffic conditions caused by the proposed development. Ebenezer Road is considered a north-south orientate roadway and Kingston Pike (US 11/US 70) is considered an east-west oriented roadway. The existing intersections and existing traffic control are summarized in Table 1.2-1 Study Area.

| Table 1.2-1               |  |
|---------------------------|--|
| Ebenezer Road Subdivision |  |
| Study Area                |  |
|                           |  |

| Intersection                                 | Existing Traffic Control |
|----------------------------------------------|--------------------------|
| Kingston Pike (US 11/US 70) at Ebenezer Road | Signalized               |

#### **1.3 Existing Site Conditions**

Roadway geometry and posted speed limits were obtained by field observations. The Knoxville-Knox County Planning "2018 Major Road Plan" was used to determine road classification. This information is summarized in Table 1.3-1 Existing Site Conditions.

| Table 1.3-1Ebenezer Road SubdivisionExisting Site Conditions |                |       |               |                 |  |  |  |  |  |  |
|--------------------------------------------------------------|----------------|-------|---------------|-----------------|--|--|--|--|--|--|
| Roadway                                                      | Speed<br>Limit | Lanes | Road<br>Width | Major Road Plan |  |  |  |  |  |  |
| Kingston Pike<br>(US 11/US 70)                               | 45 mph         | 5     | ~58 feet      | Major Arterial  |  |  |  |  |  |  |
| Ebenezer Road                                                | 30 mph         | 2     | ∼21 feet      | Minor Collector |  |  |  |  |  |  |

The intersection of Kingston Pike (US 11/US 70) at Ebenezer Road is located within the City of Knoxville limits and the signal is maintained by the City of Knoxville Department of Engineering.

At the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road the eastbound approach (Kingston Pike) has a left turn lane with an approximate storage length of 140 feet and a right turn lane with an approximate storage length of 140 feet. The westbound approach (Kingston Pike) has a left turn lane with an approximate storage length of 90 feet and a right turn lane with an approximate

storage length of 100 feet. The southbound approach (Driveway) has a separate right turn lane with an approximate storage length of 50 feet. The northbound approach (Ebenezer Road) has a separate right turn lane with an approximate storage length of 50 feet.

The measured width of Ebenezer Road south of the signalized intersection is 30 feet and tapers to 24 feet south of the existing commercial driveway connections. The measured width of Ebenezer Road at the proposed subdivision roadway connection is approximately 21 feet.

An aerial photo of the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road is included in Attachment 1.

Guardrails are located on both sides of Ebenezer Road south of Kingston Pike (US 11/US 70) at the Ten Mile Creek crossing. Pictures of the existing conditions of the guardrails are included in Attachment 1.

There are no sidewalks or bike infrastructure in the vicinity of the proposed development.

The Knoxville Area Transit (KAT) operates in the vicinity of the proposed development. Route 16 (Cedar Bluff Connector) stops include Parkwest Hospital, Cedar Bluff at Fox Lonas and Walmart Walbrook Drive. The nearest KAT stop to the development along Route 16 is currently located on Cedar Bluff Road near the Kroger Development which is approximately 1.1 miles walk to the Ebenezer Road Subdivision.

## 2 Existing Traffic Volumes

Ardurra conducted a peak hour turning movement count at the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road on Tuesday March 19, 2024. The AM peak hour occurred between 7:45 a.m. and 8:45 a.m. with an AM PHF of 0.97. The PM peak hour occurred between 5:00 p.m. and 6:00 p.m. with a PM PHF of 0.94.

The existing volumes including the AM and PM peak hour traffic volumes at the count locations are shown in Figure 3, and the count data collected is included in Attachment 2.



— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 3: 2024 Existing Peak Hour Traffic

## **3** Background Growth

The Tennessee Department of Transportation (TDOT) maintains count stations in the vicinity of the proposed development.

TDOT count station ID 47000466 is located on Ebenezer Road between Kingston Pike (US 11/US 70) and George Williams Road in Knoxville, TN. The annual growth rate for this station over the last ten years is approximately -3.80%. The 2023 ADT was 4,581 vehicles per day.

TDOT count station ID 47000128 is located on Kingston Pike (US 11/US 70) west of the signalized intersection with Cedar Bluff Road. The annual growth rate for this station over the last ten years is approximately 0.59%. The 2022 ADT was 27,645 vehicles per day.

For the purpose of this study, an annual growth rate of 1.0% was assumed for traffic at the studied intersections until full occupancy is reached in 2027. Attachment 3 shows the trend line growth charts for the TDOT count stations.

Figure 4 demonstrates the projected background peak hour volumes at the studied intersections after applying the background growth rate to the existing conditions.



— 5 (16) TURNING MOVEMENT VOLUME AM (PM)

Figure 4: 2027 Background Peak Hour Traffic

#### 3.1 Future Development Area

In addition to the background growth, the trips from the Future Development Area were calculated and included in the projected background peak hour traffic. The future development area is expected to be a proposed apartment complex with 278 garden style apartment units. A roadway connection between the two developments is under consideration for the purpose of emergency access.

The Knoxville-Knox County Planning Commission published a memorandum ("Local Trip Generation Rates for Multi-Family Residential Uses", August 14, 2000) for the purpose of providing locally collected data for all multi-family residential developments. The fitted curve equations from the local study were used to calculate site trips for the future development area.

The land use worksheets are included in the attachments and a trip generation summary is shown in Table 3.1.

| Table 3.1-1<br>Future Development Area<br>Trip Generation Summary |           |                |                 |                |                            |    |  |  |  |  |
|-------------------------------------------------------------------|-----------|----------------|-----------------|----------------|----------------------------|----|--|--|--|--|
| Land Use                                                          | Density   | Daily<br>Trips | AM Pea<br>Enter | k Hour<br>Exit | PM Peak Hour<br>Enter Exit |    |  |  |  |  |
| Apartments<br>(Local Trip Gen Study)                              | 278 Units | 2,392          | 30              | 107            | 108                        | 88 |  |  |  |  |

The total combined new trips generated by the Future Development Area were estimated to be 2,392 daily trips. The estimated trips are 137 trips during the AM peak hour and 196 trips during the PM peak hour.

The directional distribution of the traffic generated by the Ebenezer Road Subdivision was determined using the existing traffic volumes in combination with the site plan layout. The entering/exiting traffic was assumed to be 70% Ebenezer Road northbound to/from Kingston Pike (US 11/US 70) and 30% Ebenezer Road southbound to/from Gleason Drive/Westland Drive.

Figures 5 and 6 show the Future Development Area – apartment peak hour trip distribution and site trips.



— 50% (50%) TRIP DISTRIBUTION ENTERING (EXITING)

Figure 5: Apartment Peak Hour Trip Distribution



Figure 6: Apartment Peak Hour Site Trips

#### **Trip Generation and Trip Distribution** 4

The Ebenezer Road Subdivision proposes 113 single-family residential lots. A roadway connection between the two developments is under consideration for the purpose of emergency access. Single-Family Detached Housing or Land Use 210 was used to calculate site trips for the development using the fitted curve equations from the Trip Generation, 11th Edition, published by the Institute of Transportation Engineers.

The land use worksheets are included in Attachment 4. A trip generation summary is shown in Table 4-1.

| Ebenezer Road Subdivision<br>Trip Generation Summary |          |                |                |                 |                 |                 |  |  |  |  |
|------------------------------------------------------|----------|----------------|----------------|-----------------|-----------------|-----------------|--|--|--|--|
| Land Use                                             | Density  | Daily<br>Trips | AM Pe<br>Enter | ak Hour<br>Exit | PM Pea<br>Enter | ak Hour<br>Exit |  |  |  |  |
| Single Family<br>Detached Housing<br>(LUC            | 113 Lots | 1,129          | 21             | 62              | 71              | 41              |  |  |  |  |

Table 4-1

The total combined new trips generated by the Ebenezer Road Subdivision were estimated to be 1,129 daily trips. The estimated trips are 83 trips during the AM peak hour and 112 trips during the PM peak hour.

Ebenezer Road at the intersection with Kingston Pike (US 11 / US 70) has an existing trip distribution of 70% northbound and 30% southbound during the AM peak hour and 45% northbound and 55% southbound during the PM peak hour.

The directional distribution of the traffic generated by the Ebenezer Road Subdivision was determined using the existing traffic volumes in combination with the site plan layout. The entering/exiting traffic was assumed to be 70% Ebenezer Road northbound to/from Kingston Pike (US 11 / US 70) and 30% Ebenezer Road southbound to/from Gleason Drive/Westland Drive.

Figures 7 and 8 show the subdivision peak hour trip distribution and site trips. Figure 9 shows the 2027 full buildout peak hour traffic including the background growth and the peak hour site trips from both the future development area and the Ebenezer Road Subdivision.



Figure 7: Subdivision Peak Hour Trip Distribution



Figure 8: Subdivision Peak Hour Site Trips



Figure 9: 2027 Full Buildout Peak Hour Traffic

# 5 **Projected Capacity and Level of Service**

Intersection capacity analyses were performed using the Synchro 11 Software at signalized intersection and the Highway Capacity Software 2023 at the two-way stop-controlled intersections in order to evaluate the AM and PM peak hours for existing, background and full buildout conditions. The existing signal timing at the signalized intersection was provided by City of Knoxville Department of Engineering and is included in Attachment 5.

#### Level of Service

The results from the analyses are expressed with a term "level of service" (LOS), which is based on the amount of delay experienced at the intersection. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions with excessive delay. LOS D generally is considered the minimum acceptable condition in urban areas. Table 5-1 shows the LOS index range for signalized and unsignalized intersections as defined by the Highway Capacity Manual (HCM).

| Level of Service | Signalized Intersection | Unsignalized Intersection |  |  |  |  |  |  |  |
|------------------|-------------------------|---------------------------|--|--|--|--|--|--|--|
| LOS A            | $\leq$ 10 sec           | $\leq 10 \text{ sec}$     |  |  |  |  |  |  |  |
| LOS B            | 10 – 20 sec             | 10 – 15 sec               |  |  |  |  |  |  |  |
| LOS C            | 20 – 35 sec             | 15 – 25 sec               |  |  |  |  |  |  |  |
| LOS D            | 35 – 55 sec             | 25 – 35 sec               |  |  |  |  |  |  |  |
| LOS E            | 55 – 80 sec             | 35 – 50 sec               |  |  |  |  |  |  |  |
| LOS F            | > 80 sec                | > 50 sec                  |  |  |  |  |  |  |  |

Table 5-1 Level of Service (LOS) Index

The Synchro 11 worksheets are included in Attachments 6, 7, and 8. Table 5-2 shows the results of the capacity analyses.

| Intersection                                   | Time Period                                                                                  | Year 2024<br>Existing<br>(Delay/LOS) | Year 2027<br>Background<br>(Delay/LOS) | Year 2027<br>Full Buildout<br>(Delay/LOS)  |
|------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------|
| Kingston Pike (US 11/US 70) @<br>Ebenezer Road | AM Peak<br>Intersection<br>PM Peak<br>Intersection                                           | 18.0 / B<br>27.3 / C                 | 18.3 / B<br>28.1 / C                   | 22.9 / C<br>38.0 / D                       |
| Ebenezer Road @<br>Apartment Driveway          | <b>AM Peak</b><br>WB Approach<br>SB Approach<br><b>PM Peak</b><br>WB Approach<br>SB Approach |                                      |                                        | 12.5 / B<br>1.2 / A<br>14.1 / B<br>1.7 / A |
| Ebenezer Road @<br>Driveway                    | <b>AM Peak</b><br>WB Approach<br>SB Approach<br><b>PM Peak</b><br>WB Approach<br>SB Approach |                                      |                                        | 11.5 / B<br>0.8 / A<br>12.5 / B<br>1.4 / A |

Table 5-2 Level of Service (LOS) Summary

Notes:

1.Whole intersection weighted average control delay expressed in second per vehicle for signalized intersections and all-way stop controlled intersections.

# 6 Queue Analysis

Table 6-1 presents the Synchro traffic queueing summary for the 95<sup>th</sup> percentile queue at the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road for both the AM and PM peak hour.

| Intersection  | Movement | Storage<br>Capacity | Exist<br>Cond | ing<br>itions | Backa<br>Conc | ground<br>litions | Full Buildout<br>Conditions |      |  |
|---------------|----------|---------------------|---------------|---------------|---------------|-------------------|-----------------------------|------|--|
|               |          | (ft)                | AM            | PM            | AM            | PM                | AM                          | PM   |  |
|               | EBL      | 140                 | 14            | 26            | 14            | 27                | 16                          | 29   |  |
|               | EBT      | 585                 | 264           | 604           | 274           | #650              | 304                         | #725 |  |
| Kingston Pk   | EBR      | 140                 | 0             | 21            | 0             | 23                | 0                           | 54   |  |
| (US 70/US 11) | WBL      | 90                  | 42            | 119           | 43            | 135               | 59                          | 216  |  |
| @ Ebenezer Rd | WBT      | 1,000+              | 148           | 277           | 154           | 288               | 171                         | 288  |  |
|               | WBR      | 100                 | 0             | 1             | 0             | 1                 | 0                           | 1    |  |
|               | NBT      | 1,000+              | 125           | #169          | 127           | #180              | 162                         | #259 |  |
|               | NBR      | 50                  | 57            | 61            | 58            | 68                | 101                         | 131  |  |
|               | SBT      | 240                 | 31            | #257          | 31            | #268              | 33                          | #281 |  |
|               | SBR      | 50                  | 0             | 0             | 0             | 0                 | 0                           | 0    |  |

Table 6-1 Synchro Queue Summary

Notes:

The # footnote indicates that the volume for the 95<sup>th</sup> percentile cycle exceeds capacity. Bold indicates queue length exceeds available storage capacity.

Bold cells indicate that the queue lengths are more than the available storage. The 95<sup>th</sup> percentile queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95<sup>th</sup> percentile queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage. Synchro assumes a vehicle length of 25 feet.

The northbound right turn lane has an existing storage length of 50 feet and an additional 30 feet of taper length before the queue from the signalized intersection would block the driveway to the retail strip center. The signalized intersection capacity analysis shows the full buildout 95% queue length for the northbound right turn lane of approximately 101 feet (4 vehicles) during the AM peak hour and 131 feet (6 vehicles) during the PM peak hour and the full buildout 50% queue length for the northbound right turn lane of approximately 31 feet (2 vehicles) during the AM peak hour and 47 feet (2 vehicles) during the PM peak hour.

Therefore; the existing northbound right turn lane storage will exceed capacity and cause spillback into the thru lane less than 50% of time after the completion of the Ebenezer Road Subdivision.

## 7 Turn Lane Warrant Analysis

The intersection of Ebenezer Road at the proposed apartment roadway connection and the proposed subdivision roadway connection was evaluated to determine if a northbound right turn lane or a southbound left turn lane are warranted. The Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy," was used to analyze the information.

At the intersection of Ebenezer Road at the proposed roadway connection to the Future Development Area a southbound left turn is warranted during the PM peak hour and a northbound right turn lane is not warranted during either the AM and or PM peak hours after the full buildout of the Ebenezer Road Subdivision and Future Development Area.

At the intersection of Ebenezer Road at the proposed roadway connection to the Ebenezer Road Subdivision neither a southbound left turn lane nor a northbound right turn lane are warranted during the AM or PM peak hours.

The turn lane warrant worksheets and analysis are included in Attachment 9.

### 8 Conclusions and Recommendations

#### 8.1 Kingston Pike (US 11/US 70) at Ebenezer Road

The existing intersection of Kingston Pike (US 11/US 70) at Ebenezer Road is a signalized four-legged intersection. The southbound approach is an existing shopping center driveway connection. The existing signal timing was provided by the City of Knoxville.

Under the existing and 2027 background conditions the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road operates at an acceptable LOS B during the AM peak hour and LOS C during the PM peak hour.

After the completion of the Ebenezer Road Subdivision including the future development area the traffic conditions for the signalized intersection of Kingston Pike (US 11/US 70) at Ebenezer Road will operate at an acceptable LOS C during the AM peak hour and a LOS D during the PM peak hour.

The 95% queue length is defined as the queue length that has only a 5-percent probability of being exceeded during the analysis time period. The 95% queue length is typically used to determine the length of turning lanes in order to minimize the risk of blockage.

The northbound right turn lane has an existing storage length of 50 feet and an additional 30 feet of taper length before the queue from the signalized intersection would block the driveway to the retail strip center. The signalized intersection capacity analysis shows the full buildout 95% queue length for the northbound right turn lane of approximately 101 feet (4 vehicles) during the AM peak hour and 131 feet (6 vehicles) during the PM peak hour and the full buildout 50% queue length for the northbound right turn lane of approximately 31 feet (2 vehicles) during the AM peak hour and 47 feet (2 vehicles) during the PM peak hour.

The northbound right turn lane (Ebenezer Road) will exceed the available queue storage length of 50 feet less than 50% of the time after the completion of the Ebenezer Road Subdivision and Future Development Area.

There are several existing constraints including the location of guard rails and power poles and the proximity to Ten Mile Creek that would make extending the storage length of the right turn lane difficult to construct.

The existing geometry of the northbound right turn lane is a 50-foot storage length and a 30-foot taper ending at the start of the existing commercial driveway. In order to maximum storage capacity Ardurra recommends relocating the communication pole and widening the 80-foot length of Ebenezer Road between the stop bar and the commercial driveway to match the existing width of 20 feet to allow additional vehicle stacking.

Ardurra recommends that any future intersection improvements be reviewed, coordinated and approved by both the City of Knoxville Department of Engineering and Knox County Engineering and Public Works.

#### 8.2 Ebenezer Road at Future Development Area

The proposed full buildout conditions at the unsignalized intersection of Ebenezer Road at the Future Development Area Roadway were analyzed using the Highway Capacity Software (HCS2023).

A southbound left turn lane is warranted during the PM peak hour and a northbound right turn lane is not warranted at the intersection of Ebenezer Road at Future Development Area Roadway per the Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy." The southbound left turn lane has a recommended minimum storage length of 50 feet per the AASHTO Greenbook "A Policy on Geometric Design of Highways and Streets."

After the completion of the full buildout of the Ebenezer Road Subdivision including the proposed roadway improvements the intersection of Ebenezer Road at Future Development Area Roadway will operate as follows. The westbound approach (Apartment Roadway) will operate at a LOS B during both the AM and PM peak hours and the southbound approach (Ebenezer Road) will operate at a LOS A during both the AM and PM peak hours.

Ebenezer Road is classified as Minor Collector per the Major Road Plan. The minimum intersection spacing required on a collector road is 300 feet per the "Knoxville-Knox County Subdivision Regulations" amended through October 6, 2022.

The minimum required sight distance for a road with a posted speed limit of 30 mph is 300 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through October 6, 2022.

The location of the proposed apartment roadway for the Future Development Area is still under consideration.

Ardurra recommends that the intersection sight distance be certified by a land surveyor prior to construction in order to verify that Ebenezer Road has adequate intersection sight distance at the proposed apartment roadway connection to comply with Knox County Engineering and Public Works guidelines.

Ardurra recommends that the signs and pavement markings be installed in accordance with the standards provided in the *Manual on Uniform Traffic Control Devices* (MUTCD).

Any future improvements to the intersection or the various traffic management infrastructure, would need to be reviewed, coordinated, and approved by Knox County Engineering and Public Works.

#### 8.3 Ebenezer Road at Ebenezer Subdivision

The proposed full buildout conditions at the unsignalized intersection of Ebenezer Road at the Ebenezer Subdivision Roadway were analyzed using the Highway Capacity Software (HCS2023).

Neither a southbound left turn lane nor a northbound right turn lane is warranted at the intersection of Ebenezer Road at Ebenezer Subdivision Roadway per the Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy."

After the completion of the full buildout of the Ebenezer Road Subdivision the intersection of Ebenezer Road at Subdivision Roadway will operate as follows. The westbound approach (Subdivision Roadway) will operate at a LOS B during both the AM and PM peak hours and the southbound approach (Ebenezer Road) will operate at a LOS A during both the AM and PM peak hours.

Ebenezer Road is classified as Minor Collector per the Major Road Plan. The minimum intersection spacing required on a collector road is 300 feet per the "Knoxville-Knox County Subdivision Regulations" amended through October 6, 2022. The Ebenezer Subdivision Roadway is located approximately 535 feet north of Rosemont Boulevard; therefore, the minimum separation on a collector is met and no change is necessary.

The minimum required sight distance for a road with a posted speed limit of 30 mph is 300 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through October 6, 2022.

At 15 feet from the edge of pavement the intersection sight distance is greater than 300 feet looking both northbound and southbound. Attachment 10 includes pictures of the intersection sight distance at the intersection of Ebenezer Road at Ebenezer Subdivision Roadway.

Ardurra recommends that the intersection sight distance be certified by a land surveyor prior to construction in order to verify that Ebenezer Road has adequate intersection sight distance at the proposed apartment roadway connection to comply with Knox County Engineering and Public Works guidelines.

Ardurra recommends that the signs and pavement markings be installed in accordance with the standards provided in the *Manual on Uniform Traffic Control Devices* (MUTCD).

Any future improvements to the intersection or the various traffic management infrastructure, would need to be reviewed, coordinated, and approved by Knox County Engineering and Public Works.

| Attachment 1         |  |
|----------------------|--|
| <b>Aerial Photos</b> |  |



Kingston Pike (SR 70) at Ebenezer Road - Signalized



Ebenezer Road Guardrail - Northbound



Ebenezer Road Guardrail – Southbound

# Attachment 2 Traffic Counts

#### Project: 330.029 Ebenezer Rd Subdivision Intersection: Kingston Pike at Ebenezer Road Date Conducted: Tuesday March 19,2024

|                      |          | Drive  | way    |            |          | Kingsto    | ngston Pike |       | E        | beneze | er Road  |           |         | Kingsto    | n Pike   |            |            |
|----------------------|----------|--------|--------|------------|----------|------------|-------------|-------|----------|--------|----------|-----------|---------|------------|----------|------------|------------|
|                      |          | Southb | ound   |            |          | Westb      | ound        |       |          | Northb | ound     |           |         | Eastbo     | ound     |            |            |
| Start                | Left     | Thru   | Right  | Total      | Left     | Thru       | Right       | Total | Left     | Thru   | Right    | Total     | Left    | Thru       | Right    | Total      | Int. Total |
| 7:00 AM              | 0        | 0      | 0      | 0          | 7        | 81         | 3           | 91    | 13       | 0      | 18       | 31        | 0       | 65<br>120  | 3        | 68<br>120  | 190        |
| 7:13 AM              | 2        | 4      | 2      | 28         | 14       | 98         | 4           | 116   | 27       | 1      | 52<br>45 | 50<br>73  | 0       | 150        | 0<br>9   | 150        | 360        |
| 7:45 AM              | 1        | 0      | 2      | 3          | 17       | 158        | 4           | 179   | 31       | 4      | 48       | 83        | 4       | 209        | 13       | 226        | 491        |
| Total                | 3        | 4      | 6      | 13         | 44       | 441        | 12          | 497   | 88       | 6      | 143      | 237       | 4       | 558        | 33       | 595        | 1342       |
|                      |          |        |        |            |          |            |             |       |          |        |          |           |         |            |          |            |            |
| 8:00 AM              | 4        | 3      | 3      | 10         | 15       | 141        | 3           | 159   | 29       | 2      | 49       | 80        | 3       | 217        | 15       | 235        | 484        |
| 8:15 AM              | 1        | 3      | 1      | 5          | 21       | 160        | 8           | 189   | 20       | 2      | 46       | 68        | 1       | 213        | 10       | 224        | 486        |
| 0:30 AM<br>8:45 AM   | 4        | 7      | 2<br>2 | 9<br>14    | 20       | 170        | 13          | 203   | 25       | 3      | 30       | 61        | 2       | 134        | 12       | 103        | 436        |
| Total                | 14       | 13     | 11     | 38         | 70       | 621        | 28          | 719   | 96       | 13     | 161      | 270       | 9       | 766        | 44       | 819        | 1846       |
|                      |          |        |        |            |          |            |             |       |          |        |          |           |         |            |          |            |            |
| 9:00 AM              | 4        | 3      | 0      | 7          | 15       | 115        | 9           | 139   | 20       | 2      | 26       | 48        | 0       | 139        | 14       | 153        | 347        |
| 9:15 AM              | 7        | 4      | 1      | 12         | 6        | 171        | 6           | 183   | 20       | 2      | 21       | 43        | 2       | 158        | 19       | 179        | 417        |
| 9:30 AM              | 4        | 1      | 0      | 5          | 13       | 129        | 8           | 150   | 22       | 0      | 26       | 48        | 1       | 142        | 11       | 154        | 357        |
| 9:45 AM              | <u> </u> | 0      | 1      | 3          | 21       | 588        | 32          | 203   | 15       | 0      | 28       | 43        | 3       | 602        | 55       | 662        | 426        |
| TOLAT                | 10       | 0      | 1      | 27         |          | 300        | 52          | 0/3   | //       | 4      | 101      | 102       | 0       | 002        | 55       | 005        | 1347       |
| 10:00 AM             | 9        | 6      | 2      | 17         | 11       | 158        | 10          | 179   | 18       | 5      | 10       | 33        | 1       | 133        | 8        | 142        | 371        |
| 10:15 AM             | 4        | 6      | 3      | 13         | 7        | 175        | 11          | 193   | 13       | 4      | 17       | 34        | 3       | 196        | 10       | 209        | 449        |
| 10:30 AM             | 9        | 4      | 3      | 16         | 13       | 193        | 13          | 219   | 16       | 6      | 22       | 44        | 2       | 147        | 8        | 157        | 436        |
| 10:45 AM             | 6        | 4      | 3      | 13         | 13       | 194        | 15          | 222   | 17       | 3      | 16       | 36        | 1       | 191        | 12       | 204        | 475        |
| Total                | 28       | 20     | 11     | 59         | 44       | 720        | 49          | 813   | 64       | 18     | 65       | 147       | 7       | 667        | 38       | 712        | 1731       |
| 11.00 444            | 14       | 6      | 4      | 24         | 1.4      | 100        | 14          | 227   | 21       | 0      | 15       | 44        | 6       | 100        | 14       | 200        | 504        |
| 11:15 AM             | 14       | 4      | 4      | 17         | 14       | 220        | 14          | 246   | 21       | 0<br>4 | 15       | 44        | 2       | 207        | 14       | 209        | 529        |
| 11:30 AM             | 12       | 6      | 4      | 22         | 21       | 191        | 14          | 226   | 23       | 6      | 15       | 44        | 6       | 185        | 22       | 213        | 505        |
| 11:45 AM             | 7        | 7      | 6      | 20         | 19       | 259        | 12          | 290   | 17       | 5      | 25       | 47        | 5       | 265        | 18       | 288        | 645        |
| Total                | 38       | 23     | 22     | 83         | 68       | 869        | 52          | 989   | 87       | 23     | 71       | 181       | 19      | 846        | 65       | 930        | 2183       |
|                      |          | _      | _      | 1          |          |            |             | 1     |          | _      |          | 1         |         |            |          |            |            |
| 12:00 PM             | 11       | 3      | 7      | 21         | 25       | 226        | 12          | 263   | 24       | 7      | 22       | 53        | 6       | 231        | 9        | 246        | 583        |
| 12:15 PM<br>12:30 PM | 15       | 10     | 2      | 23         | 20<br>13 | 259        | 10          | 295   | 20       | 2      | 27       | 49<br>54  | 4       | 200        | 17       | 270        | 632        |
| 12:45 PM             | 6        | 5      | 4      | 15         | 24       | 269        | 10          | 303   | 19       | 7      | 19       | 45        | 7       | 256        | 15       | 278        | 641        |
| Total                | 46       | 19     | 21     | 86         | 82       | 1018       | 50          | 1150  | 86       | 19     | 96       | 201       | 20      | 973        | 69       | 1062       | 2499       |
|                      |          |        |        |            |          |            |             |       |          |        |          |           |         |            |          |            |            |
| 1:00 PM              | 19       | 4      | 6      | 29         | 16       | 197        | 14          | 227   | 26       | 1      | 18       | 45        | 6       | 207        | 15       | 228        | 529        |
| 1:15 PM              | 12       | 3      | 5      | 20         | 15       | 268        | 18          | 301   | 24       | 5      | 18       | 47        | 2       | 262        | 25       | 289        | 657        |
| 1:30 PM              | 12       | 7      | 4      | 23         | 14       | 261        | 15          | 290   | 29       | 2      | 16       | 47        | 5       | 221        | 23       | 249        | 609        |
| Total                | 51       | 16     | 19     | 86         | 64       | 1033       | 66          | 345   | 108      | 12     | 69       | 20<br>189 | 2<br>18 | 936        | 81       | 209        | 2473       |
| Total                | 51       | 10     | 15     | 001        | 04       | 1055       | 00          | 1105  | 100      | 12     | 05       | 105       | 10      | 550        | 01       | 1055       | 2475       |
| 2:00 PM              | 17       | 6      | 8      | 31         | 17       | 243        | 18          | 278   | 16       | 4      | 22       | 42        | 3       | 213        | 29       | 245        | 596        |
| 2:15 PM              | 13       | 7      | 6      | 26         | 23       | 261        | 14          | 298   | 19       | 3      | 16       | 38        | 2       | 251        | 22       | 275        | 637        |
| 2:30 PM              | 4        | 7      | 3      | 14         | 16       | 269        | 11          | 296   | 20       | 5      | 15       | 40        | 4       | 217        | 20       | 241        | 591        |
| 2:45 PM              | 42       | 4      | 3      | 16         | 19       | 251        | 19          | 289   | 28       | 4      | 22       | 174       | 10      | 244        | 13       | 260        | 619        |
| TOLAT                | 43       | 24     | 20     | 0/         | 75       | 1024       | 62          | 1101  | 03       | 16     | 75       | 1/4       | 12      | 925        | 04       | 1021       | 2443       |
| 3:00 PM              | 9        | 8      | 6      | 23         | 22       | 231        | 12          | 265   | 32       | 2      | 23       | 57        | 3       | 237        | 22       | 262        | 607        |
| 3:15 PM              | 9        | 8      | 1      | 18         | 21       | 270        | 15          | 306   | 20       | 4      | 17       | 41        | 5       | 269        | 29       | 303        | 668        |
| 3:30 PM              | 11       | 7      | 4      | 22         | 26       | 257        | 15          | 298   | 33       | 8      | 30       | 71        | 1       | 221        | 20       | 242        | 633        |
| 3:45 PM              | 11       | 8      | 5      | 24         | 37       | 304        | 14          | 355   | 26       | 2      | 18       | 46        | 5       | 266        | 20       | 291        | 716        |
| Total                | 40       | 31     | 16     | 87         | 106      | 1062       | 56          | 1224  | 111      | 16     | 88       | 215       | 14      | 993        | 91       | 1098       | 2624       |
| 4.00 PM              | 12       | 7      | 5      | 2 <b>⊿</b> | 26       | 218        | 11          | 255   | 20       | 1      | 20       | 621       | 10      | 261        | 27       | 201        | 642        |
| 4.00 PM              | 6        | 7      | 2      | 15         | 20       | 210        | 11          | 233   | 28       | 3      | 29       | 54        | 4       | 320        | 27       | 351        | 709        |
| 4:30 PM              | 21       | 9      | 1      | 31         | 32       | 226        | 12          | 270   | 28       | 7      | 29       | 64        | 3       | 303        | 23       | 329        | 694        |
| 4:45 PM              | 12       | 11     | 2      | 25         | 28       | 261        | 14          | 303   | 18       | 4      | 28       | 50        | 4       | 328        | 25       | 357        | 735        |
| Total                | 51       | 34     | 10     | 95         | 113      | 956        | 48          | 1117  | 106      | 15     | 109      | 230       | 21      | 1215       | 102      | 1338       | 2780       |
| E 00 BL/             |          |        | ~      | 1          |          | a <b></b>  | _           | 2001  | 25       | 2      |          | = c l     | -       | 200        | 0.5      | 226        | 761        |
| 5:00 PM              | 28       | 15     | 2      | 45         | 44       | 247        | 7           | 298   | 35       | 3      | 41       | 79<br>75  | 5       | 309        | 25       | 339        | /6]<br>769 |
| 5:15 PM              | 30       | 13     | 4      | 4/<br>1/   | 30<br>22 | ∠53<br>221 | 0<br>1 2    | 299   | 29<br>18 | 6<br>5 | 40<br>24 | /5<br>/7  | 6<br>1  | 313<br>200 | 20<br>22 | 34/<br>222 | /00<br>701 |
| 5:45 PM              | 19       | 15     | 5      | 39         | 32       | 280        | 13          | 325   | 22       | 5      | 31       | -+/<br>58 | 7       | 356        | 21       | 384        | 806        |
| Total                | 104      | 54     | 17     | 175        | 147      | 1011       | 41          | 1199  | 104      | 19     | 136      | 259       | 19      | 1277       | 107      | 1403       | 3036       |
|                      |          |        |        |            |          |            |             |       |          |        |          |           |         |            |          |            |            |
| Grand Total          | 436      | 246    | 154    | 836        | 868      | 9343       | 496         | 10707 | 1010     | 161    | 1114     | 2285      | 149     | 9758       | 769      | 10676      | 24504      |
| Approach %           | 52.2     | 29.4   | 18.4   |            | 8.1      | 87.3       | 4.6         | 42 -  | 44.2     | 7.0    | 48.8     | 0.2       | 1.4     | 91.4       | 7.2      | 42.6       |            |
| iotal %              | 1.8      | 1.0    | 0.6    | 3.4        | 3.5      | 38.1       | 2.0         | 43.7  | 4.1      | 0.7    | 4.5      | 9.3       | 0.6     | 39.8       | 3.1      | 43.6       |            |

#### Project: 330.029 Ebenezer Rd Subdivision Intersection: Kingston Pike at Ebenezer Road Date Conducted: Tuesday March 19,2024

| AM Peak Hour | 7:45 AM - 8:45 AM | 1897 |
|--------------|-------------------|------|
| PM Peak Hour | 5:00 PM - 6:00 PM | 3036 |

|                          |         | Drive    | eway  |       |      | Kingsto | on Pike |       | E    | benez | er Roac |       |           | Kingsto | on Pike |       |            |
|--------------------------|---------|----------|-------|-------|------|---------|---------|-------|------|-------|---------|-------|-----------|---------|---------|-------|------------|
|                          |         | South    | oound |       |      | Westk   | ound    |       |      | North | bound   |       | Eastbound |         |         |       |            |
| Start                    | Left    | Thru     | Right | Total | Left | Thru    | Right   | Total | Left | Thru  | Right   | Total | Left      | Thru    | Right   | Total | Int. Total |
| Peak Hour Analysis from  | 7:00 AN | 1 to 9:0 | 0 AM  |       |      |         |         |       |      |       |         |       |           |         |         |       |            |
| AM Peak Hour begins at   | 7:45 AM |          |       |       |      |         |         |       |      |       |         |       |           |         |         |       |            |
| 7:45 AM                  | 1       | 0        | 2     | 3     | 17   | 158     | 4       | 179   | 31   | 4     | 48      | 83    | 4         | 209     | 13      | 226   | 491        |
| 8:00 AM                  | 4       | 3        | 3     | 10    | 15   | 141     | 3       | 159   | 29   | 2     | 49      | 80    | 3         | 217     | 15      | 235   | 484        |
| 8:15 AM                  | 1       | 3        | 1     | 5     | 21   | 160     | 8       | 189   | 20   | 2     | 46      | 68    | 1         | 213     | 10      | 224   | 486        |
| 8:30 AM                  | 4       | 0        | 5     | 9     | 20   | 170     | 13      | 203   | 25   | 6     | 30      | 61    | 2         | 154     | 7       | 163   | 436        |
| Total Volume             | 10      | 6        | 11    | 27    | 73   | 629     | 28      | 730   | 105  | 14    | 173     | 292   | 10        | 793     | 45      | 848   | 1897       |
| Future (1.0% over 3 yrs) | 10      | 6        | 11    |       | 75   | 648     | 29      |       | 108  | 14    | 178     |       | 10        | 817     | 46      |       | 1954       |
| PHF                      | 0.63    | 0.50     | 0.55  |       | 0.87 | 0.93    | 0.54    |       | 0.85 | 0.58  | 0.88    |       | 0.63      | 0.91    | 0.75    |       | 0.97       |
| Peak Hour Analysis from  | 3:00 PM | to 6:00  | ) PM  |       |      |         |         |       |      |       |         |       |           |         |         |       |            |
| PM Peak Hour begins at 3 | 5:00 PM |          |       |       |      |         |         |       |      |       |         |       |           |         |         |       |            |
| 5:00 PM                  | 28      | 15       | 2     | 45    | 44   | 247     | 7       | 298   | 35   | 3     | 41      | 79    | 5         | 309     | 25      | 339   | 761        |
| 5:15 PM                  | 30      | 13       | 4     | 47    | 38   | 253     | 8       | 299   | 29   | 6     | 40      | 75    | 6         | 313     | 28      | 347   | 768        |
| 5:30 PM                  | 27      | 11       | 6     | 44    | 33   | 231     | 13      | 277   | 18   | 5     | 24      | 47    | 1         | 299     | 33      | 333   | 701        |
| 5:45 PM                  | 19      | 15       | 5     | 39    | 32   | 280     | 13      | 325   | 22   | 5     | 31      | 58    | 7         | 356     | 21      | 384   | 806        |
| Total Volume             | 104     | 54       | 17    | 175   | 147  | 1011    | 41      | 1199  | 104  | 19    | 136     | 259   | 19        | 1277    | 107     | 1403  | 3036       |
| Future (1.0% over 3 yrs) | 107     | 56       | 18    |       | 151  | 1042    | 42      |       | 107  | 20    | 140     |       | 20        | 1316    | 110     |       | 3128       |
| PHF                      | 0.87    | 0.90     | 0.71  |       | 0.84 | 0.90    | 0.79    |       | 0.74 | 0.79  | 0.83    |       | 0.68      | 0.90    | 0.81    |       | 0.94       |

| Attac | hment | 3 |
|-------|-------|---|
| ADT   | Trend | S |

|    | Year | Adjusted Average<br>Daily Traffic |                                                                                                                       |
|----|------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 10 | 2010 | 6563                              |                                                                                                                       |
| 11 | 2011 | 5988                              | ADT Trend - TDOT Station ID: 47000466                                                                                 |
| 2  | 2012 | 6391                              | Ebenezer Rd                                                                                                           |
| 3  | 2013 | 6321                              | 7000                                                                                                                  |
| 4  | 2014 | 5845                              |                                                                                                                       |
| 5  | 2015 | 6576                              | 6000                                                                                                                  |
| 6  | 2016 | 5609                              | 5000                                                                                                                  |
| 7  | 2017 | 5866                              |                                                                                                                       |
| 8  | 2018 | 4111                              | 4000                                                                                                                  |
| 9  | 2019 | 4526                              | 3000                                                                                                                  |
| 0  | 2020 | 5562                              | 2000                                                                                                                  |
| 1  | 2021 | 4240                              | 1000                                                                                                                  |
| 2  | 2022 | 4491                              | 1000                                                                                                                  |
| 3  | 2023 | 4581                              | 0         2008         2010         2012         2014         2016         2018         2020         2022         202 |

Most Recent Trend Line GrowthYearADT2013632120234581

**Annual Percent Growth** 

-3.80%
|      | Adjusted Average |                                                 |
|------|------------------|-------------------------------------------------|
| Year | Daily Traffic    |                                                 |
| 2001 | 28732            |                                                 |
| 2002 | 30319            | ADT Trend TDOT STation ID: 47000128             |
| 2003 | 28953            | Kingston Pike - SR001 S. of Andrew Jackson Lake |
| 2004 | 30734            | 25000                                           |
| 2005 | 27340            | 55000                                           |
| 2006 | 27738            | 30000                                           |
| 2007 | 27777            | 25000                                           |
| 2008 | 25714            | 20000                                           |
| 2009 | 24173            | 15000                                           |
| 2010 | 24388            | 15000                                           |
| 2011 | 27957            | 10000                                           |
| 2012 | 26019            | 5000                                            |
| 2013 | 27441            |                                                 |
| 2014 | 27306            | 1995 2000 2005 2010 2015 2020 2025              |
| 2015 | 28450            |                                                 |
| 2016 | 28758            |                                                 |
| 2017 | 29058            |                                                 |
| 2018 | 25708            |                                                 |
| 2019 | 27477            |                                                 |
| 2020 | 29865            |                                                 |
| 2021 | 24832            |                                                 |
| 2022 | 27645            |                                                 |
| 2023 | 16397            |                                                 |

Most Recent Trend Line Growth Year ADT

| rear | ADT   |
|------|-------|
| 2012 | 26019 |
| 2022 | 27645 |

**Annual Percent Growth** 

0.59%

**Project: Ebenezer Subdivision - Future Development Area Date Conducted: 4/12/2024** 

Local Apartment Trip Generation Study 278 Units

#### **Average Daily Traffic**

 $T = 15.193(X)^{0.899}$ T = 15.193(278)^0.899 T = 2392

#### Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m.  $T = 0.758(X)^{0.924}$  $T = 0.758(278)^{0.924}$ 

T = 137

# Peak Hour of Adjacent Street Traffic

One Hour Between 4 and 6 p.m.

T = 0.669(X) + 10.069T = 0.669(278) + 10.069 T = 196

|                    |                    | Percent |      | Number |      |
|--------------------|--------------------|---------|------|--------|------|
| Time Period        | <b>Total Trips</b> | Enter   | Exit | Enter  | Exit |
| Weekday (24 hours) | 2392               | 50%     | 50%  | 1196   | 1196 |
| AM Peak Hour       | 137                | 22%     | 78%  | 30     | 107  |
| PM Peak Hour       | 196                | 55%     | 45%  | 108    | 88   |

**Project: Ebenezer Road Subdivision Date Conducted: 4/12/2024** 

Single-Family Detached Housing (LUC 210) 113 Lots

#### **Average Daily Traffic**

 $\begin{array}{l} Ln(T) \ = \ 0.92 \ Ln(X) \ + \ 2.68 \\ Ln(T) \ = \ 0.92 \ Ln(113) \ + \ 2.68 \\ T \ = \ 1129 \end{array}$ 

#### Peak Hour of Adjacent Street Traffic

One Hour Between 7 and 9 a.m. Ln(T) = 0.91 Ln(X) + 0.12 Ln(T) = 0.91 Ln(113) + 0.12T = 83

## Peak Hour of Adjacent Street Traffic

One Hour Between 4 and 6 p.m.

Ln(T) = 0.94 Ln(X) + 0.27 Ln(T) = 0.94 Ln(113) + 0.27T = 112

|                    |                    | Percent |      | Number |      |
|--------------------|--------------------|---------|------|--------|------|
| Time Period        | <b>Total Trips</b> | Enter   | Exit | Enter  | Exit |
| Weekday (24 hours) | 1129               | 50%     | 50%  | 565    | 565  |
| AM Peak Hour       | 83                 | 25%     | 75%  | 21     | 62   |
| PM Peak Hour       | 112                | 63%     | 37%  | 71     | 41   |



## MEMORANDUM

To: Traffic Impact Study Reviewers and Preparers (see attached list)

From: Mike Conger

**Date:** August 14, 2000

Subject: Local Trip Generation Rates for Multi-Family Residential Uses

Attached please find a summary of the final report with data plots for the Knox County Local Apartment Trip Generation Study. As you will recall, this report was discussed when the traffic impact study group last convened this past February. A consensus was reached at that meeting that the trip generation rates developed in the local study should be used for new apartment complexes <u>and</u> any other "multi-family" residential uses that are being proposed.

The MPC voted at its July 2000 meeting to officially amend the Traffic Impact Study Guidelines with language which reads that "trip generation rates for proposed uses shall be calculated using the latest edition of the ITE Trip Generation Manual, or using local data when it is available". This amendment allows the full implementation of the new rates, and they should be used for future proposed multi-family developments unless it can be demonstrated otherwise.

Thanks for your assistance and cooperation in this matter, if there are any questions or comments, please let me know.

Suite 403 • City County Building 4 0 0 M a i n S t r e e t Knoxville, Tennessee 37902 8 6 5 • 2 1 5 • 2 5 0 0 F A X • 2 1 5 • 2 0 6 8 w w • k n o x m p c • o r g

#### **TRAFFIC IMPACT STUDY REVIEWER & PREPARER GROUP**

| Name             | Organization        | Phone Number |
|------------------|---------------------|--------------|
| Daniel Armstrong | Wilbur Smith        | 584-8584     |
| Rusty Baksa      | Land Dev. Solutions | 671-2281     |
| Kim Henry Begg   | SITE, inc.          | 693-5010     |
| Mark Best        | TDOT                | 594-9170     |
| Alan Childers    | Cannon & Cannon     | 988-4818     |
| Steve Drummer    | Barge Waggoner      | 637-2810     |
| Mark Geldmeier   | City of Knoxville   | 215-6100     |
| John Gould       | Wilbur Smith        | 584-8584     |
| Barbara Hatcher  | SITE, inc.          | 693-5010     |
| John Heid        | AR/TEC              | 681-8848     |
| Bill Kervin      | Allen Hoshall       | 694-1834     |
| Hollis Loveday   | Wilbur Smith        | 584-8584     |
| David McGinley   | City of Knoxville   | 215-2148     |
| David Moore      | TDOT                | 594-9170     |
| Linda Mosch      | Consultant          | 777-2025     |
| Amanda Rule      | TDOT                | 594-9170     |
| Cindy Pionke     | Knox County         | 215-5800     |
| Pam Porter       | TDOT                | 594-9170     |
| John Sexton      | Allen Hoshall       | 694-1834     |
| Jim Snowden      | Knox County         | 215-5800     |
| Darcy Sullivan   | SITE, inc.          | 693-5010     |
| Jeff Welch       | MPC                 | 215-2500     |

#### KNOX COUNTY LOCAL APARTMENT TRIP GENERATION STUDY

#### PURPOSE

A Traffic Impact Study (TIS) is currently required in Knox County when a proposed development is projected to generate in excess of 750 trips per day. The determinations of when the threshold is met as well as all subsequent analyses in the TIS are performed using the rates and equations given in the Institute of Transportation Engineers (ITE) Trip Generation Manual. Local governmental agencies rely heavily on the accuracy of these trip generation rates in order to correctly predict the impacts of a proposed development on the transportation system. Therefore, in certain instances, it is logical to verify whether the "national" rates and equations given in the ITE Trip Generation Manual are appropriate for use in a specific local area or region.

The decision was made to study the local trip-making characteristics of apartments because of the discrepancy between the trip generation rates for apartments and single family residential land uses as given in the ITE Trip Generation Manual. While these two land uses are similar in nature, the Trip Generation Manual predicts about three less trips per dwelling unit generated by apartments for the average weekday. Additionally the Trip Generation Manual points out that due to the age of their database, which dates back to the 1960's, "the rates for apartments probably had changed over time". It is also assumed that some of the ITE data had come from larger metropolitan areas with denser development and greater transit use than Knox County, which would contribute to lower trip generation Manual or generate new ones that can be applied to locally proposed apartment developments.

#### PROCEDURE

The procedures recommended by ITE in conducting local trip generation studies were generally followed for this study, along with some important assumptions that have made. ITE has published a proposed recommended practice entitled "Trip Generation Handbook" which specifically outlines procedures for conducting local trip generation studies and establishing new rates and equations.

The first step in the study was to define the number and location of the sites to be studied, as well as the counting methodology. Initially 14 sites were selected, although one apartment complex – the College Park Apartments – was later omitted due to uncharacteristically high traffic generation numbers. The number of sites used in this study far exceeds the recommended minimum amount suggested by ITE, which is five sites. Traffic counts were taken for week-long periods at 15-minute intervals between July 22, 1996 and August 9, 1996 at the access points to the apartment complexes. A Technical Appendix to this report contains the traffic count data collected at each apartment complex.

#### RESULTS

The traffic count data was analyzed using spreadsheets in order to determine the weighted average rates and regression equations. In order to be considered valid, the local rates and equations for each time period of analysis that were generated must meet certain statistical criteria. First, the standard deviation of the independent variable (dwelling units) should be no more than 110 percent of the weighted average rate; and secondly, the regression equations require a computed coefficient of determination ( $\mathbb{R}^2$ ) value of at least 0.75 before good data fit is indicated. This statistical criteria is met by the local data results, and in fact it often exceeds the level of data fit given by their counterparts in the ITE Trip Generation Manual. Finally, in order to simplify the use of the local data, plots were generated that appear identical to the actual ones in the ITE Trip Generation Manual.

The resulting rates and equations calculated from the local data indicate that the average weekday trip generation of apartments in this area is well above the national rates reported in the ITE manual. For example, the locally computed average rate for number of trips generated during a weekday is 35% higher than the rate given by ITE (increase from 6.63 trips per dwelling unit to 9.03 trips per dwelling unit). The trip generation rates do not increase as much for the AM and PM peak hours however. The local rate is roughly 8% higher for the AM peak, and 16% higher for the PM peak. The plots from the ITE Trip Generation Manual are included in the Technical Appendix for comparison purposes.

#### ASSUMPTIONS MADE

Some important assumptions have been made which may affect the results of the local data that was collected:

- It is important to note that the local trip generation rates were computed for the *total* number of dwelling units in the apartment complex, and <u>not</u> necessarily for the number of *occupied* dwelling units. There are several reasons why this was done, chiefly because of the need for comparability with the rates given in ITE Trip Generation Manual, as it does not specify whether the dwelling units are occupied. According to ITE procedures the selected sites must only be of "reasonably full occupancy (i.e. at least 85%)". The Apartment Association of Greater Knoxville (AAGK) publishes quarterly reports on occupancy levels of apartment complexes, and the report covering the period of the data collection was reviewed to determine occupancy levels. According to the AAGK report from July 1, 1996 September 30, 1996 all of the apartment complexes surveyed in this study met the minimum 85% occupancy level, with an average occupancy rate for all sites studied of 94%.
- The count data that was collected at each apartment complex was used "raw" meaning that it was not factored for possible daily or seasonal variations. Once again, according to an ITE representative it is not known whether the data used in the Trip Generation Manual was factored or not, so therefore in order to be able to compare

local rates to those in the manual you must assume that count data should not be factored. Additionally, it was felt that apartment complexes would generally not be as susceptible to major seasonal fluctuations as other land uses might be. The local rates were also developed using count data that was collected and averaged over an entire week, which should limit some of the daily variations. Finally, reliable local daily and seasonal variation factors do not truly exist.

#### CONCLUSION

The local apartment study methodology and results were distributed for comment to a group of local transportation professionals who are directly responsible for either preparing or reviewing traffic impact studies. A meeting was held between this group on February 16, 2000 in order to gather comments and discuss the study in greater detail. The following conclusions are based on the discussion and consensus reached at this meeting:

- 1. The trip generation rates and equations meet statistical requirements and resulted from a study that followed accepted procedures; therefore they should be adopted for future use. Furthermore, the rates and equations are recommended for use in reviewing the traffic impact of any development termed as "multi-family", such as townhouse and condominium developments due to their similarity to apartment complexes.
- 2. The Traffic Access and Impact Study Guidelines and Procedures adopted by MPC should be amended with the language that local data should be used when available, which will allow the implementation of these new multi-family trip generation rates.
- 3. The following suggestions were made for future consideration:
  - This study should be updated with data collected from local townhouse and condominium developments in order to further justify the use of the new trip generation rates.
  - A statistical comparison should be made between any newly developed rates and the ITE single family trip generation rates to determine if there is a significant difference. If there is no difference then perhaps ITE single-family rates could be used for any residential development proposed in Knox County.

# Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: On a:

Dwelling Units Weekday

| 13                        |
|---------------------------|
| 193                       |
| 50% entering, 50% exiting |
|                           |

#### **Trip Generation Per Dwelling Unit**

| Average Rate | Ranges of Rates | Standard Deviation |
|--------------|-----------------|--------------------|
| 9.03         | 6.59 - 17.41    | 2.47               |



# Local Apartment Trip Generation Study

| Average | Vehicle | Trip | Ends vs: |  |
|---------|---------|------|----------|--|
|         |         |      | On a:    |  |

Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: Average Number of Dwelling Units: Directional Distribution: 13 193 22% entering, 78% exiting

#### **Trip Generation Per Dwelling Unit**

| Average Rate | Ranges of Rates | Standard Deviation |
|--------------|-----------------|--------------------|
| 0.55         | 0.14 - 0.78     | 0.18               |



# Local Apartment Trip Generation Study

| Average Vehicle Trip Ends vs:<br>On a: | Dwelling Units<br>Weekday,<br>Peak Hour of Adjacent Street Traffic,<br>One Hour Between 4 and 6 p.m. |
|----------------------------------------|------------------------------------------------------------------------------------------------------|
| Number of Studies:                     | 13                                                                                                   |
| Average Number of Dwelling Units:      | 193                                                                                                  |
| Directional Distribution:              | 55% entering, 45% exiting                                                                            |

#### **Trip Generation Per Dwelling Unit**

| Average Rate | Ranges of Rates | Standard Deviation |
|--------------|-----------------|--------------------|
| 0.72         | 0.32 - 1.66     | 0.25               |



# Single-Family Detached Housing (210)

#### Vehicle Trip Ends vs: Dwelling Units

On a: Weekday

#### Setting/Location: General Urban/Suburban

Number of Studies: 174

Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

#### Vehicle Trip Generation per Dwelling Unit

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 9.43         | 4.45 - 22.61   | 2.13               |



# Single-Family Detached Housing (210)

| Vehicle Trip Ends vs: Dw        | velling Units                       |
|---------------------------------|-------------------------------------|
| On a: We                        | eekday,                             |
| Pe                              | ak Hour of Adjacent Street Traffic, |
| On                              | ne Hour Between 7 and 9 a.m.        |
| Setting/Location: Ge            | eneral Urban/Suburban               |
| Number of Studies: 19           | 2                                   |
| Avg. Num. of Dwelling Units: 22 | 6                                   |
| Directional Distribution: 26    | % entering, 74% exiting             |

#### Vehicle Trip Generation per Dwelling Unit

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.70         | 0.27 - 2.27    | 0.24               |





# Single-Family Detached Housing (210)

| Vehicle Trip Ends vs: Dwelling Units                |  |
|-----------------------------------------------------|--|
| On a: Weekday,                                      |  |
| Peak Hour of Adjacent Street Traffic                |  |
| One Hour Between 4 and 6 p.m.                       |  |
| Setting/Location: General Urban/Suburban            |  |
| Number of Studies: 208                              |  |
| Avg. Num. of Dwelling Units: 248                    |  |
| Directional Distribution: 63% entering, 37% exiting |  |

#### Vehicle Trip Generation per Dwelling Unit

| Average Rate | Range of Rates | Standard Deviation |
|--------------|----------------|--------------------|
| 0.94         | 0.35 - 2.98    | 0.31               |



| Attachment 5  |  |
|---------------|--|
| Signal Timing |  |

| Intersection N | ame : Kir             | ngston Pi                                    | ke and E                                              | benezer ]            | Rd        |                                                                                                    | Las                                    | t Update         | ed: 4/8/24      | 4            |  |
|----------------|-----------------------|----------------------------------------------|-------------------------------------------------------|----------------------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------|--------------|--|
| Basic Tim      | ing (secor            | nds)                                         | Phase 1                                               | Phase 2              | Phase 3   | Phase 4                                                                                            | Image: Phase 5 Phase 6 Phase 7 Phase 7 |                  |                 |              |  |
| Min            | Green                 |                                              | 6                                                     | 18                   | 8         | 8                                                                                                  |                                        | 18               |                 |              |  |
| Gap / 1        | Extension             |                                              | 2                                                     | 3                    | 3         | 2                                                                                                  |                                        | 3                |                 |              |  |
| Μ              | lax 1                 |                                              | 20                                                    | 50                   | 30        | 15                                                                                                 |                                        | 50               |                 |              |  |
| Μ              | lax 2                 |                                              | 25                                                    | 55                   | 25        | 30                                                                                                 |                                        | 55               |                 |              |  |
| Yellow         | Clearanc              | e                                            | 4                                                     | 4.5                  | 4         | 4                                                                                                  |                                        | 4.5              |                 |              |  |
| Red C          | learance              |                                              | 1.5                                                   | 1.5                  | 2         | 3                                                                                                  |                                        | 1.5              |                 |              |  |
| V              | Valk                  |                                              | N/A                                                   | N/A                  | N/A       | N/A                                                                                                |                                        | N/A              |                 |              |  |
| Pedestria      | n Clearai             | ice                                          | N/A                                                   | N/A                  | N/A       | N/A                                                                                                |                                        | N/A              |                 |              |  |
| Max            | Recall                |                                              |                                                       | X                    |           |                                                                                                    |                                        | X                |                 |              |  |
| Active (Er     | nable) Pha            | ases                                         | X                                                     | X                    | X         | X                                                                                                  |                                        | X                |                 |              |  |
| Flashing Y     | ellow Ar              | row                                          |                                                       |                      |           |                                                                                                    |                                        |                  |                 |              |  |
| Overl          | aps (1-4)             |                                              |                                                       | 1                    |           | 1                                                                                                  |                                        | 1                |                 | 1            |  |
|                | <u> </u>              |                                              | Coord                                                 | lination '           | Fiming/(s | seconds                                                                                            |                                        |                  | <u>.</u>        |              |  |
| Split #        | Coord.                | Phase                                        | Phase 1                                               | Phase 2              | Phase 3   | Phase 4                                                                                            | 4 Phase 5                              | Phase 6          | Phase 7         | Phase 8      |  |
| Split 1        | 2                     |                                              | 17                                                    | 36                   | 21        | 21                                                                                                 |                                        | 53               |                 |              |  |
| Split 2        | 2                     |                                              | 16                                                    | 38                   | 28        | 18                                                                                                 |                                        | 54               |                 |              |  |
| Split 3        | 2                     |                                              | 18                                                    | 60                   | 21        | 21                                                                                                 |                                        | 78               |                 |              |  |
| Split 4        | 2                     |                                              | 26                                                    | 54                   | 20        | 20                                                                                                 |                                        | 80               |                 |              |  |
| Split 5        | 2                     |                                              | 18                                                    | 63                   | 19        | 25                                                                                                 |                                        | 81               |                 |              |  |
| Split 6        | 2                     |                                              | 28                                                    | 63                   | 22        | 22                                                                                                 |                                        | 91               |                 |              |  |
| <u> </u>       | Patter                | n Table                                      |                                                       |                      | Lead /    | Lag                                                                                                | Fixed / Fl                             | oating           | Fixed           |              |  |
| Pattern#       | Cycle                 | Offset                                       | Split                                                 | Seq. #               | Phas      | e #                                                                                                | Beginnin                               | g of             | Yellow          |              |  |
| 1              | 95                    | 22                                           | 1                                                     | 1                    | 1         |                                                                                                    | (Green/Ye                              | ellow)<br>on ID# | 252             |              |  |
| 2              | 100                   | 76                                           | 2                                                     | 1                    | 1         | _                                                                                                  | I/P Add                                | ross             | N/A             |              |  |
| 2              | 120                   | 18                                           | 3                                                     | 1                    | 1         | -                                                                                                  |                                        | lross            | N/A<br>N/A      |              |  |
| <u> </u>       | 120                   | 10<br>24                                     | <u> </u>                                              | 1                    | 1         | -                                                                                                  | Radio Ad                               | dress            | 11/14           |              |  |
| 5              | 120                   | 24                                           | 5                                                     | 1                    | 1         | _                                                                                                  | Comm 7                                 | Type             | N/A             |              |  |
| <u> </u>       | 125                   | 13                                           | 6                                                     | 1                    | 1         | _                                                                                                  | Detecti                                | ion              | Inductive Lear  |              |  |
| 0              | 155                   | 15                                           | 0                                                     | Dov Pla              | n Evont   | <u> </u>                                                                                           | Dutt                                   |                  | Inductive Loops |              |  |
| Day Plan       | нн                    | MM                                           | Pat                                                   | Day I la<br>torn     | In Lvent  | s<br>Plan                                                                                          | нн                                     | MM               | Patt            | orn          |  |
| 1 Day 1 Ian    | <br>                  | <u>00</u>                                    | 1 at                                                  | <u></u><br>          | Day       | 1 1411<br>7                                                                                        | 00.                                    |                  | 1 att           | <u></u><br>1 |  |
| 1              |                       | 00                                           |                                                       | ) <del>'1</del><br>) |           | 2<br>7                                                                                             | 7.0                                    | 00               |                 | 7            |  |
| 1              | 0.0                   | 70<br>RA                                     |                                                       | 2                    |           | 2<br>7                                                                                             | 8.6                                    | 00               | 5               | -            |  |
| 1              | <u>ع</u> ر الم<br>14، | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | •                                                     | 3<br>1               |           | 2<br>7                                                                                             | 21.                                    | <u></u><br>      | 1               | ,            |  |
| 1              | 14.                   | 30                                           | •                                                     | +<br>1               |           | $\begin{array}{c c} \underline{2} & \underline{21:00} \\ \hline 2 & \underline{22.00} \end{array}$ |                                        | 00               | 5               | 1            |  |
| 1              | <u> </u>              | <u>50</u><br>00                              | 5                                                     | і<br>:/              |           | 2 23:00                                                                                            |                                        | 00               |                 | +            |  |
| 1              | 23.                   | 00                                           |                                                       | 14                   |           |                                                                                                    |                                        |                  |                 |              |  |
|                |                       |                                              |                                                       |                      |           |                                                                                                    |                                        |                  |                 |              |  |
| <u>_</u>       |                       |                                              | <u> </u>                                              | Voon Dla             | Schod-    | lor                                                                                                | <u></u>                                |                  |                 |              |  |
| Plan           | Мо                    | th of Vo                                     | ar: 01 _ 1                                            | 2                    |           | Day of                                                                                             | Month · 01                             | - 31             |                 | Plan         |  |
|                | 10101                 | 1 1                                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                      |           |                                                                                                    |                                        |                  | 1               |              |  |
|                |                       | <u> </u>                                     | <u>-</u><br>2                                         |                      | 01.21     |                                                                                                    |                                        |                  |                 | 2            |  |
| SIN            |                       | <u> </u>                                     | <u>~</u><br>?                                         |                      |           |                                                                                                    | 01_31                                  |                  |                 | 2            |  |
| Notes ·        |                       | 1-1                                          |                                                       |                      | <u> </u>  |                                                                                                    | 01-01                                  |                  | <u> </u>        | -            |  |
| 110103.        |                       |                                              |                                                       |                      |           |                                                                                                    |                                        |                  |                 |              |  |
|                |                       |                                              |                                                       |                      |           |                                                                                                    |                                        |                  |                 |              |  |



# Timings 1: Ebenezer Road/Driveway & Kingston Pike

| 05/23/2024 | ŀ |
|------------|---|
|------------|---|

|                               | ٠           | -         | 7          | 1     | -          | *          | <b>†</b> | 1     | Ŧ     | -     |  |
|-------------------------------|-------------|-----------|------------|-------|------------|------------|----------|-------|-------|-------|--|
| Lane Group                    | EBL         | EBT       | EBR        | WBL   | WBT        | WBR        | NBT      | NBR   | SBT   | SBR   |  |
| Lane Configurations           | ۲           | <b>^</b>  | 1          | ٦     | <b>^</b>   | 1          | र्स      | 1     | ų     | 1     |  |
| Traffic Volume (vph)          | 10          | 793       | 45         | 73    | 629        | 28         | 14       | 173   | 6     | 11    |  |
| Future Volume (vph)           | 10          | 793       | 45         | 73    | 629        | 28         | 14       | 173   | 6     | 11    |  |
| Turn Type                     | Perm        | NA        | Perm       | pm+pt | NA         | Perm       | NA       | Perm  | NA    | Perm  |  |
| Protected Phases              |             | 2         |            | 1     | 6          |            | 8        |       | 4     |       |  |
| Permitted Phases              | 2           |           | 2          | 6     |            | 6          |          | 8     |       | 4     |  |
| Detector Phase                | 2           | 2         | 2          | 1     | 6          | 6          | 8        | 8     | 4     | 4     |  |
| Switch Phase                  |             |           |            |       |            |            |          |       |       |       |  |
| Minimum Initial (s)           | 18.0        | 18.0      | 18.0       | 6.0   | 18.0       | 18.0       | 8.0      | 8.0   | 8.0   | 8.0   |  |
| Minimum Split (s)             | 24.0        | 24.0      | 24.0       | 11.5  | 24.0       | 24.0       | 14.0     | 14.0  | 15.0  | 15.0  |  |
| Total Split (s)               | 38.0        | 38.0      | 38.0       | 16.0  | 54.0       | 54.0       | 28.0     | 28.0  | 18.0  | 18.0  |  |
| Total Split (%)               | 38.0%       | 38.0%     | 38.0%      | 16.0% | 54.0%      | 54.0%      | 28.0%    | 28.0% | 18.0% | 18.0% |  |
| Yellow Time (s)               | 4.5         | 4.5       | 4.5        | 4.0   | 4.5        | 4.5        | 4.0      | 4.0   | 4.0   | 4.0   |  |
| All-Red Time (s)              | 1.5         | 1.5       | 1.5        | 1.5   | 1.5        | 1.5        | 2.0      | 2.0   | 3.0   | 3.0   |  |
| Lost Time Adjust (s)          | 0.0         | 0.0       | 0.0        | 0.0   | 0.0        | 0.0        | 0.0      | 0.0   | 0.0   | 0.0   |  |
| Total Lost Time (s)           | 6.0         | 6.0       | 6.0        | 5.5   | 6.0        | 6.0        | 6.0      | 6.0   | 7.0   | 7.0   |  |
| Lead/Lag                      | Lag         | Lag       | Lag        | Lead  |            |            |          |       |       |       |  |
| Lead-Lag Optimize?            | Yes         | Yes       | Yes        | Yes   |            |            |          |       |       |       |  |
| Recall Mode                   | C-Max       | C-Max     | C-Max      | None  | Max        | Max        | None     | None  | None  | None  |  |
| Act Effct Green (s)           | 56.7        | 56.7      | 56.7       | 67.1  | 66.6       | 66.6       | 12.4     | 12.4  | 8.0   | 8.0   |  |
| Actuated g/C Ratio            | 0.57        | 0.57      | 0.57       | 0.67  | 0.67       | 0.67       | 0.12     | 0.12  | 0.08  | 0.08  |  |
| v/c Ratio                     | 0.02        | 0.41      | 0.05       | 0.18  | 0.28       | 0.03       | 0.55     | 0.51  | 0.11  | 0.04  |  |
| Control Delay                 | 16.3        | 16.0      | 0.1        | 9.3   | 8.8        | 0.0        | 49.9     | 11.1  | 44.7  | 0.3   |  |
| Queue Delay                   | 0.0         | 0.0       | 0.0        | 0.0   | 0.0        | 0.0        | 0.0      | 0.0   | 0.0   | 0.0   |  |
| Total Delay                   | 16.3        | 16.0      | 0.1        | 9.3   | 8.8        | 0.0        | 49.9     | 11.1  | 44.7  | 0.3   |  |
| LOS                           | В           | В         | A          | А     | A          | A          | D        | В     | D     | А     |  |
| Approach Delay                |             | 15.2      |            |       | 8.5        |            | 26.9     |       | 26.6  |       |  |
| Approach LOS                  |             | В         |            |       | A          |            | С        |       | С     |       |  |
| Intersection Summary          |             |           |            |       |            |            |          |       |       |       |  |
| Cycle Length: 100             |             |           |            |       |            |            |          |       |       |       |  |
| Actuated Cycle Length: 100    | )           |           |            |       |            |            |          |       |       |       |  |
| Offset: 0 (0%), Referenced    | to phase 2  | :EBTL, St | art of Gre | en    |            |            |          |       |       |       |  |
| Natural Cycle: 65             |             |           |            |       |            |            |          |       |       |       |  |
| Control Type: Actuated-Coc    | ordinated   |           |            |       |            |            |          |       |       |       |  |
| Maximum v/c Ratio: 0.55       |             |           |            |       |            |            |          |       |       |       |  |
| Intersection Signal Delay: 1  | 4.6         |           |            | Ir    | ntersectio | n LOS: B   |          |       |       |       |  |
| Intersection Capacity Utiliza | ation 60.6% | )         |            | 10    | CU Level   | of Service | эB       |       |       |       |  |
| Analysis Period (min) 15      |             |           |            |       |            |            |          |       |       |       |  |
| • ··· · •                     | -           |           |            |       |            |            |          |       |       |       |  |

Splits and Phases: 1: Ebenezer Road/Driveway & Kingston Pike

| €ø1  | Ø2 (R) | Ø4   | <b>√</b> ø8 |  |
|------|--------|------|-------------|--|
| 16 s | 38 s   | 2.81 | 28 📾        |  |
| ₹ø6  |        |      |             |  |
| 54 s |        |      |             |  |

# Timings 1: Ebenezer Road/Driveway & Kingston Pike

| 05/23/2024 | ŀ |
|------------|---|
|------------|---|

|                                    | ٠                 | -        | 7          | 1     | -          | •          | T.    | 1     | Ŧ     | -     |  |
|------------------------------------|-------------------|----------|------------|-------|------------|------------|-------|-------|-------|-------|--|
| Lane Group                         | EBL               | EBT      | EBR        | WBL   | WBT        | WBR        | NBT   | NBR   | SBT   | SBR   |  |
| Lane Configurations                | ٢                 | 44       | 1          | 5     | **         | 1          | र्भ   | 1     | đ     | 1     |  |
| Traffic Volume (vph)               | 19                | 1277     | 107        | 147   | 1011       | 41         | 19    | 136   | 54    | 17    |  |
| Future Volume (vph)                | 19                | 1277     | 107        | 147   | 1011       | 41         | 19    | 136   | 54    | 17    |  |
| Turn Type                          | Perm              | NA       | Perm       | pm+pt | NA         | Perm       | NA    | Perm  | NA    | Perm  |  |
| Protected Phases                   |                   | 2        |            | 1     | 6          |            | 8     |       | 4     |       |  |
| Permitted Phases                   | 2                 |          | 2          | 6     |            | 6          |       | 8     |       | 4     |  |
| Detector Phase                     | 2                 | 2        | 2          | 1     | 6          | 6          | 8     | 8     | 4     | 4     |  |
| Switch Phase                       |                   |          |            |       |            |            |       |       |       |       |  |
| Minimum Initial (s)                | 18.0              | 18.0     | 18.0       | 6.0   | 18.0       | 18.0       | 8.0   | 8.0   | 8.0   | 8.0   |  |
| Minimum Split (s)                  | 24.5              | 24.5     | 24.5       | 11.5  | 24.0       | 24.0       | 14.0  | 14.0  | 15.0  | 15.0  |  |
| Total Split (s)                    | 54.0              | 54.0     | 54.0       | 26.0  | 80.0       | 80.0       | 20.0  | 20.0  | 20.0  | 20.0  |  |
| Total Split (%)                    | 45.0%             | 45.0%    | 45.0%      | 21.7% | 66.7%      | 66.7%      | 16.7% | 16.7% | 16.7% | 16.7% |  |
| Yellow Time (s)                    | 4.5               | 4.5      | 4.5        | 4.0   | 4.5        | 4.5        | 4.0   | 4.0   | 4.0   | 4.0   |  |
| All-Red Time (s)                   | 2.0               | 2.0      | 2.0        | 1.5   | 1.5        | 1.5        | 2.0   | 2.0   | 3.0   | 3.0   |  |
| Lost Time Adjust (s)               | 0.0               | 0.0      | 0.0        | 0.0   | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   |  |
| Total Lost Time (s)                | 6.5               | 6.5      | 6.5        | 5.5   | 6.0        | 6.0        | 6.0   | 6.0   | 7.0   | 7.0   |  |
| Lead/Lag                           | Lag               | Lag      | Lag        | Lead  |            |            |       |       |       |       |  |
| Lead-Lag Optimize?                 | Yes               | Yes      | Yes        | Yes   |            |            |       |       |       |       |  |
| Recall Mode                        | C-Max             | C-Max    | C-Max      | None  | Max        | Max        | None  | None  | None  | None  |  |
| Act Effct Green (s)                | 59.6              | 59.6     | 59.6       | 76.3  | 75.8       | 75.8       | 12.5  | 12.5  | 12.6  | 12.6  |  |
| Actuated g/C Ratio                 | 0.50              | 0.50     | 0.50       | 0.64  | 0.63       | 0.63       | 0.10  | 0.10  | 0.10  | 0.10  |  |
| v/c Ratio                          | 0.08              | 0.77     | 0.13       | 0.66  | 0.48       | 0.04       | 0.70  | 0.49  | 0.89  | 0.06  |  |
| Control Delay                      | 19.8              | 29.6     | 2.1        | 30.2  | 12.9       | 0.1        | 71.9  | 13.9  | 94.8  | 0.4   |  |
| Queue Delay                        | 0.0               | 0.0      | 0.0        | 0.0   | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   |  |
| Total Delay                        | 19.8              | 29.6     | 2.1        | 30.2  | 12.9       | 0.1        | 71.9  | 13.9  | 94.8  | 0.4   |  |
| LOS                                | В                 | С        | А          | С     | В          | А          | E     | В     | F     | А     |  |
| Approach Delay                     |                   | 27.4     |            |       | 14.5       |            | 41.4  |       | 85.6  |       |  |
| Approach LOS                       |                   | С        |            |       | В          |            | D     |       | F     |       |  |
| Intersection Summary               |                   |          |            |       |            |            |       |       |       |       |  |
| Cycle Length: 120                  |                   |          |            |       |            |            |       |       |       |       |  |
| Actuated Cycle Length: 120         |                   |          |            |       |            |            |       |       |       |       |  |
| Offset: 0 (0%), Referenced to      | phase 2:          | EBTL, St | art of Gre | en    |            |            |       |       |       |       |  |
| Natural Cycle: 80                  | Natural Cycle: 80 |          |            |       |            |            |       |       |       |       |  |
| Control Type: Actuated-Coordinated |                   |          |            |       |            |            |       |       |       |       |  |
| Maximum v/c Ratio: 0.89            |                   |          |            |       |            |            |       |       |       |       |  |
| Intersection Signal Delay: 26.     | .9                |          |            | Ir    | ntersectio | n LOS: C   |       |       |       |       |  |
| Intersection Capacity Utilizati    | on 74.5%          |          |            | 10    | CU Level   | of Service | e D   |       |       |       |  |
| Analysis Period (min) 15           |                   |          |            |       |            |            |       |       |       |       |  |

Splits and Phases: 1: Ebenezer Road/Driveway & Kingston Pike

| €ø1  | 🚽 🛶 🛛 🖉 🖉 | <b>1</b> Ø4 | <b>√</b> Ø8 |
|------|-----------|-------------|-------------|
| 26 s | 54 5      | 20 s        | 20 s        |
| ₹ø6  |           |             |             |
| 80 s |           |             |             |

# HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -          | 7    | *    | -        | *    | 1    | Ť    | 1    | 1    | Ŧ    | ~    |
|------------------------------|------|------------|------|------|----------|------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT        | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | ٦    | <b>†</b> † | 1    | 7    | <b>^</b> | 1    |      | र्स  | 1    |      | đ    | 1    |
| Traffic Volume (veh/h)       | 10   | 793        | 45   | 73   | 629      | 28   | 105  | 14   | 173  | 10   | 6    | 11   |
| Future Volume (veh/h)        | 10   | 793        | 45   | 73   | 629      | 28   | 105  | 14   | 173  | 10   | 6    | 11   |
| Initial Q (Qb), veh          | 0    | 0          | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |            | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No         |      |      | No       |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870       | 1870 | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 10   | 818        | 46   | 75   | 648      | 29   | 108  | 14   | 178  | 10   | 6    | 11   |
| Peak Hour Factor             | 0.97 | 0.97       | 0.97 | 0.97 | 0.97     | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| Percent Heavy Veh, %         | 2    | 2          | 2    | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 470  | 1858       | 829  | 409  | 2240     | 999  | 218  | 28   | 218  | 48   | 29   | 67   |
| Arrive On Green              | 0.52 | 0.52       | 0.52 | 0.05 | 0.63     | 0.63 | 0.14 | 0.14 | 0.14 | 0.04 | 0.04 | 0.04 |
| Sat Flow, veh/h              | 762  | 3554       | 1585 | 1781 | 3554     | 1585 | 1586 | 206  | 1585 | 1134 | 680  | 1585 |
| Grp Volume(v), veh/h         | 10   | 818        | 46   | 75   | 648      | 29   | 122  | 0    | 178  | 16   | 0    | 11   |
| Grp Sat Flow(s),veh/h/ln     | 762  | 1777       | 1585 | 1781 | 1777     | 1585 | 1791 | 0    | 1585 | 1814 | 0    | 1585 |
| Q Serve(g_s), s              | 0.6  | 14.3       | 1.4  | 1.8  | 8.2      | 0.7  | 6.3  | 0.0  | 10.9 | 0.9  | 0.0  | 0.7  |
| Cycle Q Clear(g_c), s        | 0.6  | 14.3       | 1.4  | 1.8  | 8.2      | 0.7  | 6.3  | 0.0  | 10.9 | 0.9  | 0.0  | 0.7  |
| Prop In Lane                 | 1.00 |            | 1.00 | 1.00 |          | 1.00 | 0.89 |      | 1.00 | 0.62 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 470  | 1858       | 829  | 409  | 2240     | 999  | 246  | 0    | 218  | 77   | 0    | 67   |
| V/C Ratio(X)                 | 0.02 | 0.44       | 0.06 | 0.18 | 0.29     | 0.03 | 0.50 | 0.00 | 0.82 | 0.21 | 0.00 | 0.16 |
| Avail Cap(c_a), veh/h        | 470  | 1858       | 829  | 502  | 2240     | 999  | 394  | 0    | 349  | 200  | 0    | 174  |
| HCM Platoon Ratio            | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 11.5 | 14.8       | 11.7 | 10.1 | 8.4      | 7.0  | 39.9 | 0.0  | 41.9 | 46.3 | 0.0  | 46.2 |
| Incr Delay (d2), s/veh       | 0.1  | 0.8        | 0.1  | 0.1  | 0.3      | 0.1  | 1.5  | 0.0  | 7.8  | 0.5  | 0.0  | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0        | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 0.1  | 5.4        | 0.5  | 0.6  | 2.7      | 0.2  | 2.9  | 0.0  | 4.7  | 0.4  | 0.0  | 0.3  |
| Unsig. Movement Delay, s/veh |      |            |      |      |          |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 11.6 | 15.6       | 11.9 | 10.1 | 8.7      | 7.0  | 41.4 | 0.0  | 49.7 | 46.8 | 0.0  | 46.6 |
| LnGrp LOS                    | В    | В          | В    | В    | A        | A    | D    | A    | D    | D    | A    | D    |
| Approach Vol, veh/h          |      | 874        |      |      | 752      |      |      | 300  |      |      | 27   |      |
| Approach Delay, s/veh        |      | 15.3       |      |      | 8.8      |      |      | 46.3 |      |      | 46.7 |      |
| Approach LOS                 |      | В          |      |      | А        |      |      | D    |      |      | D    |      |
| Timer - Assigned Phs         | 1    | 2          |      | 4    |          | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 10.8 | 58.3       |      | 11.2 |          | 69.0 |      | 19.8 |      |      |      |      |
| Change Period (Y+Rc), s      | 5.5  | 6.0        |      | 7.0  |          | 6.0  |      | 6.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 10.5 | 32.0       |      | 11.0 |          | 48.0 |      | 22.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 3.8  | 16.3       |      | 2.9  |          | 10.2 |      | 12.9 |      |      |      |      |
| Green Ext Time (p_c), s      | 0.0  | 4.9        |      | 0.0  |          | 4.5  |      | 0.8  |      |      |      |      |
| Intersection Summary         |      |            |      |      |          |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |            | 18.0 |      |          |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |            | В    |      |          |      |      |      |      |      |      |      |

### Queues 1: Ebenezer Road/Driveway & Kingston Pike

| 05/23/2024 | ł |
|------------|---|
|------------|---|

|                         | ≁    | -    | 7    | 1    | -    | *    | <b>†</b> | 1    | Ŧ    | -    |  |
|-------------------------|------|------|------|------|------|------|----------|------|------|------|--|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBT      | NBR  | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 10   | 818  | 46   | 75   | 648  | 29   | 122      | 178  | 16   | 11   |  |
| v/c Ratio               | 0.02 | 0.41 | 0.05 | 0.18 | 0.28 | 0.03 | 0.55     | 0.51 | 0.11 | 0.04 |  |
| Control Delay           | 16.3 | 16.0 | 0.1  | 9.3  | 8.8  | 0.0  | 49.9     | 11.1 | 44.7 | 0.3  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 16.3 | 16.0 | 0.1  | 9.3  | 8.8  | 0.0  | 49.9     | 11.1 | 44.7 | 0.3  |  |
| Queue Length 50th (ft)  | 3    | 174  | 0    | 18   | 96   | 0    | 75       | 0    | 10   | 0    |  |
| Queue Length 95th (ft)  | 14   | 264  | 0    | 42   | 148  | 0    | 125      | 57   | 31   | 0    |  |
| Internal Link Dist (ft) |      | 551  |      |      | 715  |      | 608      |      | 380  |      |  |
| Turn Bay Length (ft)    |      |      | 140  |      |      | 100  |          | 50   |      | 50   |  |
| Base Capacity (vph)     | 428  | 2006 | 970  | 458  | 2356 | 1090 | 392      | 487  | 198  | 314  |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.02 | 0.41 | 0.05 | 0.16 | 0.28 | 0.03 | 0.31     | 0.37 | 0.08 | 0.04 |  |
| Intersection Summary    |      |      |      |      |      |      |          |      |      |      |  |

## HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -          | 7    | 1    | -          | *     | 1    | 1    | 1    | 1    | ŧ    | ~    |
|------------------------------|------|------------|------|------|------------|-------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT        | EBR  | WBL  | WBT        | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | 7    | <b>†</b> † | 1    | 7    | <b>†</b> † | 1     |      | ŧ    | 1    |      | ŧ    | 1    |
| Traffic Volume (veh/h)       | 19   | 1277       | 107  | 147  | 1011       | 41    | 104  | 19   | 136  | 104  | 54   | 17   |
| Future Volume (veh/h)        | 19   | 1277       | 107  | 147  | 1011       | 41    | 104  | 19   | 136  | 104  | 54   | 17   |
| Initial Q (Qb), veh          | 0    | 0          | 0    | 0    | 0          | 0     | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |            | 1.00 | 1.00 |            | 1.00  | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00       | 1.00 | 1.00 | 1.00       | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No         |      |      | No         |       |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870       | 1870 | 1870 | 1870       | 1870  | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 20   | 1359       | 114  | 156  | 1076       | 44    | 111  | 20   | 145  | 111  | 57   | 18   |
| Peak Hour Factor             | 0.94 | 0.94       | 0.94 | 0.94 | 0.94       | 0.94  | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Percent Heavy Veh, %         | 2    | 2          | 2    | 2    | 2          | 2     | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 290  | 1846       | 823  | 241  | 2210       | 986   | 164  | 30   | 171  | 129  | 66   | 171  |
| Arrive On Green              | 0.52 | 0.52       | 0.52 | 0.06 | 0.62       | 0.62  | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| Sat Flow, veh/h              | 503  | 3554       | 1585 | 1781 | 3554       | 1585  | 1520 | 274  | 1585 | 1196 | 614  | 1585 |
| Grp Volume(v), veh/h         | 20   | 1359       | 114  | 156  | 1076       | 44    | 131  | 0    | 145  | 168  | 0    | 18   |
| Grp Sat Flow(s),veh/h/ln     | 503  | 1777       | 1585 | 1781 | 1777       | 1585  | 1794 | 0    | 1585 | 1811 | 0    | 1585 |
| Q Serve(g_s), s              | 2.7  | 35.7       | 4.5  | 4.7  | 19.7       | 1.3   | 8.4  | 0.0  | 10.8 | 11.0 | 0.0  | 1.2  |
| Cycle Q Clear(g_c), s        | 10.1 | 35.7       | 4.5  | 4.7  | 19.7       | 1.3   | 8.4  | 0.0  | 10.8 | 11.0 | 0.0  | 1.2  |
| Prop In Lane                 | 1.00 |            | 1.00 | 1.00 |            | 1.00  | 0.85 |      | 1.00 | 0.66 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 290  | 1846       | 823  | 241  | 2210       | 986   | 193  | 0    | 171  | 195  | 0    | 171  |
| V/C Ratio(X)                 | 0.07 | 0.74       | 0.14 | 0.65 | 0.49       | 0.04  | 0.68 | 0.00 | 0.85 | 0.86 | 0.00 | 0.11 |
| Avail Cap(c_a), veh/h        | 290  | 1846       | 823  | 444  | 2210       | 986   | 209  | 0    | 185  | 196  | 0    | 172  |
| HCM Platoon Ratio            | 1.00 | 1.00       | 1.00 | 1.00 | 1.00       | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00       | 1.00 | 1.00 | 1.00       | 1.00  | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 18.4 | 22.4       | 14.9 | 21.3 | 12.3       | 8.8   | 51.5 | 0.0  | 52.6 | 52.7 | 0.0  | 48.3 |
| Incr Delay (d2), s/veh       | 0.5  | 2.7        | 0.4  | 1.1  | 0.8        | 0.1   | 7.7  | 0.0  | 27.8 | 28.8 | 0.0  | 0.1  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0        | 0.0  | 0.0  | 0.0        | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 0.3  | 14.4       | 1.6  | 2.0  | 7.2        | 0.4   | 4.2  | 0.0  | 5.6  | 6.5  | 0.0  | 0.5  |
| Unsig. Movement Delay, s/veh |      |            |      |      |            |       |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 18.8 | 25.1       | 15.3 | 22.4 | 13.1       | 8.9   | 59.2 | 0.0  | 80.4 | 81.5 | 0.0  | 48.4 |
| LnGrp LOS                    | В    | С          | В    | С    | В          | А     | E    | А    | F    | F    | А    | D    |
| Approach Vol, veh/h          |      | 1493       |      |      | 1276       |       |      | 276  |      |      | 186  |      |
| Approach Delay, s/veh        |      | 24.3       |      |      | 14.1       |       |      | 70.3 |      |      | 78.3 |      |
| Approach LOS                 |      | С          |      |      | В          |       |      | Е    |      |      | Е    |      |
| Timer - Assigned Phs         | 1    | 2          |      | 4    |            | 6     |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 12.3 | 68.8       |      | 19.9 |            | 81.1  |      | 18.9 |      |      |      |      |
| Change Period (Y+Rc), s      | 5.5  | 6.5        |      | 7.0  |            | * 6.5 |      | 6.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 20.5 | 47.5       |      | 13.0 |            | * 74  |      | 14.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 6.7  | 37.7       |      | 13.0 |            | 21.7  |      | 12.8 |      |      |      |      |
| Green Ext Time (p_c), s      | 0.2  | 6.3        |      | 0.0  |            | 9.2   |      | 0.2  |      |      |      |      |
| Intersection Summary         |      |            |      |      |            |       |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |            | 27.3 |      |            |       |      |      |      |      |      |      |
| HCM 6th LOS                  |      |            | С    |      |            |       |      |      |      |      |      |      |

Notes

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

#### Queues 1: Ebenezer Road/Driveway & Kingston Pike

|                         |      | <u> </u> |      |      |      |      |      |      |      |      |  |
|-------------------------|------|----------|------|------|------|------|------|------|------|------|--|
|                         | ۶    | +        | *    | 1    | ł    | *    | t    | 1    | Ŧ    | ~    |  |
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT  | WBR  | NBT  | NBR  | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 20   | 1359     | 114  | 156  | 1076 | 44   | 131  | 145  | 168  | 18   |  |
| v/c Ratio               | 0.08 | 0.77     | 0.13 | 0.66 | 0.48 | 0.04 | 0.70 | 0.49 | 0.89 | 0.06 |  |
| Control Delay           | 19.8 | 29.6     | 2.1  | 30.2 | 12.9 | 0.1  | 71.9 | 13.9 | 94.8 | 0.4  |  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 19.8 | 29.6     | 2.1  | 30.2 | 12.9 | 0.1  | 71.9 | 13.9 | 94.8 | 0.4  |  |
| Queue Length 50th (ft)  | 8    | 447      | 0    | 48   | 225  | 0    | 98   | 0    | 130  | 0    |  |
| Queue Length 95th (ft)  | 26   | 604      | 21   | 119  | 277  | 1    | #169 | 61   | #257 | 0    |  |
| Internal Link Dist (ft) |      | 551      |      |      | 715  |      | 608  |      | 380  |      |  |
| Turn Bay Length (ft)    |      |          | 140  |      |      | 100  |      | 50   |      | 50   |  |
| Base Capacity (vph)     | 245  | 1758     | 857  | 373  | 2236 | 1034 | 208  | 312  | 195  | 292  |  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.08 | 0.77     | 0.13 | 0.42 | 0.48 | 0.04 | 0.63 | 0.46 | 0.86 | 0.06 |  |
|                         |      |          |      |      |      |      |      |      |      |      |  |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

# Attachment 7 Intersection Worksheets – Background AM/PM Peaks

# HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -        | 7    | *    | -        | *    | 1    | t    | 1    | 4    | ŧ    | ~        |
|------------------------------|------|----------|------|------|----------|------|------|------|------|------|------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR      |
| Lane Configurations          | ۲    | <b>^</b> | 1    | 7    | <b>^</b> | 1    |      | र्स  | 1    |      | र्स  | 1        |
| Traffic Volume (veh/h)       | 10   | 817      | 46   | 75   | 648      | 29   | 108  | 14   | 178  | 10   | 6    | 11       |
| Future Volume (veh/h)        | 10   | 817      | 46   | 75   | 648      | 29   | 108  | 14   | 178  | 10   | 6    | 11       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No   |      |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 10   | 842      | 47   | 77   | 668      | 30   | 111  | 14   | 184  | 10   | 6    | 11       |
| Peak Hour Factor             | 0.97 | 0.97     | 0.97 | 0.97 | 0.97     | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2        |
| Cap, veh/h                   | 460  | 1843     | 822  | 397  | 2226     | 993  | 225  | 28   | 224  | 48   | 29   | 67       |
| Arrive On Green              | 0.52 | 0.52     | 0.52 | 0.05 | 0.63     | 0.63 | 0.14 | 0.14 | 0.14 | 0.04 | 0.04 | 0.04     |
| Sat Flow, veh/h              | 748  | 3554     | 1585 | 1781 | 3554     | 1585 | 1590 | 201  | 1585 | 1134 | 680  | 1585     |
| Grp Volume(v), veh/h         | 10   | 842      | 47   | 77   | 668      | 30   | 125  | 0    | 184  | 16   | 0    | 11       |
| Grp Sat Flow(s),veh/h/ln     | 748  | 1777     | 1585 | 1781 | 1777     | 1585 | 1791 | 0    | 1585 | 1814 | 0    | 1585     |
| Q Serve(g_s), s              | 0.7  | 14.9     | 1.5  | 1.8  | 8.6      | 0.7  | 6.4  | 0.0  | 11.3 | 0.9  | 0.0  | 0.7      |
| Cycle Q Clear(g_c), s        | 0.7  | 14.9     | 1.5  | 1.8  | 8.6      | 0.7  | 6.4  | 0.0  | 11.3 | 0.9  | 0.0  | 0.7      |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 0.89 |      | 1.00 | 0.62 |      | 1.00     |
| Lane Grp Cap(c), veh/h       | 460  | 1843     | 822  | 397  | 2226     | 993  | 253  | 0    | 224  | 77   | 0    | 67       |
| V/C Ratio(X)                 | 0.02 | 0.46     | 0.06 | 0.19 | 0.30     | 0.03 | 0.49 | 0.00 | 0.82 | 0.21 | 0.00 | 0.16     |
| Avail Cap(c_a), veh/h        | 460  | 1843     | 822  | 490  | 2226     | 993  | 394  | 0    | 349  | 200  | 0    | 174      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00     |
| Uniform Delay (d), s/veh     | 11.7 | 15.2     | 11.9 | 10.4 | 8.6      | 7.1  | 39.6 | 0.0  | 41.7 | 46.3 | 0.0  | 46.2     |
| Incr Delay (d2), s/veh       | 0.1  | 0.8      | 0.1  | 0.1  | 0.3      | 0.1  | 1.5  | 0.0  | 8.7  | 0.5  | 0.0  | 0.4      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/In     | 0.1  | 5.6      | 0.5  | 0.6  | 2.9      | 0.2  | 2.9  | 0.0  | 4.9  | 0.4  | 0.0  | 0.3      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |      |      |      |      |          |
| LnGrp Delay(d),s/veh         | 11.8 | 16.0     | 12.1 | 10.4 | 8.9      | 7.2  | 41.1 | 0.0  | 50.4 | 46.8 | 0.0  | 46.6     |
| LnGrp LOS                    | В    | В        | В    | В    | Α        | Α    | D    | Α    | D    | D    | Α    | <u> </u> |
| Approach Vol, veh/h          |      | 899      |      |      | 775      |      |      | 309  |      |      | 27   |          |
| Approach Delay, s/veh        |      | 15.8     |      |      | 9.0      |      |      | 46.6 |      |      | 46.7 |          |
| Approach LOS                 |      | В        |      |      | А        |      |      | D    |      |      | D    |          |
| Timer - Assigned Phs         | 1    | 2        |      | 4    |          | 6    |      | 8    |      |      |      |          |
| Phs Duration (G+Y+Rc), s     | 10.8 | 57.9     |      | 11.2 |          | 68.6 |      | 20.1 |      |      |      |          |
| Change Period (Y+Rc), s      | 5.5  | 6.0      |      | 7.0  |          | 6.0  |      | 6.0  |      |      |      |          |
| Max Green Setting (Gmax), s  | 10.5 | 32.0     |      | 11.0 |          | 48.0 |      | 22.0 |      |      |      |          |
| Max Q Clear Time (g_c+I1), s | 3.8  | 16.9     |      | 2.9  |          | 10.6 |      | 13.3 |      |      |      |          |
| Green Ext Time (p_c), s      | 0.0  | 4.9      |      | 0.0  |          | 4.7  |      | 0.9  |      |      |      |          |
| Intersection Summary         |      |          |      |      |          |      |      |      |      |      |      |          |
| HCM 6th Ctrl Delay           |      |          | 18.3 |      |          |      |      |      |      |      |      |          |
| HCM 6th LOS                  |      |          | В    |      |          |      |      |      |      |      |      |          |

### Queues 1: Ebenezer Road/Driveway & Kingston Pike

| 05/23/2 | 2024 |
|---------|------|
|---------|------|

|                         | ٠    | -    | 7    | 1    | +    | *    | <b>†</b> | 1    | Ŧ    | 1    |  |
|-------------------------|------|------|------|------|------|------|----------|------|------|------|--|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBT      | NBR  | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 10   | 842  | 47   | 77   | 668  | 30   | 125      | 184  | 16   | 11   |  |
| v/c Ratio               | 0.02 | 0.42 | 0.05 | 0.19 | 0.28 | 0.03 | 0.56     | 0.51 | 0.11 | 0.04 |  |
| Control Delay           | 16.4 | 16.3 | 0.1  | 9.4  | 8.9  | 0.0  | 50.0     | 11.0 | 44.7 | 0.3  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 16.4 | 16.3 | 0.1  | 9.4  | 8.9  | 0.0  | 50.0     | 11.0 | 44.7 | 0.3  |  |
| Queue Length 50th (ft)  | 3    | 181  | 0    | 18   | 100  | 0    | 76       | 0    | 10   | 0    |  |
| Queue Length 95th (ft)  | 14   | 274  | 0    | 43   | 154  | 0    | 127      | 58   | 31   | 0    |  |
| Internal Link Dist (ft) |      | 551  |      |      | 715  |      | 608      |      | 380  |      |  |
| Turn Bay Length (ft)    |      |      | 140  |      |      | 100  |          | 50   |      | 50   |  |
| Base Capacity (vph)     | 418  | 2000 | 968  | 447  | 2351 | 1088 | 392      | 491  | 198  | 314  |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.02 | 0.42 | 0.05 | 0.17 | 0.28 | 0.03 | 0.32     | 0.37 | 0.08 | 0.04 |  |
| Intersection Summary    |      |      |      |      |      |      |          |      |      |      |  |

# HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -        | 7    | 1    | -        | *    | 1    | Ť    | 1    | 1    | Ŧ    | ~    |
|------------------------------|------|----------|------|------|----------|------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | ٦    | <b>^</b> | 1    | 7    | <b>^</b> | 1    |      | र्स  | 1    |      | đ    | 1    |
| Traffic Volume (veh/h)       | 20   | 1316     | 110  | 151  | 1042     | 42   | 107  | 20   | 140  | 107  | 56   | 18   |
| Future Volume (veh/h)        | 20   | 1316     | 110  | 151  | 1042     | 42   | 107  | 20   | 140  | 107  | 56   | 18   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 21   | 1400     | 117  | 161  | 1109     | 45   | 114  | 21   | 149  | 114  | 60   | 19   |
| Peak Hour Factor             | 0.94 | 0.94     | 0.94 | 0.94 | 0.94     | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 280  | 1846     | 823  | 235  | 2215     | 988  | 167  | 31   | 174  | 129  | 68   | 172  |
| Arrive On Green              | 0.52 | 0.52     | 0.52 | 0.06 | 0.62     | 0.62 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
| Sat Flow, veh/h              | 487  | 3554     | 1585 | 1781 | 3554     | 1585 | 1515 | 279  | 1585 | 1187 | 624  | 1585 |
| Grp Volume(v), veh/h         | 21   | 1400     | 117  | 161  | 1109     | 45   | 135  | 0    | 149  | 174  | 0    | 19   |
| Grp Sat Flow(s),veh/h/ln     | 487  | 1777     | 1585 | 1781 | 1777     | 1585 | 1795 | 0    | 1585 | 1811 | 0    | 1585 |
| Q Serve(g_s), s              | 3.0  | 37.5     | 4.6  | 4.8  | 20.5     | 1.3  | 8.7  | 0.0  | 11.1 | 11.4 | 0.0  | 1.3  |
| Cycle Q Clear(g_c), s        | 11.0 | 37.5     | 4.6  | 4.8  | 20.5     | 1.3  | 8.7  | 0.0  | 11.1 | 11.4 | 0.0  | 1.3  |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 0.84 |      | 1.00 | 0.66 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 280  | 1846     | 823  | 235  | 2215     | 988  | 197  | 0    | 174  | 196  | 0    | 172  |
| V/C Ratio(X)                 | 0.07 | 0.76     | 0.14 | 0.69 | 0.50     | 0.05 | 0.68 | 0.00 | 0.85 | 0.89 | 0.00 | 0.11 |
| Avail Cap(c_a), veh/h        | 280  | 1846     | 823  | 436  | 2215     | 988  | 209  | 0    | 185  | 196  | 0    | 172  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 18.8 | 22.9     | 15.0 | 22.6 | 12.4     | 8.8  | 51.4 | 0.0  | 52.5 | 52.8 | 0.0  | 48.3 |
| Incr Delay (d2), s/veh       | 0.5  | 3.0      | 0.4  | 1.3  | 0.8      | 0.1  | 8.3  | 0.0  | 29.2 | 34.1 | 0.0  | 0.1  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.4  | 15.1     | 1.7  | 2.3  | 7.5      | 0.4  | 4.4  | 0.0  | 5.8  | 7.0  | 0.0  | 0.5  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 19.3 | 25.8     | 15.3 | 23.9 | 13.2     | 8.8  | 59.7 | 0.0  | 81.6 | 86.9 | 0.0  | 48.4 |
| LnGrp LOS                    | В    | С        | В    | С    | В        | A    | E    | A    | F    | F    | A    | D    |
| Approach Vol, veh/h          |      | 1538     |      |      | 1315     |      |      | 284  |      |      | 193  |      |
| Approach Delay, s/veh        |      | 25.0     |      |      | 14.4     |      |      | 71.2 |      |      | 83.1 |      |
| Approach LOS                 |      | С        |      |      | В        |      |      | E    |      |      | F    |      |
| Timer - Assigned Phs         | 1    | 2        |      | 4    |          | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 12.5 | 68.3     |      | 20.0 |          | 80.8 |      | 19.2 |      |      |      |      |
| Change Period (Y+Rc), s      | 5.5  | 6.0      |      | 7.0  |          | 6.0  |      | 6.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 20.5 | 48.0     |      | 13.0 |          | 74.0 |      | 14.0 |      |      |      |      |
| Max Q Clear Time (g_c+l1), s | 6.8  | 39.5     |      | 13.4 |          | 22.5 |      | 13.1 |      |      |      |      |
| Green Ext Time (p_c), s      | 0.2  | 5.8      |      | 0.0  |          | 9.6  |      | 0.1  |      |      |      |      |
| Intersection Summary         |      |          |      |      |          |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |          | 28.1 |      |          |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |          | С    |      |          |      |      |      |      |      |      |      |

#### Queues 1: Ebenezer Road/Driveway & Kingston Pike

|                         | ۶    | +    | *    | 1    | ł    | *    | t    | 1    | Ŧ    | ~    |  |
|-------------------------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBT  | NBR  | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 21   | 1400 | 117  | 161  | 1109 | 45   | 135  | 149  | 174  | 19   |  |
| v/c Ratio               | 0.09 | 0.80 | 0.14 | 0.71 | 0.50 | 0.04 | 0.72 | 0.51 | 0.91 | 0.07 |  |
| Control Delay           | 19.9 | 30.7 | 2.3  | 38.2 | 13.2 | 0.1  | 72.8 | 15.8 | 97.7 | 0.4  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 19.9 | 30.7 | 2.3  | 38.2 | 13.2 | 0.1  | 72.8 | 15.8 | 97.7 | 0.4  |  |
| Queue Length 50th (ft)  | 8    | 468  | 0    | 64   | 236  | 0    | 101  | 6    | 135  | 0    |  |
| Queue Length 95th (ft)  | 27   | #650 | 23   | 135  | 288  | 1    | #180 | 68   | #268 | 0    |  |
| Internal Link Dist (ft) |      | 551  |      |      | 715  |      | 608  |      | 380  |      |  |
| Turn Bay Length (ft)    |      |      | 140  |      |      | 100  |      | 50   |      | 50   |  |
| Base Capacity (vph)     | 237  | 1754 | 855  | 362  | 2227 | 1030 | 208  | 309  | 195  | 289  |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.09 | 0.80 | 0.14 | 0.44 | 0.50 | 0.04 | 0.65 | 0.48 | 0.89 | 0.07 |  |
|                         |      |      |      |      |      |      |      |      |      |      |  |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

# Attachment 8 Intersection Worksheets – Full Buildout AM/PM Peaks

# HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -        | 7    | *    | +        | *    | 1    | 1    | 1    | 1    | Ŧ    | ~    |
|------------------------------|------|----------|------|------|----------|------|------|------|------|------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations          | ٦    | <b>^</b> | 1    | 7    | <b>^</b> | 1    |      | र्स  | 1    |      | đ    | 1    |
| Traffic Volume (veh/h)       | 10   | 817      | 58   | 97   | 648      | 29   | 149  | 20   | 249  | 10   | 8    | 11   |
| Future Volume (veh/h)        | 10   | 817      | 58   | 97   | 648      | 29   | 149  | 20   | 249  | 10   | 8    | 11   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No   |      |      | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 10   | 842      | 60   | 100  | 668      | 30   | 154  | 21   | 257  | 10   | 8    | 11   |
| Peak Hour Factor             | 0.97 | 0.97     | 0.97 | 0.97 | 0.97     | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                   | 423  | 1667     | 743  | 360  | 2062     | 920  | 292  | 40   | 294  | 45   | 36   | 70   |
| Arrive On Green              | 0.47 | 0.47     | 0.47 | 0.06 | 0.58     | 0.58 | 0.19 | 0.19 | 0.19 | 0.04 | 0.04 | 0.04 |
| Sat Flow, veh/h              | 748  | 3554     | 1585 | 1781 | 3554     | 1585 | 1577 | 215  | 1585 | 1011 | 809  | 1585 |
| Grp Volume(v), veh/h         | 10   | 842      | 60   | 100  | 668      | 30   | 175  | 0    | 257  | 18   | 0    | 11   |
| Grp Sat Flow(s),veh/h/ln     | 748  | 1777     | 1585 | 1781 | 1777     | 1585 | 1792 | 0    | 1585 | 1820 | 0    | 1585 |
| Q Serve(g_s), s              | 0.7  | 16.5     | 2.1  | 2.7  | 9.7      | 0.8  | 8.8  | 0.0  | 15.8 | 1.0  | 0.0  | 0.7  |
| Cycle Q Clear(g_c), s        | 0.7  | 16.5     | 2.1  | 2.7  | 9.7      | 0.8  | 8.8  | 0.0  | 15.8 | 1.0  | 0.0  | 0.7  |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 0.88 |      | 1.00 | 0.56 |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 423  | 1667     | 743  | 360  | 2062     | 920  | 332  | 0    | 294  | 81   | 0    | 70   |
| V/C Ratio(X)                 | 0.02 | 0.51     | 0.08 | 0.28 | 0.32     | 0.03 | 0.53 | 0.00 | 0.87 | 0.22 | 0.00 | 0.16 |
| Avail Cap(c_a), veh/h        | 423  | 1667     | 743  | 447  | 2062     | 920  | 394  | 0    | 349  | 200  | 0    | 174  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh     | 14.3 | 18.5     | 14.7 | 13.0 | 10.8     | 9.0  | 36.8 | 0.0  | 39.6 | 46.1 | 0.0  | 46.0 |
| Incr Delay (d2), s/veh       | 0.1  | 1.1      | 0.2  | 0.2  | 0.4      | 0.1  | 1.3  | 0.0  | 18.8 | 0.5  | 0.0  | 0.4  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/In     | 0.1  | 6.4      | 0.7  | 1.0  | 3.4      | 0.3  | 3.9  | 0.0  | 7.6  | 0.4  | 0.0  | 0.3  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |      |      |      |      |      |
| LnGrp Delay(d),s/veh         | 14.4 | 19.6     | 14.9 | 13.1 | 11.3     | 9.0  | 38.1 | 0.0  | 58.4 | 46.6 | 0.0  | 46.4 |
| LnGrp LOS                    | В    | В        | В    | В    | В        | A    | D    | A    | E    | D    | A    | D    |
| Approach Vol, veh/h          |      | 912      |      |      | 798      |      |      | 432  |      |      | 29   |      |
| Approach Delay, s/veh        |      | 19.2     |      |      | 11.4     |      |      | 50.1 |      |      | 46.5 |      |
| Approach LOS                 |      | В        |      |      | В        |      |      | D    |      |      | D    |      |
| Timer - Assigned Phs         | 1    | 2        |      | 4    |          | 6    |      | 8    |      |      |      |      |
| Phs Duration (G+Y+Rc), s     | 11.1 | 52.9     |      | 11.4 |          | 64.0 |      | 24.5 |      |      |      |      |
| Change Period (Y+Rc), s      | 5.5  | 6.0      |      | 7.0  |          | 6.0  |      | 6.0  |      |      |      |      |
| Max Green Setting (Gmax), s  | 10.5 | 32.0     |      | 11.0 |          | 48.0 |      | 22.0 |      |      |      |      |
| Max Q Clear Time (g_c+I1), s | 4.7  | 18.5     |      | 3.0  |          | 11.7 |      | 17.8 |      |      |      |      |
| Green Ext Time (p_c), s      | 0.0  | 4.7      |      | 0.0  |          | 4.7  |      | 0.8  |      |      |      |      |
| Intersection Summary         |      |          |      |      |          |      |      |      |      |      |      |      |
| HCM 6th Ctrl Delay           |      |          | 22.9 |      |          |      |      |      |      |      |      |      |
| HCM 6th LOS                  |      |          | С    |      |          |      |      |      |      |      |      |      |

### Queues 1: Ebenezer Road/Driveway & Kingston Pike

| 05/23/2 | 2024 |
|---------|------|
|---------|------|

|                         | ≁    | -    | 7    | 1    | -    | *    | t t  | 1    | +    | -    |  |
|-------------------------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBT  | NBR  | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 10   | 842  | 60   | 100  | 668  | 30   | 175  | 257  | 18   | 11   |  |
| v/c Ratio               | 0.03 | 0.45 | 0.07 | 0.26 | 0.30 | 0.03 | 0.63 | 0.62 | 0.12 | 0.04 |  |
| Control Delay           | 19.6 | 19.3 | 0.1  | 11.5 | 10.6 | 0.0  | 49.2 | 16.1 | 44.9 | 0.3  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |  |
| Total Delay             | 19.6 | 19.3 | 0.1  | 11.5 | 10.6 | 0.0  | 49.2 | 16.1 | 44.9 | 0.3  |  |
| Queue Length 50th (ft)  | 3    | 195  | 0    | 26   | 108  | 0    | 107  | 31   | 11   | 0    |  |
| Queue Length 95th (ft)  | 16   | 304  | 0    | 59   | 171  | 0    | 162  | 101  | 33   | 0    |  |
| Internal Link Dist (ft) |      | 551  |      |      | 715  |      | 608  |      | 380  |      |  |
| Turn Bay Length (ft)    |      |      | 140  |      |      | 100  |      | 50   |      | 50   |  |
| Base Capacity (vph)     | 392  | 1873 | 917  | 421  | 2247 | 1044 | 393  | 507  | 199  | 314  |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.03 | 0.45 | 0.07 | 0.24 | 0.30 | 0.03 | 0.45 | 0.51 | 0.09 | 0.04 |  |
| Intersection Summary    |      |      |      |      |      |      |      |      |      |      |  |

|                          | HCS Two-Way Stop               | -Control Report            |                                     |
|--------------------------|--------------------------------|----------------------------|-------------------------------------|
| General Information      |                                | Site Information           |                                     |
| Analyst                  | Addie Kirkham                  | Intersection               | Ebenezer Road at Apartment Driveway |
| Agency/Co.               | Ardurra                        | Jurisdiction               | Knox County                         |
| Date Performed           | 4/13/2024                      | East/West Street           | Apartment Driveway                  |
| Analysis Year            | 2027                           | North/South Street         | Ebenezer Road                       |
| Time Analyzed            | Full Buildout AM Peak          | Peak Hour Factor           | 0.92                                |
| Intersection Orientation | North-South                    | Analysis Time Period (hrs) | 0.25                                |
| Project Description      | 330.029 - Ebenezer Subdivision |                            |                                     |
| Lanes                    |                                |                            |                                     |
|                          |                                | U J 4                      |                                     |



| Vehicle Volumes and Adju                | istme | nts       |        |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
|-----------------------------------------|-------|-----------|--------|----|---|------|-------|------|----|-------|-------|----|----|-------|-------|---|--|
| Approach                                |       | Eastb     | ound   |    |   | West | oound |      |    | North | bound |    |    | South | bound |   |  |
| Movement                                | U     | L         | Т      | R  | U | L    | Т     | R    | U  | L     | Т     | R  | U  | L     | Т     | R |  |
| Priority                                |       | 10        | 11     | 12 |   | 7    | 8     | 9    | 1U | 1     | 2     | 3  | 4U | 4     | 5     | 6 |  |
| Number of Lanes                         |       | 0         | 0      | 0  |   | 0    | 1     | 0    | 0  | 0     | 1     | 0  | 0  | 1     | 1     | 0 |  |
| Configuration                           |       |           |        |    |   |      | LR    |      |    |       |       | TR |    | L     | Т     |   |  |
| Volume (veh/h)                          |       |           |        |    |   | 32   |       | 75   |    |       | 343   | 9  |    | 21    | 142   |   |  |
| Percent Heavy Vehicles (%)              |       |           |        |    |   | 2    |       | 2    |    |       |       |    |    | 2     |       |   |  |
| Proportion Time Blocked                 |       |           |        |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
| Percent Grade (%)                       |       |           |        |    |   | (    | C     |      |    |       |       |    |    |       |       |   |  |
| Right Turn Channelized                  |       |           |        |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
| Median Type   Storage                   |       | Undivided |        |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
| Critical and Follow-up He               | adwa  | ys        |        |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
| Base Critical Headway (sec)             |       |           |        |    |   | 7.1  |       | 6.2  |    |       |       |    |    | 4.1   |       |   |  |
| Critical Headway (sec)                  |       |           |        |    |   | 6.42 |       | 6.22 |    |       |       |    |    | 4.12  |       |   |  |
| Base Follow-Up Headway (sec)            |       |           |        |    |   | 3.5  |       | 3.3  |    |       |       |    |    | 2.2   |       |   |  |
| Follow-Up Headway (sec)                 |       |           |        |    |   | 3.52 |       | 3.32 |    |       |       |    |    | 2.22  |       |   |  |
| Delay, Queue Length, and                | Leve  | l of Se   | ervice |    |   |      |       |      |    |       |       |    |    |       |       |   |  |
| Flow Rate, v (veh/h)                    |       |           |        |    |   |      | 116   |      |    |       |       |    |    | 23    |       |   |  |
| Capacity, c (veh/h)                     |       |           |        |    |   |      | 593   |      |    |       |       |    |    | 1176  |       |   |  |
| v/c Ratio                               |       |           |        |    |   |      | 0.20  |      |    |       |       |    |    | 0.02  |       |   |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |       |           |        |    |   |      | 0.7   |      |    |       |       |    |    | 0.1   |       |   |  |
| Control Delay (s/veh)                   |       |           |        |    |   |      | 12.5  |      |    |       |       |    |    | 8.1   | 0.1   |   |  |
| Level of Service (LOS)                  |       |           |        |    |   |      | В     |      |    |       |       |    |    | А     | А     |   |  |
| Approach Delay (s/veh)                  |       |           |        |    |   | 12   | 2.5   |      |    |       |       |    |    | 1     | .2    |   |  |
| Approach LOS                            |       |           |        |    |   | I    | 3     |      |    |       |       |    |    | 1     | 4     |   |  |

Copyright  $\ensuremath{\mathbb{C}}$  2024 University of Florida. All Rights Reserved.

HCS 100 TWSC Version 2023 Full Buildout AM Peak\_Apartment Driveway\_LT.xtw

Generated: 4/16/2024 12:29:43 PM

|                          | HCS Two-Way Stop               | -Control Report            |                           |
|--------------------------|--------------------------------|----------------------------|---------------------------|
| General Information      |                                | Site Information           |                           |
| Analyst                  | Addie Kirkham                  | Intersection               | Ebenezer Road at Driveway |
| Agency/Co.               | Ardurra                        | Jurisdiction               | Knox County               |
| Date Performed           | 4/13/2024                      | East/West Street           | Subdivision Driveway      |
| Analysis Year            | 2027                           | North/South Street         | Ebenezer Road             |
| Time Analyzed            | Full Buildout AM Peak          | Peak Hour Factor           | 0.92                      |
| Intersection Orientation | North-South                    | Analysis Time Period (hrs) | 0.25                      |
| Project Description      | 330.029 - Ebenezer Subdivision |                            |                           |
| anes                     |                                |                            |                           |
|                          |                                |                            |                           |

|                           | $\succ$  |
|---------------------------|----------|
|                           | ∻        |
| <b>-</b> ↓                |          |
|                           | <b>F</b> |
|                           |          |
| 7                         |          |
| <u>በካተቀጥተቀሸ</u>           |          |
| Major Street: North-South |          |

Northbound

| Vehicle Volumes and Adju | istme | nts   |      |   |   |       |   |
|--------------------------|-------|-------|------|---|---|-------|---|
| Approach                 |       | Eastb | ound |   |   | bound |   |
| Movement                 | U     | L     | Т    | R | U | L     | Т |
|                          |       |       |      |   |   |       |   |

| Movement                                | U      | L       | T      | R    | U     | L    | T    | R    | U  | L | Т   | R  | U  | L    | Т   | R |  |  |
|-----------------------------------------|--------|---------|--------|------|-------|------|------|------|----|---|-----|----|----|------|-----|---|--|--|
| Priority                                |        | 10      | 11     | 12   |       | 7    | 8    | 9    | 1U | 1 | 2   | 3  | 4U | 4    | 5   | 6 |  |  |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0    | 1    | 0    | 0  | 0 | 1   | 0  | 0  | 0    | 1   | 0 |  |  |
| Configuration                           |        |         |        |      |       |      | LR   |      |    |   |     | TR |    | LT   |     |   |  |  |
| Volume (veh/h)                          |        |         |        |      |       | 19   |      | 43   |    |   | 309 | 7  |    | 15   | 159 |   |  |  |
| Percent Heavy Vehicles (%)              |        |         |        |      |       | 2    |      | 2    |    |   |     |    |    | 2    |     |   |  |  |
| Proportion Time Blocked                 |        |         |        |      |       |      |      |      |    |   |     |    |    |      |     |   |  |  |
| Percent Grade (%)                       |        |         |        |      |       |      | 0    |      |    |   |     |    |    |      |     |   |  |  |
| Right Turn Channelized                  |        |         |        |      |       |      |      |      |    |   |     |    |    |      |     |   |  |  |
| Median Type   Storage                   |        |         |        | Undi | vided |      |      |      |    |   |     |    |    |      |     |   |  |  |
| Critical and Follow-up He               | adwa   | ys      |        |      |       |      |      |      |    |   |     |    |    |      |     |   |  |  |
| Base Critical Headway (sec)             |        |         |        |      |       | 7.1  |      | 6.2  |    |   |     |    |    | 4.1  |     |   |  |  |
| Critical Headway (sec)                  |        |         |        |      |       | 6.42 |      | 6.22 |    |   |     |    |    | 4.12 |     |   |  |  |
| Base Follow-Up Headway (sec)            |        |         |        |      |       | 3.5  |      | 3.3  |    |   |     |    |    | 2.2  |     |   |  |  |
| Follow-Up Headway (sec)                 |        |         |        |      |       | 3.52 |      | 3.32 |    |   |     |    |    | 2.22 |     |   |  |  |
| Delay, Queue Length, and                | l Leve | l of Se | ervice |      |       |      |      |      |    |   |     |    |    |      |     |   |  |  |
| Flow Rate, v (veh/h)                    |        |         |        |      |       |      | 67   |      |    |   |     |    |    | 16   |     |   |  |  |
| Capacity, c (veh/h)                     |        |         |        |      |       |      | 621  |      |    |   |     |    |    | 1216 |     |   |  |  |
| v/c Ratio                               |        |         |        |      |       |      | 0.11 |      |    |   |     |    |    | 0.01 |     |   |  |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       |      | 0.4  |      |    |   |     |    |    | 0.0  |     |   |  |  |
| Control Delay (s/veh)                   |        |         |        |      |       |      | 11.5 |      |    |   |     |    |    | 8.0  | 0.1 |   |  |  |
| Level of Service (LOS)                  |        |         |        |      |       |      | В    |      |    |   |     |    |    | А    | А   |   |  |  |
| Approach Delay (s/veh)                  |        |         |        |      |       | 1'   | 1.5  |      |    |   |     |    |    | 0    | .8  |   |  |  |
| Approach LOS                            |        |         |        |      |       |      | В    |      |    |   |     |    |    |      | 4   |   |  |  |

Copyright  $\ensuremath{\mathbb{C}}$  2024 University of Florida. All Rights Reserved.

HCS TW TWSC Version 2023 Full Buildout AM Peak\_Ebenezer SD Driveway.xtw

Generated: 4/13/2024 4:49:05 PM

Southbound

# HCM 6th Signalized Intersection Summary 1: Ebenezer Road/Driveway & Kingston Pike

05/23/2024

|                              | ٠    | -        | 7    | *    | -        | *    | 1    | 1     | 1     | 4    | Ŧ    | ~        |
|------------------------------|------|----------|------|------|----------|------|------|-------|-------|------|------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT   | NBR   | SBL  | SBT  | SBR      |
| Lane Configurations          | ۲    | <b>^</b> | 1    | 5    | <b>^</b> | 1    |      | र्स   | 1     |      | र्स  | 1        |
| Traffic Volume (veh/h)       | 20   | 1316     | 153  | 226  | 1042     | 42   | 138  | 26    | 194   | 107  | 63   | 18       |
| Future Volume (veh/h)        | 20   | 1316     | 153  | 226  | 1042     | 42   | 138  | 26    | 194   | 107  | 63   | 18       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0     | 0     | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |       | 1.00  | 1.00 |      | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No    |       |      | No   |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870  | 1870  | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h         | 21   | 1400     | 163  | 240  | 1109     | 45   | 147  | 28    | 206   | 114  | 67   | 19       |
| Peak Hour Factor             | 0.94 | 0.94     | 0.94 | 0.94 | 0.94     | 0.94 | 0.94 | 0.94  | 0.94  | 0.94 | 0.94 | 0.94     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2     | 2     | 2    | 2    | 2        |
| Cap, veh/h                   | 276  | 1706     | 761  | 269  | 2191     | 977  | 176  | 34    | 185   | 124  | 73   | 172      |
| Arrive On Green              | 0.48 | 0.48     | 0.48 | 0.09 | 0.62     | 0.62 | 0.12 | 0.12  | 0.12  | 0.11 | 0.11 | 0.11     |
| Sat Flow, veh/h              | 487  | 3554     | 1585 | 1781 | 3554     | 1585 | 1508 | 287   | 1585  | 1142 | 671  | 1585     |
| Grp Volume(v), veh/h         | 21   | 1400     | 163  | 240  | 1109     | 45   | 175  | 0     | 206   | 181  | 0    | 19       |
| Grp Sat Flow(s),veh/h/ln     | 487  | 1777     | 1585 | 1781 | 1777     | 1585 | 1795 | 0     | 1585  | 1813 | 0    | 1585     |
| Q Serve(g_s), s              | 3.0  | 40.6     | 7.2  | 8.7  | 20.9     | 1.3  | 11.5 | 0.0   | 14.0  | 11.9 | 0.0  | 1.3      |
| Cycle Q Clear(g_c), s        | 7.5  | 40.6     | 7.2  | 8.7  | 20.9     | 1.3  | 11.5 | 0.0   | 14.0  | 11.9 | 0.0  | 1.3      |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 0.84 |       | 1.00  | 0.63 |      | 1.00     |
| Lane Grp Cap(c), veh/h       | 276  | 1706     | 761  | 269  | 2191     | 977  | 209  | 0     | 185   | 196  | 0    | 172      |
| V/C Ratio(X)                 | 0.08 | 0.82     | 0.21 | 0.89 | 0.51     | 0.05 | 0.84 | 0.00  | 1.11  | 0.92 | 0.00 | 0.11     |
| Avail Cap(c_a), veh/h        | 276  | 1706     | 761  | 411  | 2191     | 977  | 209  | 0     | 185   | 196  | 0    | 172      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00  | 1.00  | 1.00 | 0.00 | 1.00     |
| Uniform Delay (d), s/veh     | 19.5 | 26.8     | 18.1 | 27.9 | 12.8     | 9.1  | 51.9 | 0.0   | 53.0  | 53.0 | 0.0  | 48.3     |
| Incr Delay (d2), s/veh       | 0.5  | 4.6      | 0.6  | 10.8 | 0.8      | 0.1  | 24.4 | 0.0   | 100.1 | 42.0 | 0.0  | 0.1      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0   | 0.0   | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/In     | 0.4  | 17.0     | 2.6  | 4.1  | 7.7      | 0.5  | 6.6  | 0.0   | 10.7  | 7.7  | 0.0  | 0.5      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |       |       |      |      |          |
| LnGrp Delay(d),s/veh         | 20.0 | 31.3     | 18.7 | 38.7 | 13.7     | 9.2  | 76.3 | 0.0   | 153.1 | 95.0 | 0.0  | 48.4     |
| LnGrp LOS                    | С    | С        | В    | D    | В        | Α    | E    | Α     | F     | F    | Α    | <u>D</u> |
| Approach Vol, veh/h          |      | 1584     |      |      | 1394     |      |      | 381   |       |      | 200  |          |
| Approach Delay, s/veh        |      | 29.9     |      |      | 17.8     |      |      | 117.8 |       |      | 90.6 |          |
| Approach LOS                 |      | С        |      |      | В        |      |      | F     |       |      | F    |          |
| Timer - Assigned Phs         | 1    | 2        |      | 4    |          | 6    |      | 8     |       |      |      |          |
| Phs Duration (G+Y+Rc), s     | 16.4 | 63.6     |      | 20.0 |          | 80.0 |      | 20.0  |       |      |      |          |
| Change Period (Y+Rc), s      | 5.5  | 6.0      |      | 7.0  |          | 6.0  |      | 6.0   |       |      |      |          |
| Max Green Setting (Gmax), s  | 20.5 | 48.0     |      | 13.0 |          | 74.0 |      | 14.0  |       |      |      |          |
| Max Q Clear Time (g_c+l1), s | 10.7 | 42.6     |      | 13.9 |          | 22.9 |      | 16.0  |       |      |      |          |
| Green Ext Time (p_c), s      | 0.2  | 4.0      |      | 0.0  |          | 9.6  |      | 0.0   |       |      |      |          |
| Intersection Summary         |      |          |      |      |          |      |      |       |       |      |      |          |
| HCM 6th Ctrl Delay           |      |          | 38.0 |      |          |      |      |       |       |      |      |          |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |       |       |      |      |          |
#### Queues 1: Ebenezer Road/Driveway & Kingston Pike

| Lane GroupEBLEBTEBRWBLWBTWBRNBTNBRSBTSBTLane Group Flow (vph)211400163240110945175206181175v/c Ratio0.100.880.210.840.510.040.860.680.930.0Control Delay23.239.15.954.013.70.188.029.3101.50Queue Delay0.00.00.00.00.00.00.00.00.00.0Total Delay23.239.15.954.013.70.188.029.3101.50Queue Length 50th (ft)951710130236013547141Queue Length 95th (ft)29#725542162881#259131#281Internal Link Dist (ft)551715608380550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550550 </th <th></th> <th>٨</th> <th>+</th> <th>1</th> <th>4</th> <th>Ļ</th> <th>•</th> <th>t</th> <th>1</th> <th>ţ</th> <th>~</th>                                        |                         | ٨    | +    | 1    | 4    | Ļ    | •    | t    | 1    | ţ     | ~    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|------|------|------|------|------|------|-------|------|
| Lane Group Flow (vph)2114001632401109451752061811v/c Ratio0.100.880.210.840.510.040.860.680.930.0Control Delay23.239.15.954.013.70.188.029.3101.50Queue Delay0.00.00.00.00.00.00.00.00.00.0Total Delay23.239.15.954.013.70.188.029.3101.50Queue Length S0th (ft)951710130236013547141Queue Length 95th (ft)29#725542162881#259131#281Internal Link Dist (ft)551715608380505555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555                                                                                                                                                                                                                                       | Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBT  | NBR  | SBT   | SBR  |
| v/c Ratio 0.10 0.88 0.21 0.84 0.51 0.04 0.86 0.68 0.93 0.0   Control Delay 23.2 39.1 5.9 54.0 13.7 0.1 88.0 29.3 101.5 0   Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                               | Lane Group Flow (vph)   | 21   | 1400 | 163  | 240  | 1109 | 45   | 175  | 206  | 181   | 19   |
| Control Delay   23.2   39.1   5.9   54.0   13.7   0.1   88.0   29.3   101.5   0     Queue Delay   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 <td>v/c Ratio</td> <td>0.10</td> <td>0.88</td> <td>0.21</td> <td>0.84</td> <td>0.51</td> <td>0.04</td> <td>0.86</td> <td>0.68</td> <td>0.93</td> <td>0.07</td> | v/c Ratio               | 0.10 | 0.88 | 0.21 | 0.84 | 0.51 | 0.04 | 0.86 | 0.68 | 0.93  | 0.07 |
| Queue Delay   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 <th< td=""><td>Control Delay</td><td>23.2</td><td>39.1</td><td>5.9</td><td>54.0</td><td>13.7</td><td>0.1</td><td>88.0</td><td>29.3</td><td>101.5</td><td>0.4</td></th<>    | Control Delay           | 23.2 | 39.1 | 5.9  | 54.0 | 13.7 | 0.1  | 88.0 | 29.3 | 101.5 | 0.4  |
| Total Delay 23.2 39.1 5.9 54.0 13.7 0.1 88.0 29.3 101.5 0   Queue Length 50th (ft) 9 517 10 130 236 0 135 47 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141                                                                                                                                                                                                                                                                                                                     | Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0  |
| Queue Length 50th (ft)   9   517   10   130   236   0   135   47   141     Queue Length 95th (ft)   29   #725   54   216   288   1   #259   131   #281     Internal Link Dist (ft)   551   715   608   380     Turn Bay Length (ft)   140   100   50   55     Base Capacity (vph)   214   1586   787   359   2192   1015   208   309   195   28     Starvation Cap Reductn   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                               | Total Delay             | 23.2 | 39.1 | 5.9  | 54.0 | 13.7 | 0.1  | 88.0 | 29.3 | 101.5 | 0.4  |
| Queue Length 95th (ft)   29   #725   54   216   288   1   #259   131   #281     Internal Link Dist (ft)   551   715   608   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380   380                                                                                                                                                        | Queue Length 50th (ft)  | 9    | 517  | 10   | 130  | 236  | 0    | 135  | 47   | 141   | 0    |
| Internal Link Dist (ft)   551   715   608   380     Turn Bay Length (ft)   140   100   50   5     Base Capacity (vph)   214   1586   787   359   2192   1015   208   309   195   28     Starvation Cap Reductn   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                   | Queue Length 95th (ft)  | 29   | #725 | 54   | 216  | 288  | 1    | #259 | 131  | #281  | 0    |
| Turn Bay Length (ft)1401005050Base Capacity (vph)21415867873592192101520830919528Starvation Cap Reductn0000000000Spillback Cap Reductn0000000000Storage Cap Reductn000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Internal Link Dist (ft) |      | 551  |      |      | 715  |      | 608  |      | 380   |      |
| Base Capacity (vph)21415867873592192101520830919528Starvation Cap Reductn000000000Spillback Cap Reductn000000000Storage Cap Reductn000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Bay Length (ft)    |      |      | 140  |      |      | 100  |      | 50   |       | 50   |
| Starvation Cap Reductn   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                       | Base Capacity (vph)     | 214  | 1586 | 787  | 359  | 2192 | 1015 | 208  | 309  | 195   | 289  |
| Spillback Cap Reductn   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                        | Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    |
| Storage Cap Reductn   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                          | Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    |
| Reduced v/c Ratio 0.10 0.88 0.21 0.67 0.51 0.04 0.84 0.67 0.93 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reduced v/c Ratio       | 0.10 | 0.88 | 0.21 | 0.67 | 0.51 | 0.04 | 0.84 | 0.67 | 0.93  | 0.07 |

#### Intersection Summary

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                          | HCS Two-Way Stop               | -Control Report            |                                     |
|--------------------------|--------------------------------|----------------------------|-------------------------------------|
| General Information      |                                | Site Information           |                                     |
| Analyst                  | Addie Kirkham                  | Intersection               | Ebenezer Road at Apartment Driveway |
| Agency/Co.               | Ardurra                        | Jurisdiction               | Knox County                         |
| Date Performed           | 4/13/2024                      | East/West Street           | Apartment Driveway                  |
| Analysis Year            | 2027                           | North/South Street         | Ebenezer Road                       |
| Time Analyzed            | Full Buildout PM Peak          | Peak Hour Factor           | 0.92                                |
| Intersection Orientation | North-South                    | Analysis Time Period (hrs) | 0.25                                |
| Project Description      | 330.029 - Ebenezer Subdivision |                            |                                     |
| Lanes                    |                                |                            |                                     |
|                          |                                |                            |                                     |



| Vehicle Volumes and Adjustments  |      |           |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
|----------------------------------|------|-----------|--------|----|---|------|------|------|----|-------|-------|-----|----|-------|-------|---|
| Approach                         |      | Eastb     | ound   |    |   | West | ound |      |    | North | bound |     |    | South | oound |   |
| Movement                         | U    | L         | Т      | R  | U | L    | Т    | R    | U  | L     | Т     | R   | U  | L     | Т     | R |
| Priority                         |      | 10        | 11     | 12 |   | 7    | 8    | 9    | 1U | 1     | 2     | 3   | 4U | 4     | 5     | 6 |
| Number of Lanes                  |      | 0         | 0      | 0  |   | 0    | 1    | 0    | 0  | 0     | 1     | 0   | 0  | 1     | 1     | 0 |
| Configuration                    |      |           |        |    |   |      | LR   |      |    |       |       | TR  |    | L     | Т     |   |
| Volume (veh/h)                   |      |           |        |    |   | 26   |      | 62   |    |       | 296   | 32  |    | 76    | 367   |   |
| Percent Heavy Vehicles (%)       |      |           |        |    |   | 2    |      | 2    |    |       |       |     |    | 2     |       |   |
| Proportion Time Blocked          |      |           |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Percent Grade (%)                |      | 0         |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Right Turn Channelized           |      |           |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Median Type   Storage            |      | Undivided |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Critical and Follow-up Headways  |      |           |        |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Base Critical Headway (sec)      |      |           |        |    |   | 7.1  |      | 6.2  |    |       |       |     |    | 4.1   |       |   |
| Critical Headway (sec)           |      |           |        |    |   | 6.42 |      | 6.22 |    |       |       |     |    | 4.12  |       |   |
| Base Follow-Up Headway (sec)     |      |           |        |    |   | 3.5  |      | 3.3  |    |       |       |     |    | 2.2   |       |   |
| Follow-Up Headway (sec)          |      |           |        |    |   | 3.52 |      | 3.32 |    |       |       |     |    | 2.22  |       |   |
| Delay, Queue Length, and         | Leve | l of Se   | ervice |    |   |      |      |      |    |       |       |     |    |       |       |   |
| Flow Rate, v (veh/h)             |      |           |        |    |   |      | 96   |      |    |       |       |     |    | 83    |       |   |
| Capacity, c (veh/h)              |      |           |        |    |   |      | 492  |      |    |       |       |     |    | 1202  |       |   |
| v/c Ratio                        |      |           |        |    |   |      | 0.19 |      |    |       |       |     |    | 0.07  |       |   |
| 95% Queue Length, $Q_{95}$ (veh) |      |           |        |    |   |      | 0.7  |      |    |       |       |     |    | 0.2   |       |   |
| Control Delay (s/veh)            |      |           |        |    |   |      | 14.1 |      |    |       |       |     |    | 8.2   | 0.4   |   |
| Level of Service (LOS)           |      |           |        |    |   |      | В    |      |    |       |       |     |    | А     | А     |   |
| Approach Delay (s/veh)           |      |           |        |    |   | 14   | l.1  |      |    |       |       | 1.7 |    |       |       |   |
| Approach LOS                     |      |           |        |    |   | E    | 3    |      |    |       |       |     | A  |       |       |   |

#### Copyright $\ensuremath{\mathbb{C}}$ 2024 University of Florida. All Rights Reserved.

HCS TW TWSC Version 2023 Full Buildout PM Peak\_Apartment Driveway\_LT.xtw

|                          | HCS Two-Way Stop               | -Control Report            |                           |
|--------------------------|--------------------------------|----------------------------|---------------------------|
| General Information      |                                | Site Information           |                           |
| Analyst                  | Addie Kirkham                  | Intersection               | Ebenezer Road at Driveway |
| Agency/Co.               | Ardurra                        | Jurisdiction               | Knox County               |
| Date Performed           | 4/13/2024                      | East/West Street           | Subdivision Driveway      |
| Analysis Year            | 2027                           | North/South Street         | Ebenezer Road             |
| Time Analyzed            | Full Buildout PM Peak          | Peak Hour Factor           | 0.92                      |
| Intersection Orientation | North-South                    | Analysis Time Period (hrs) | 0.25                      |
| Project Description      | 330.029 - Ebenezer Subdivision |                            |                           |
| Lanes                    |                                |                            |                           |
|                          |                                |                            |                           |

| -        |                           |          |
|----------|---------------------------|----------|
| 4        |                           |          |
| 4        |                           | -        |
| 4        |                           | ≻≻       |
| -+       |                           | ÷        |
| *        |                           | ÷        |
| <u> </u> |                           | <u> </u> |
|          |                           |          |
|          | ÷                         |          |
|          |                           |          |
|          | በገኝ ምጥተ ኮር                |          |
|          | Major Street: North-South |          |
|          |                           |          |

# Vehicle Volumes and Adjustments

| Approach                                |      | Eastb   | ound   |      |       | West | ound |      |    | North | bound |    |    | South | bound |   |
|-----------------------------------------|------|---------|--------|------|-------|------|------|------|----|-------|-------|----|----|-------|-------|---|
| Movement                                | U    | L       | Т      | R    | U     | L    | Т    | R    | U  | L     | Т     | R  | U  | L     | Т     | R |
| Priority                                |      | 10      | 11     | 12   |       | 7    | 8    | 9    | 1U | 1     | 2     | 3  | 4U | 4     | 5     | 6 |
| Number of Lanes                         |      | 0       | 0      | 0    |       | 0    | 1    | 0    | 0  | 0     | 1     | 0  | 0  | 0     | 1     | 0 |
| Configuration                           |      |         |        |      |       |      | LR   |      |    |       |       | TR |    | LT    |       |   |
| Volume (veh/h)                          |      |         |        |      |       | 12   |      | 29   |    |       | 299   | 21 |    | 50    | 343   |   |
| Percent Heavy Vehicles (%)              |      |         |        |      |       | 2    |      | 2    |    |       |       |    |    | 2     |       |   |
| Proportion Time Blocked                 |      |         |        |      |       |      |      |      |    |       |       |    |    |       |       |   |
| Percent Grade (%)                       |      |         |        |      |       | (    | )    |      |    |       |       |    |    |       |       |   |
| Right Turn Channelized                  |      |         |        |      |       |      |      |      |    |       |       |    |    |       |       |   |
| Median Type   Storage                   |      |         |        | Undi | vided |      |      |      |    |       |       |    |    |       |       |   |
| Critical and Follow-up He               | adwa | ys      |        |      |       |      |      |      |    |       |       |    |    |       |       |   |
| Base Critical Headway (sec)             |      |         |        |      |       | 7.1  |      | 6.2  |    |       |       |    |    | 4.1   |       |   |
| Critical Headway (sec)                  |      |         |        |      |       | 6.42 |      | 6.22 |    |       |       |    |    | 4.12  |       |   |
| Base Follow-Up Headway (sec)            |      |         |        |      |       | 3.5  |      | 3.3  |    |       |       |    |    | 2.2   |       |   |
| Follow-Up Headway (sec)                 |      |         |        |      |       | 3.52 |      | 3.32 |    |       |       |    |    | 2.22  |       |   |
| Delay, Queue Length, and                | Leve | l of Se | ervice |      |       |      |      |      |    |       |       |    |    |       |       |   |
| Flow Rate, v (veh/h)                    |      |         |        |      |       |      | 45   |      |    |       |       |    |    | 54    |       |   |
| Capacity, c (veh/h)                     |      |         |        |      |       |      | 526  |      |    |       |       |    |    | 1211  |       |   |
| v/c Ratio                               |      |         |        |      |       |      | 0.08 |      |    |       |       |    |    | 0.04  |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |      |         |        |      |       |      | 0.3  |      |    |       |       |    |    | 0.1   |       |   |
| Control Delay (s/veh)                   |      |         |        |      |       |      | 12.5 |      |    |       |       |    |    | 8.1   | 0.5   |   |
| Level of Service (LOS)                  |      |         |        |      |       |      | В    |      |    |       |       |    |    | А     | А     |   |
| Approach Delay (s/veh)                  |      |         |        |      |       | 12   | .5   |      |    |       |       |    |    | 1.    | .4    |   |
| Approach LOS                            |      |         |        |      |       | E    | 3    |      |    |       |       |    |    | A     | 4     |   |

Copyright  $\ensuremath{\mathbb{C}}$  2024 University of Florida. All Rights Reserved.

HCS TM TWSC Version 2023 Full Buildout PM Peak\_Ebenezer SD Driveway.xtw

# Attachment 9 Turn Lane Warrants

#### **Project: Ebenezer Road Subdivision**

#### Ebenezer Road at Apartment Roadway

| Ebenezer Road        | VOLUMES  |      |    |        |             |
|----------------------|----------|------|----|--------|-------------|
| at Apartment Roadway |          |      |    |        |             |
| LEFT TURN            | Opposing | Thru | LT | LT MAX | Warrant Met |
| AM                   | 352      | 142  | 21 | 135    | NO          |
| PM                   | 328      | 367  | 76 | 65     | YES         |
| Ebenezer Road        | VOLUMES  |      |    |        |             |
| at Apartment Roadway |          |      |    |        |             |
| RIGHT TURN           | _        | Thru | RT | RT MAX | Warrant Met |
| AM                   |          | 343  | 9  | 299    | NO          |
| PM                   |          | 296  | 32 | 349    | NO          |

#### Ebenezer Road at Subdivision Roadway

| Ebenezer Road          | VOLUMES  |      |    |        |             |
|------------------------|----------|------|----|--------|-------------|
| at Subdivision Roadway |          |      |    |        |             |
| LEFT TURN              | Opposing | Thru | LT | LT MAX | Warrant Met |
| AM                     | 316      | 159  | 15 | 135    | NO          |
| PM                     | 320      | 343  | 50 | 80     | NO          |
| Ebenezer Road          | VOLUMES  |      |    |        |             |
| at Subdivision Roadway |          |      |    |        |             |
| RIGHT TURN             |          | Thru | RT | RT MAX | Warrant Met |
| AM                     | _        | 309  | 7  | 299    | NO          |
| PM                     |          | 299  | 21 | 349    | NO          |

### TABLE 4A

## LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

| OPPOSING                 | THROUG          | HVOLUME         | PLUS RIGH  | T-TURN     | VOLUME           | *         |
|--------------------------|-----------------|-----------------|------------|------------|------------------|-----------|
| VOLUME                   | 100 - 149       | 150 - 199       | 200 - 249  | 250 - 299  | 300 - 349        | 350 - 399 |
| 100 - 149                | 300             | 235<br>200      | 185<br>160 | )45<br>130 | 120<br>110       | 100<br>90 |
| 200 - 249                | 205             | 170<br>150      | 140<br>125 | 115<br>105 | 100<br>90        | 80<br>70  |
| 300 - 349<br>350 - 399   | 155<br>135 AM P | 135<br>Peak 120 | 110<br>100 | 95<br>85   | PM Peak<br>76 LT | 65<br>60  |
| 400 - 419                | 120<br>105      | 105             | 90<br>80   | 75<br>71)  | 65<br>60         | 55<br>50  |
| 500 - 549<br>550 - 599   | 95<br>83        | \$0<br>70       | 70<br>65   | 65<br>60   | 55<br>50         | 50<br>45  |
| 600 - 649<br>650 - 699   | 75<br>70        | 65<br>60        | 60<br>55   | 55<br>50   | 45<br>40         | 40<br>35  |
| 700 - 749<br>750 or Marc | 65<br>60        | 55<br>50        | 50<br>45   | 45<br>40   | 35<br>35         | 30<br>30  |

(If the left-turn volume exceeds the table value a left -turn lane is needed)

| OPPOSING                 | THROUGH VOLUME PLUS RIGHT-TURN VOLUME * |           |           |           |           |           |  |  |  |  |  |
|--------------------------|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| VOLUME                   | 350 - 399                               | 400 - 449 | 450 - 499 | 500 - 549 | 550 - 599 | = 1 > 600 |  |  |  |  |  |
| 100 - 149                | 100                                     | 80<br>75  | 70<br>65  | 60<br>55  | 55<br>50  | 50<br>45  |  |  |  |  |  |
| 200 - 249<br>250 - 299   | 80<br>70                                | 72<br>65  | 460<br>55 | 55<br>50  | 50<br>45  | 45<br>40  |  |  |  |  |  |
| 300 - 349                | 65<br>60                                | 60<br>55  | 50<br>50  | 50<br>45  | 45<br>40  | 40<br>40  |  |  |  |  |  |
| 400 - 449                | 55 50                                   | 50<br>45  | 45        | 45<br>40  | 40<br>35  | 35<br>35  |  |  |  |  |  |
| 500 - 549                | 50<br>45                                |           | 40<br>40  | 40<br>35  | 35<br>35  | 35<br>35  |  |  |  |  |  |
| 600 - 649<br>650 - 699   | 40                                      | 35        | 35<br>35  | 35<br>30  | 35<br>30  | 30<br>30  |  |  |  |  |  |
| 700 - 749<br>750 or More | 30                                      | 30        | 30<br>30  | 30<br>30  | 30<br>30  | 30<br>30  |  |  |  |  |  |

\* Or through volume only if a right-turn lane exists.

#### TABLE 4B

### RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

111

l

| RIGHT-TURN                          | THRO | THROUGH VOLUME PLUS LEFT-TURN VOLUME * |            |            |            |              |  |  |  |  |  |  |
|-------------------------------------|------|----------------------------------------|------------|------------|------------|--------------|--|--|--|--|--|--|
| VOLUME                              | <100 | 100 - 199                              | 200 - 249  | 250 - 299  | 300 - 349  | 350 - 399    |  |  |  |  |  |  |
| Fewer Than 25<br>25 - 49<br>50 - 99 |      |                                        | PM P       | eak        |            | M Peak<br>RT |  |  |  |  |  |  |
| 109 - 149<br>150 - 199              |      |                                        | 32 R1      |            |            |              |  |  |  |  |  |  |
| 200 - 249<br>250 - 299              |      |                                        |            |            |            | Yes          |  |  |  |  |  |  |
| 300) - 349<br>350 - 399             |      |                                        |            | Yes        | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 400 - 449<br>450 - 499              |      |                                        | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 500 - 549<br>550 - 599              |      | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 600 ar Marc                         | Yes  | Yes                                    | Yes        | Yes        | Yes        | Yes          |  |  |  |  |  |  |

| RIGHT-TURN                          | THROUGH VOLUME PLUS LEFT-TURN VOLUME * |            |            |            |            |              |  |  |  |  |  |  |
|-------------------------------------|----------------------------------------|------------|------------|------------|------------|--------------|--|--|--|--|--|--|
| VOLUME                              | 350 - 399                              | 400 - 449  | 450 - 499  | 500 - 549  | 550 - 600  | + / > 600    |  |  |  |  |  |  |
| Fewer Than 25<br>25 - 49<br>50 - 99 | · · · · · · · · · · · · · · · · · · ·  |            |            |            | Yes        | Yes<br>Yes   |  |  |  |  |  |  |
| 100 - 149<br>150 - 199              |                                        |            | Yes        | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 200 - 249<br>250 - 299              | Yes                                    | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 300 - 349<br>350 - 399              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 400 - 449<br>450 - 499              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |  |  |  |  |  |
| 500 - 549<br>550 - 599              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes .<br>Yes |  |  |  |  |  |  |
| 600 or More                         | Yes                                    | Yes        | Yes        | Yes        | Yes        | Yes          |  |  |  |  |  |  |

\* Or through volume only if a left-turn lane exists.

### TABLE 4A

# LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

| OPPOSING                | THROUGH VOLUME PLUS RIGHT-TURN VOLUME * |            |            |            |           |           |
|-------------------------|-----------------------------------------|------------|------------|------------|-----------|-----------|
| VOLUME                  | 100 - 149                               | 150 - 199  | 200 - 249  | 250 - 299  | 300 - 349 | 350 - 399 |
| 100 - 149               | 300                                     | 235        | 185        | )45        | 120       | 100       |
|                         | 245                                     | 200        | 160        | 130        | 110       | 90        |
| 200 - 249               | 205                                     | 170<br>150 | 140<br>125 | 115<br>105 | 100<br>90 | 80<br>70  |
| 300 - 349               | 155                                     | (135)      | Peak 110   | 95         | S0        | M Peal    |
| 350 - 399               | 135                                     | 120) AM    | T 100      | 85         | 70        |           |
| 409 - 4-19<br>450 - 499 | 120                                     | 105<br>90  | 90<br>80   | 75<br>70   | 65<br>60  | 50        |
| 500 - 549               | 95                                      | Síi        | 70         | 65         | 55        | 50        |
| 550 - 599               | 85                                      | 70         | 65         | 60         | 50        | 45        |
| 600 - 649               | 75                                      | 65         | 60         | 55         | 45        | 40        |
|                         | 70                                      | 60         | 55         | 50         | 40        | 35        |
| 700 - 749               | 65                                      | 55         | 50         | 45         | 35        | 30        |
| 750 or 210rt            | 60                                      | 50         | 45         | 40         | 35        | 30        |

(If the left-turn volume exceeds the table value a left -turn lane is needed)

| OPPOSING    | THROUGH VOLUME PLUS RIGHT-TURN VOLUME * |           |           |           |           |           |
|-------------|-----------------------------------------|-----------|-----------|-----------|-----------|-----------|
| VOLUME      | 350 - 399                               | 400 - 449 | 450 - 499 | 500 - 549 | 550 - 599 | = 1 > 600 |
| 100 - 149   | 100                                     | 80        | 70        | 60        | 55        | 50        |
| 150 - 199   |                                         | 75        | 65        | 55        | 50        | 45        |
| 200 - 249   | 80                                      | 72        | 460       | 55        | 50        | 45        |
| 250 - 299   | 70                                      | 65        | 55        | 50        | 45        | 40        |
| 300 - 349   | 65                                      | 60        | 50        | 50        | 45        | 40        |
|             | 60                                      | 55        | 50        | 45        | 40        | 40        |
| 400 - 449   | 55 50                                   | 50<br>45  | 45        | 45<br>40  | 40<br>35  | 35<br>35  |
| 500 - 549   | 50                                      | 45<br>40  | 40 40     | 40<br>35  | 35<br>35  | 35<br>35  |
| 600 - 649   | 40                                      | 35        | 35        | 35        | 35        | 30        |
| 650 - 699   |                                         | 35        | 35        | 30        | 30        | 30        |
| 700 - 749   | 30                                      | 30        | 30        | 30        | 30        | 30        |
| 750 or Mure |                                         | 30        | 30        | 30        | 30        | 30        |

\* Or through volume only if a right-turn lane exists.

#### TABLE 4B

### RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

| RIGHT-TURN<br>VOLUME                | THROUGH VOLUME PLUS LEFT-TURN VOLUME * |            |                 |            |            |              |  |
|-------------------------------------|----------------------------------------|------------|-----------------|------------|------------|--------------|--|
|                                     | <100                                   | 100 - 199  | 200 - 249       | 250 - 299  | 300 - 349  | 350 - 399    |  |
| Fewer Than 25<br>25 - 49<br>50 - 99 |                                        |            | PM Pea<br>21 RT |            |            | M Peak<br>LT |  |
| 108 - 149<br>150 - 199              |                                        |            |                 |            |            |              |  |
| 200 - 249<br>250 - 299              |                                        |            |                 |            |            | Yes          |  |
| 300 - 349<br>350 - 399              |                                        |            |                 | Yes        | Yes<br>Yes | Yes<br>Yes   |  |
| 400 - 449<br>450 - 499              |                                        |            | Yes<br>Yes      | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 500 - 549<br>550 - 599              |                                        | Yes<br>Yes | Yes<br>Yes      | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 600 or More                         | Yes                                    | Yes        | Yes             | Yes        | Yes        | Yes          |  |

| RIGHT-TURN<br>VOLUME                | THROUGH VOLUME PLUS LEFT-TURN VOLUME * |            |            |            |            |              |  |
|-------------------------------------|----------------------------------------|------------|------------|------------|------------|--------------|--|
|                                     | 350 - 399                              | 400 - 449  | 450 - 499  | 500 - 549  | 550 - 600  | + / > 600    |  |
| Fewer Than 25<br>25 - 49<br>50 - 99 |                                        |            |            |            | Yes        | Yes<br>Yes   |  |
| 100 - 149<br>150 - 199              |                                        |            | Yes        | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 200 - 249<br>250 - 299              | Yes                                    | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 300 - 349<br>350 - 399              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 400 - 449<br>450 - 499              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes   |  |
| 500 - 549<br>550 - 599              | Yes<br>Yes                             | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes<br>Yes | Yes .<br>Yes |  |
| 600 or More                         | Yes                                    | Yes        | Yes        | Yes        | Yes        | Yes          |  |

111

l

\* Or through volume only if a left-turn lane exists.

# Attachment 10 Sight Distance



Ebenezer Road at Subdivision Roadway – Looking Left (Southbound)



Ebenezer Road at Subdivision Roadway – Looking Right (Northbound)



Date: May 28, 2024

#### To: Knoxville-Knox County Planning

#### Subject: Ebenezer Road Subdivision TIS Comments (6-SD-24-C/6-H-24-DP)

Dear Knoxville-Knox County Planning staff,

The following comment response document is submitted to address comments dated May 22, 2024:

1. Reviewer Comment: The TIS notes the northbound right turn (NB RT) lane of Ebenezer Road at Kingston Pike will exceed capacity after the development but does not recommend specific improvements to address this deficiency, citing constraints including guard rails, utility poles, and Ten Mile Creek. The reviewing agencies understand the constraints that were cited however the TIS should still provide a recommendation for both the desirable and a "reasonably achievable" storage length for the NB RT at this intersection. In this case, reasonably achievable would mean the maximum distance that could be provided by widening the approach on the east side that would only involve movement of the utility pole(s), and some minor access work and without affecting the stream crossing. Please revise the recommendations section with this information.

<u>Response</u>: Added the following recommendation for the northbound right turn lane to the report. "The existing geometry of the northbound right turn lane is a 50-foot storage length and a 30-foot taper ending at the start of the existing commercial driveway. In order to maximum storage capacity Ardurra recommends relocating the communication pole and widening the 80-foot length of Ebenezer Road between the stop bar and the commercial driveway to match the existing width of 20 feet to allow additional vehicle stacking."

- **2. Reviewer Comment:** There were multiple items related to the Synchro outputs in Appendix that require additional information or clarification:
  - a. Please provide the Synchro Timings sheet so that staff can verify if the signal timing splits are correctly assigned.

Mr. Conger May 28, 2024 Page 2 of 3

<u>Response:</u> Added Synchro Timing sheets to Attachment 5 Signal Timing for Existing Conditions AM and PM peak hours to verify signal timing splits.

b. Vehicle extensions did not match for Phase 1 & Phase 4 for any of the AM/PM analyses for Existing, Background or Build-out conditions. Please revise or provide adequate justification for the values that were used.

<u>Response:</u> Updated the Vehicle Extension for Phase 1 & Phase 4 to match the provided signal timing sheet.

c. It is preferred to report the intersection delay and LOS using the latest HCM (7<sup>th</sup> Edition) methodology as opposed to HCM 2000 which is what is indicated on the Synchro outputs. Please revise the analysis or provide adequate justification, e.g. if there is negligible difference in results between the two methodologies.

<u>Response:</u> Renamed Phase 3 NB to Phase 8 NB in order to print the Synchro 11 HCM (6<sup>th</sup> Edition) Reports.

- **3. Reviewer Comments:** Other minor comments and typos that need to be corrected are as follows:
  - a. On page 9, it discusses the measured width of Ebenezer being 24 feet but other sections reference 21 feet. Please revise to provide consistent dimensions throughout the report.

<u>Response</u>: Revised to clarify that the measured width of 24 feet is south of the signalized intersection with Kingston Pike and the measured width of 21 feet width is at the proposed subdivision roadway connection.

b. On page 10, it should state the PHF is 0.97 instead of 97.

Response: Revised the AM PHF to 0.97.

c. On page 14, paragraph 1 it states there are 275 apartment units but the trip generation summary on the same page shows 278, please revise.

<u>Response:</u> Revised to state 278 apartment units to match the trip generation summary.

d. On the left turn lane warrant sheet in the appendix (page 78 of the PDF) it indicates that the PM peak LT amount is 80 whereas it appears as though this should instead be 50 per the volume shown on Figure 9, please revise as appropriate.

<u>Response:</u> Updated the LT Warrant for the intersection of Ebenezer Road at Subdivision to show 50 left turns.

Mr. Conger May 28, 2024 Page 3 of 3

Sincerely,

