THE CRESCENT AT EBENEZER COMMERCIAL SITE

Traffic Impact Study Ebenezer Road Knoxville, TN

A Traffic Impact Study for The Crescent at Ebenezer Commercial Site

Submitted to

Knoxville - Knox County Planning Commission

Revised July 8, 2019 Revised June 20, 2019 May 20, 2019 FMA Project No. 223.013.1

Submitted By:

TABLE OF CONTENTS

Exi	ECUTIVE SUMMARY	4
1	Introduction	6
	1.1 Project Description	6
	1.2 Existing Site Conditions	9
2	EXISTING TRAFFIC VOLUMES	10
3	BACKGROUND GROWTH	12
	3.1 The Crescent at Ebenezer	14
	Table 3.1-1 The Crescent at Ebenezer Trip Generation Study 3.2 Weigel's	17
4	Table 3.2-1 Weigel's Gasoline/Service Station Trip Generation Study TRIP GENERATION AND TRIP DISTRIBUTION	25
5	TABLE 4-1 THE CRESCENT AT EBENEZER COMMERCIAL SITE TRIP GENERATION STUDY PROJECTED CAPACITY AND LEVEL OF SERVICE	33
6	TABLE 5-1 INTERSECTION ANALYSIS LEVEL OF SERVICE (LOS) SUMMARY TURN LANE WARRANT ANALYSIS	36
7	CONCLUSIONS AND RECOMMENDATIONS	36
	7.1 Ebenezer Road @ Westland Drive (north)	36
	7.2 Ebenezer Road @ Westland Drive (south)	
	7.3 Ebenezer Road @ Driveway Connection	
	7.4 Ebenezer Road @ Crescent Lake Way	
	7.5 Westland Drive @ Driveway Connection	

FIGURES

1	LOCATION MAP	7
2	SITE PLAN	8
3	2018 Existing Peak Hour Traffic	11
4	2021 BACKGROUND PEAK HOUR TRAFFIC	13
5	Apartment & Senior Adult Housing Peak Hour Site Traffic	16
6	Weigel's AM & PM Peak hour Trip Distribution	19
7	Weigel's AM Peak Hour Trip Distribution Pass-By Trips	20
8	Weigel's PM Peak Hour Trip Distribution Pass-By Trips	21
9	Weigel's Peak Hour Site Traffic	22
10	Weigel's Peak Hour Pass-By Trips	23
11	Background Peak Hour Combined Traffic	24
12	Commercial AM & PM Peak Hour Trip Distribution	27
13	Commercial AM Peak Hour Trip Distribution Pass-By Trips	28
14	Commercial PM Peak Hour Trip Distribution Pass-By Trips	29
15	Commercial Peak Hour Site Traffic	30
16	Commercial Peak Hour Pass-By Trips	31
17	FULL RUILDOUT PEAK HOUR COMBINED TRAFFIC	3.7

ATTACHMENTS

- 1 Traffic Counts
- 2 ADT TRENDS
- 3 Trip Generation
- 4 SIGNAL TIMING
- 5 INTERSECTION WORKSHEETS EXISTING AM/PM PEAKS
- 6 Intersection Worksheets Background AM/PM Peaks
- 7 INTERSECTION WORKSHEETS COMMERCIAL SITE AM/PM PEAKS
- 8 TURN LANE WARRANT ANALYSIS
- 9 Aerial Photos

Executive Summary

Crescent Bend Development, LLC is proposing a commercial development with a drive-through window located in Knox County. The project is located between the intersections of Ebenezer Road at Westland Drive (north) and Ebenezer Road at Westland Drive (south). The full buildout of the development was assumed to include a 10,850 SF medical-dental building and a 2,152 SF coffee shop with a drive-through window. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2021.

The main entrance/exit for The Crescent at Ebenezer Commercial Site will connect to Crescent Lake Way, which is the proposed driveway location for the Crescent Bend Apartments located on Ebenezer Road. Also proposed is a full access entrance/exit with separate right and left turn lanes on Westland Drive and a right-in/right-out entrance/exit on Ebenezer Road.

The property at the corner of Ebenezer Road at Westland Drive (north) has a concept plan that was approved for a Weigel's convenience market with gasoline pumps by the Knoxville-Knox County Planning Commission on July 12, 2012. The Weigel's will share access with The Crescent at Ebenezer Commercial Site and therefore was included in the traffic impact study.

In order to maintain or provide an acceptable level-of-service for each of the intersections studied, some recommendations are presented.

Ebenezer Road @ Westland Drive (north)

After the completion of The Crescent at Ebenezer Commercial Site the signalized intersection of Ebenezer Road at Westland Drive (north) will continue to operate at a LOS D during the AM peak hour and a LOS C during the PM peak hour using the existing signal timing provided by Knox County.

The LOS D during the AM peak hour is caused by the westbound thru/right lane having a volume to capacity ratio greater than 1.0. This is the case for the existing traffic volumes and the increase in delay caused by The Crescent at Ebenezer Commercial Site is expected to be minimal.

Ebenezer Road @ Westland Drive (south)

After the completion of The Crescent at Ebenezer Commercial Site the signalized intersection of Ebenezer Road at Westland Drive (south) will operate at a LOS B during the AM peak hour and a LOS D during the PM peak hour using the existing signal timing provided by Knox County.

The eastbound double left turn lanes operate at a LOS C during the existing traffic conditions and a LOS F during both the background traffic conditions and after the completion of The Crescent at Ebenezer Commercial Site. The delay is caused by the turn lanes having a volume to capacity ratio greater than 1.0 and a queue storage ratio of greater than 2.0. The increase in delay caused by The Crescent at Ebenezer Commercial Site is expected to be minimal.

Ebenezer Road @ Driveway Connection

Knox County Engineering and Public Works recommended that the Ebenezer Road driveway be a right-in/right-out driveway connection.

Ebenezer Road @ Crescent Lake Way

After the completion of The Crescent at Ebenezer Commercial Site the westbound approach will operate at a LOS E during the AM peak hour and a LOS D during the PM peak hours and the southbound approach will operate at a LOS C during the AM peak hour and a LOS B during the PM peak hour.

The unsignalized intersection capacity analyses shows a 95% queue length after the completion of The Crescent at Ebenezer Commercial Site at Crescent Lake Way of approximately two car lengths during the peak hours; therefore the existing storage at the intersection is adequate and no change is necessary.

Westland Drive @ Driveway Connection

After the completion of The Crescent at Ebenezer Commercial Site the westbound approach will continue to operate at a LOS A during both the AM and PM peak hours and the northbound approach will operate at a LOS C during the AM peak hour and a LOS F during the PM peak hour.

The signalized intersection capacity analyses shows a 95% queue length at the full buildout at the intersection of Ebenezer Road at Westland Drive (north) of 1,017 feet at the westbound thru/right lane and 156 feet at the westbound left turn lanes during the AM peak hour and 226 feet at the westbound thru/right lane and 322 feet for the westbound left turn lanes during the PM peak hour. Thus the queue from the signalized intersections of Ebenezer Road at Westland Drive (north) will block the proposed driveway connection for a portion of time during both the AM and PM peak hours.

1 Introduction

1.1 Project Description

This report provides a summary of a traffic impact study that was performed for The Crescent at Ebenezer Commercial Site. The project is located between the intersections of Ebenezer Road at Westland Drive (north) and Ebenezer Road at Westland Drive (south) in Knox County. The location of the site is shown in Figure 1.

The full buildout of the development was assumed to include a 10,850 SF medical-dental building and a 2,152 SF coffee shop with a drive-through window. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2021.

The main entrance/exit for The Crescent at Ebenezer Commercial Site will connect to Crescent Lake Way, which is the proposed driveway location for the Crescent Bend Apartments located on Ebenezer Road. Also proposed is a full access entrance/exit with separate right and left turn lanes on Westland Drive and a right-in/right-out entrance/exit on Ebenezer Road. The proposed site layout is shown in Figure 2.

The purpose of this study is to evaluate the impacts to the traffic conditions caused by the proposed development.

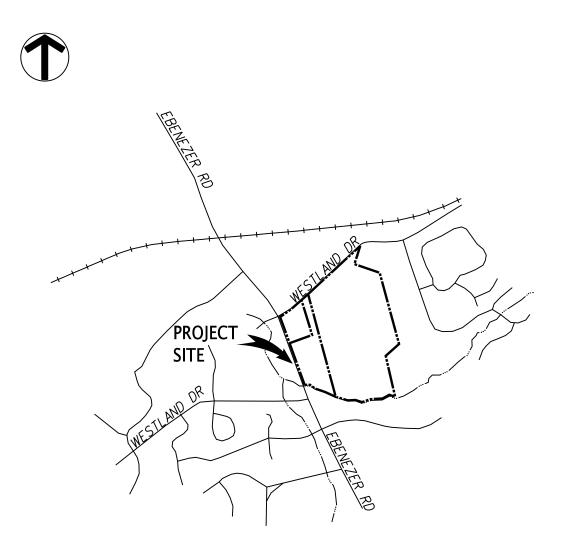


Figure 1: Location Map

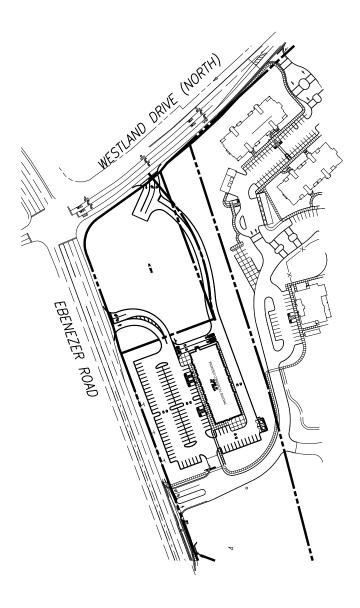


Figure 2: Site Plan

1.2 Existing Site Conditions

Crescent Lake Way is located approximately 235 feet north of the intersection of Westland Drive (south) and approximately 735 feet south of the intersection of Westland Drive (north). The roadway has a width of approximately 40 feet with separate right and left turn lanes.

The additional right-in/right-out driveway connection to Ebenezer Road is located approximately 310 feet south of the intersection of Westland Drive (north).

The proposed driveway connection to Westland Drive is located approximately 435 feet south of Serene Breeze Way (The Crescent at Ebenezer Apartments driveway connection) and approximately 250 feet north of the intersection of Ebenezer Road at Westland Drive (north). The proposed driveway has a width of 30 feet with separate right and left turn lanes.

There is also a private driveway connection at 1040 Ebenezer road located approximately 195 feet north of the intersection of Westland Drive (south). The house and driveway are expected to be removed as a part of phase 1 of The Crescent at Ebenezer apartment development.

Westland Drive east of the intersection of Ebenezer Road is a two-lane road. Westland Drive west of the intersection of Ebenezer Road is a three-lane road with a two-way left turn lane. The Knoxville-Knox County Planning Commission classifies Westland Drive as a minor arterial (with an 88 foot ROW) per the Major Road Plan. The posted speed limit on Westland Drive is 40 mph.

Ebenezer Road is a five-lane road with a two-way left turn lane at the existing driveway connection. The Knoxville-Knox County Planning Commission classifies Ebenezer Road at the location of the development between S Peters Road and S Northshore Drive as a minor arterial (with a 100 foot ROW) per the Major Road Plan. The posted speed limit on Ebenezer Road is 45 mph.

The existing sidewalk on Ebenezer Road extends northbound to the intersection of S Peters Road at Kingston Pike and southbound to the intersection with S Northshore Drive. The existing sidewalk on Westland Drive (north) extends 425 feet eastbound from the intersection with Ebenezer Road.

Aerial photos of the existing intersections are included in Attachment 9.

2 Existing Traffic Volumes

FMA conducted a turning movement count at the intersection of Ebenezer Road at Westland Drive (north) on Thursday May 10, 2018. FMA also conducted a turning movement count at the intersection of Ebenezer Road at Westland Drive (south) on Thursday May 17, 2018.

The current AM peak hour and PM peak hour were determined using the turning movement count that FMA conducted. At the intersection of Ebenezer Road at Westland Drive (north) the AM peak hour occurred between 7:15 am and 8:15 am, and the PM peak hour occurred between 5:00 pm and 6:00 pm. At the intersection of Ebenezer Road at Westland Drive (south) the AM peak hour occurred between 7:30 am and 8:30 am, and the PM peak hour occurred between 5:00 pm and 6:00 pm.

The existing volumes including the AM and PM peak hour traffic volumes at the count locations are shown in Figure 3, and the count data collected is included in Attachment 1.

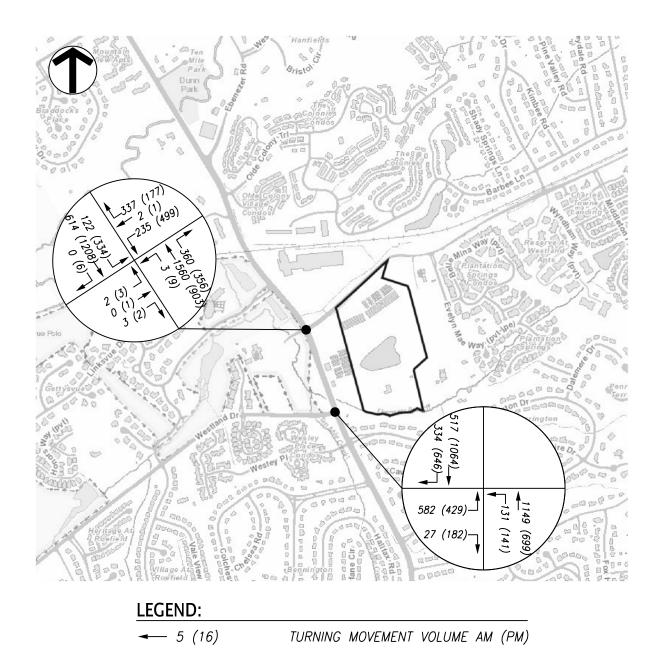


Figure 3: 2018 Existing Peak Hour Traffic

3 Background Growth

The Tennessee Department of Transportation (TDOT) and the Knoxville Regional Transportation Planning Organization (TPO) maintain count stations in the vicinity of the proposed development.

Knoxville TPO count station ID: 093M002 is located on Westland Drive 1000 feet east of Villa Crest Drive and northeast of the proposed development. The annual traffic growth rate for this station over the last five years is approximately 2.90% and the 2017 ADT was 9,870 vehicles per day.

Knoxville TPO count station ID: 093M001 is located on Westland Drive 100 feet east of Cloverhill Road and west of the proposed development. The annual growth rate for this station over the last five years is approximately 2.85% and the 2017 ADT was 12,110 vehicles per day.

TDOT count station #000286 is located on Ebenezer Road south of the intersection with Westland Drive. The annual growth rate for this station over the last ten years is approximately -1.02%. However the ADT has started to increase again and the annual growth rate for this station over the last four years is approximately 0.54%. The 2017 ADT was 14,691 vehicles per day.

For the purpose of this study, an annual growth rate of 2.0% was assumed for traffic at both intersections of Ebenezer Road at Westland Drive until full occupancy is reached in 2021. Attachment 2 shows the trend line growth charts for the Knoxville TPO and TDOT count stations.

Figure 4 demonstrates the projected background peak hour volumes at the intersections after applying the background growth rate to the existing conditions.

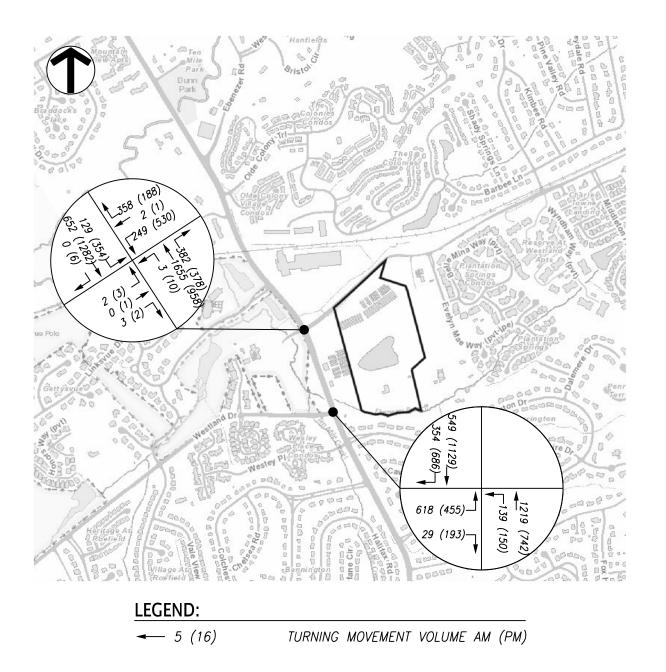


Figure 4: 2021 Background Peak Hour Traffic

3.1 The Crescent at Ebenezer

A Level I traffic impact study was completed for The Crescent at Ebenezer development located between the intersections of Ebenezer Road at Westland Drive (north) and Ebenezer Road at Westland Drive (south) within Knox County. "The Crescent at Ebenezer Traffic Impact Study" was prepared by Fulghum, MacIndoe & Associates dated August 27, 2018 and Knoxville-Knox County Planning Commission approved the concept plan on September 13, 2018.

The Crescent at Ebenezer is a residential development with a combination of apartment buildings and senior adult housing units. The full buildout of the development will consist of 249 apartment units and 180 independent living units. The anticipated completion date was the year 2021.

The main entrance/exit for The Crescent at Ebenezer will connect to the existing driveway connection for the Cedar Row Nursery (Crescent Lake Way) located on Ebenezer Road. A second entrance/exit will connect to a proposed driveway location (Serene Breeze Way) on Westland Drive.

FMA recommended the installation of a northbound right turn lane at the intersection of Ebenezer Road at Crescent Lake Way to be built during the phase 1 (apartment development) construction and the installation of a westbound left turn lane at the intersection of Westland Drive at Serene Breeze Way be built during the phase 2 (independent living development) construction.

The total combined trips generated by The Crescent at Ebenezer was estimated to be 2,724 daily trips. The estimated trips are 160 trips during the AM peak hour and 222 trips during the PM peak hour. A trip generation summary is shown in Table 3.1-1.

Table 3.1-1
The Crescent at Ebenezer
Trip Generation Summary

Land Use	Density	Daily Trips	AM Pea Enter	ak Hour Exit	PM Pe Enter	ak Hour Exit
	1	he Crescent at	Ebenezer			
Apartments (Local Trip Gen Study)	249 Units	2,167	27	97	97	80
Senior Adult Housing (LUC 252)	180 Units	557	12	24	24	21
The Crescent at Ebenez	zer	2,724	39	121	121	101

Figure 5 shows the combined peak hour site traffic for The Crescent at Ebenezer apartment and senior adult housing trips.

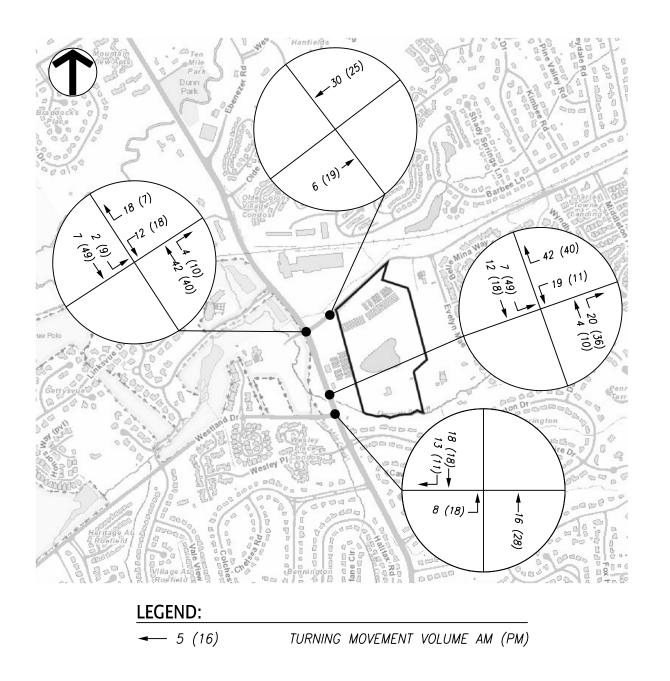


Figure 5: Apartment & Senior Adult Housing Peak Hour Site Traffic

3.2 Weigel's

A Level I traffic impact study was done for Ebenezer Road at Westland Drive Weigel's located within Knox County. The "Ebenezer Road - Westland Drive Weigel's Convenience Store Traffic Impact Study" was prepared by CDM Smith dated May 21, 2012.

The proposed project is a 3,997 SF Weigel's convenience store with 16 fueling stations. A full access driveway connection is proposed for the Weigel's site from both Ebenezer Road and Westland Drive.

CDM Smith had the following recommendations:

- Minimize landscaping, using low growing vegetation, and signing at the proposed street access to insure that safe sight distance is maintained.
- Extend the planned northbound right-turn lane on Ebenezer Road for Westland Drive approximately another 100 feet to be also used by traffic entering the Weigel's convenience store.
- Provide separate left and right turn lanes from the site access.
- Post STOP signs (R1-1) for exiting traffic from the site driveways.
- Intersection design should conform to the recommended standards and practices of the Tennessee Department of Transportation, American Association of State Highway and Transportation Officials, the Institute of Transportation Engineers and the Knox County, Department of Engineering and Public Works.

Knoxville-Knox County Planning Commission approved the concept plan on July 12, 2012. Knox County Engineering and Public Works recommended that the Westland Road driveway connection remain a full access driveway and that the Ebenezer Road driveway be revised to a right-in/right-out driveway connection.

Due to the changes in the site access FMA recalculated the trip generation and trip distribution for the Weigel's convenience market with gasoline pumps and using the equations provided in the *Trip Generation*, 10th Edition, published by the Institute of Transportation Engineers. Site trips were calculated for a convenience market with gasoline pumps (Land Use 853) for a 3,997 SF building and up to 16 fueling stations. A pass-by rate reduction of 65% was used for Land Use 853 as recommended by the Knoxville-Knox County Planning Commission.

The total combined trips generated by the Weigel's Gasoline/Service Station was estimated to be 2,495 daily trips. The estimated trips are 56 new trips during the AM peak hour and 68 new trips during the PM peak hour. A trip generation summary is shown in Table 3.2-1 and the land use worksheets are included in Attachment 3.

Table 3.2-1 Weigel's Gasoline/Service Station Trip Generation Summary

Land Use	Density	Daily Trips	AM Peak Hour Enter Exit	PM Peak Hour Enter Exit
	Wei	igel's Gasoline/S	Service Station	
Weigel's (LUC 853)	3,997 SF	2,495	81 81	99 99
65% Pass-By Redu 35% New Trips	uction	1,622 873	53 53 28 28	64 64 34 34

Figure 6 shows the Weigel's AM & PM peak hour trip distribution and Figures 7 and 8 show the Weigel's AM & PM peak hour trip distribution pass-by trips.

Figure 9 shows the Weigel's peak hour traffic and Figure 10 shows the Weigel's pass-by trips.

Figure 11 shows the background peak hour combined traffic including the 2021 background traffic, peak hour site traffic from the Crescent at Ebenezer apartment and senior adult living development and the peak hour site traffic from the Weigel's.

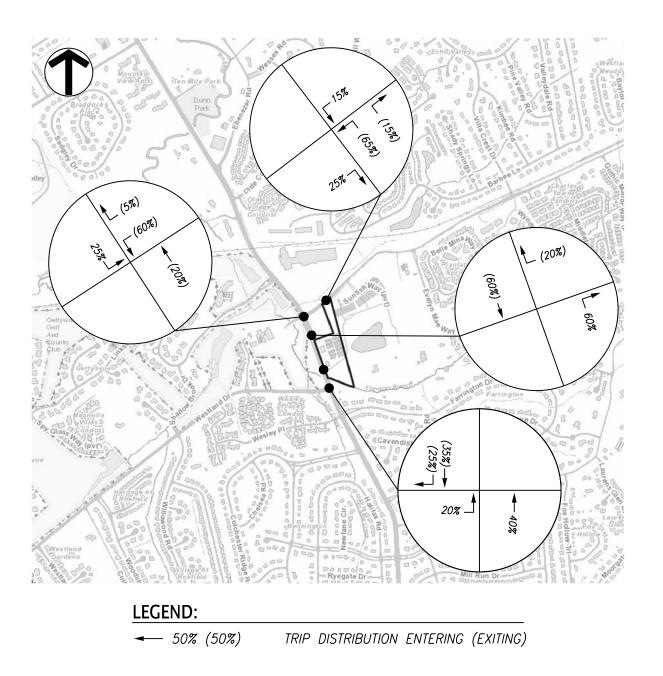


Figure 6: Weigel's AM & PM Peak Hour Trip Distribution

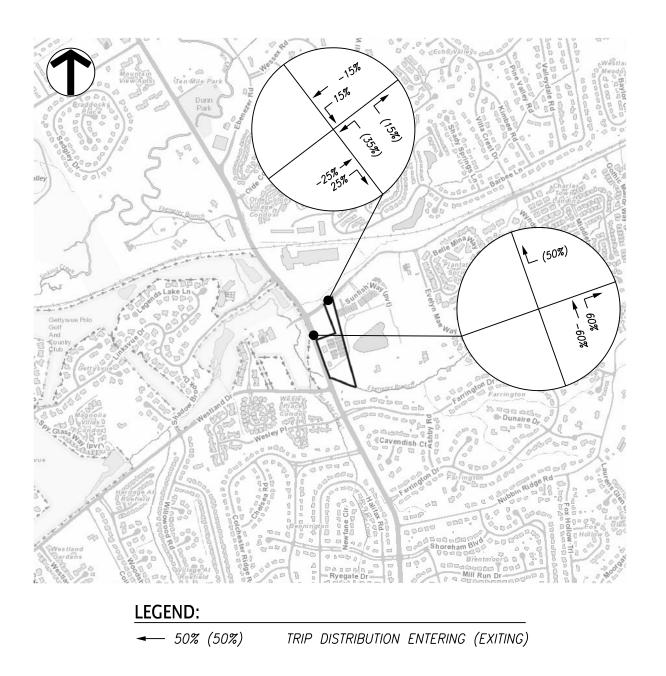


Figure 7: Weigel's AM Peak Hour Trip Distribution Pass-By Trips

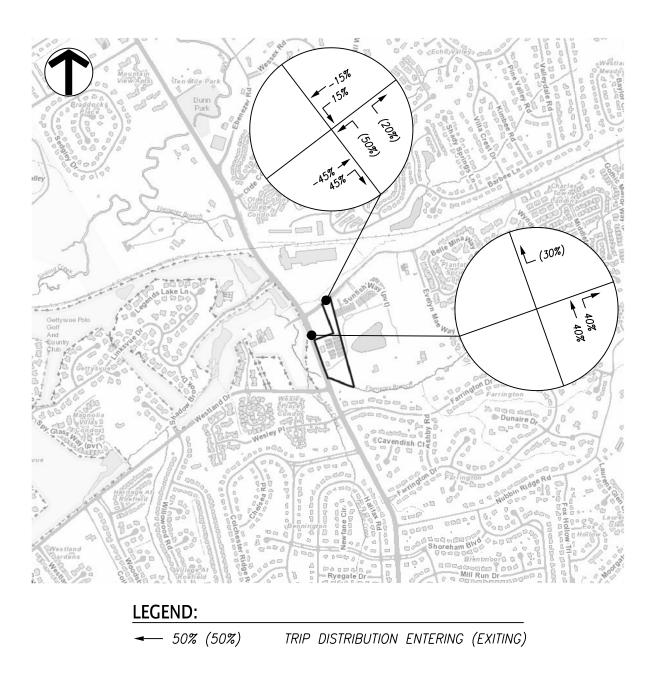


Figure 8: Weigel's PM Peak Hour Trip Distribution Pass-By Trips

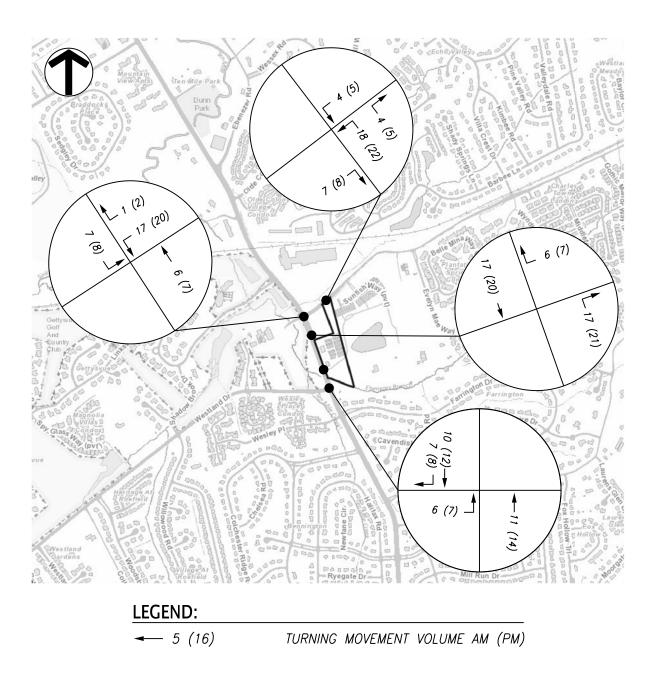


Figure 9: Weigel's Peak Hour Site Traffic

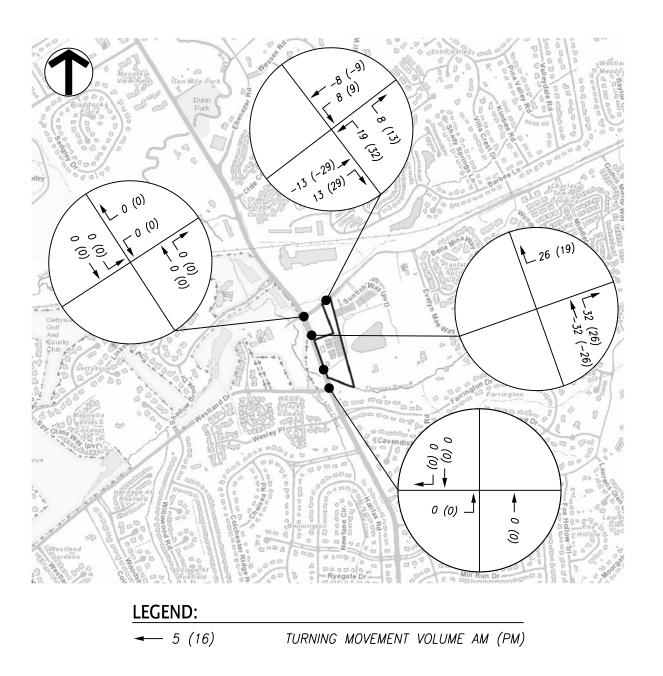
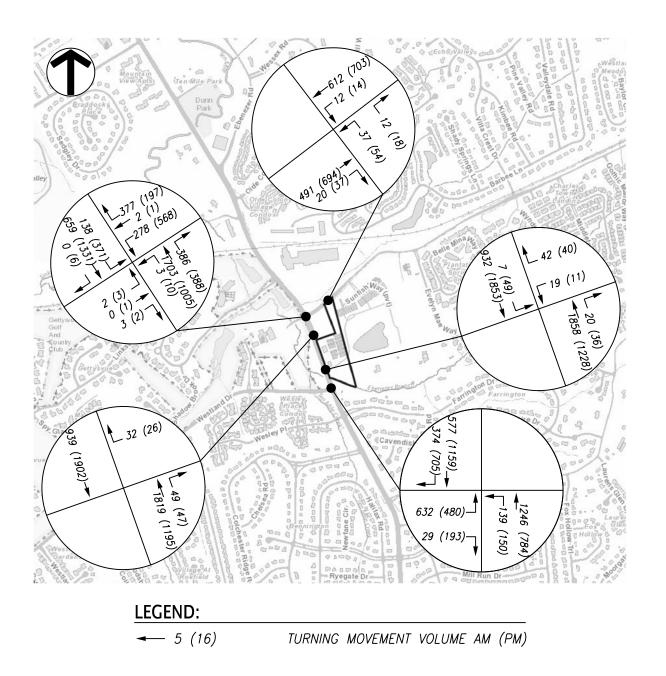



Figure 10: Weigel's Peak Hour Pass-By Trips

Figure 11: Background Peak Hour Combined Traffic

4 Trip Generation and Trip Distribution

For The Crescent at Ebenezer Commercial Site FMA assumed a 10,850 SF medical-dental office building and a 2,152 SF coffee/donut shop with a drive-through window. The equations provided in the *Trip Generation*, 10th Edition, published by the Institute of Transportation Engineers were used to calculate the expected site trips using both the coffee/donut shop with drive-through window (Land Use 937) and Medical-Dental Office Building (Land Use 720).

A pass-by trip occurs when a proposed development diverts traffic that is already traveling on a street adjacent to the site. A pass-by rate reduction of 40% was used for coffee/donut shop with a drive-through window or Land Use 937 as recommended by the Knoxville-Knox County Planning Commission.

The land use worksheets are included in Attachment 3.

The total combined trips generated by The Crescent at Ebenezer Commercial Site was estimated to be 1,388 daily trips. The estimated trips are 146 trips during the AM peak hour and 95 trips during the PM peak hour. A trip generation summary is shown in Table 4-1.

Table 4-1
The Crescent at Ebenezer Commercial Site
Trip Generation Summary

Land Use	Density	Daily Trips	AM Po Enter	eak Hour Exit	PM Pe Enter	ak Hour Exit
	The Cresco	ent at Ebenezer (Commerc	cial Site		
Coffee/Donut Shop w/ Drive Through Window (LUC 937)	2,152 SF	1,765	98	94	47	47
40% Pass-By Reduction 60% New Trips		706 1059	39 59	38 56	19 28	19 28
Medical-Dental Office (LUC 720)	10,850 SF	329	24	7	11	28
Commercial New Trips		1,388	83	63	39	56

Ebenezer Road at the existing driveway connection has a trip distribution of 67% northbound and 33% southbound during the AM peak hour and 40% northbound and 60% southbound during the PM peak hour.

Westland Drive at the proposed driveway connection has a trip distribution of 45% eastbound and 55% westbound during the AM peak hour and 50% eastbound and 50% westbound during the PM peak hour.

The directional distribution of the traffic generated by The Crescent at Ebenezer Commercial Site was determined using the existing traffic volumes in combination with the concept plan layout. Crescent Lake Way was designed to operate as the main entrance/exit to the commercial development.

It was assumed that 20% of traffic would enter/exit using the Westland Drive driveway connection and 80% of traffic would enter/exit using Crescent Lake Way. This assumption was made after measuring the existing traffic volume which is split 60% Ebenezer Road to/from the south, 25% Ebenezer Road to/from the north and 15% Westland Drive.

Figure 12 shows the commercial site AM & PM peak hour trip distribution and Figures 13 and 14 show the commercial site AM & PM peak hour trip distribution pass-by trips.

Figure 15 shows the commercial site peak hour traffic, Figure 16 shows the commercial site pass-by trips and Figure 17 shows the full buildout peak hour combined traffic.

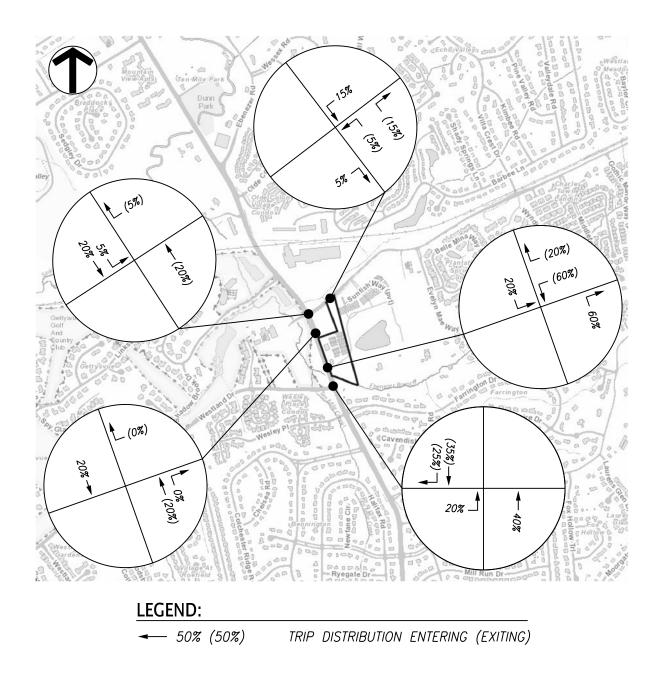


Figure 12: Commercial AM & PM Peak Hour Trip Distribution

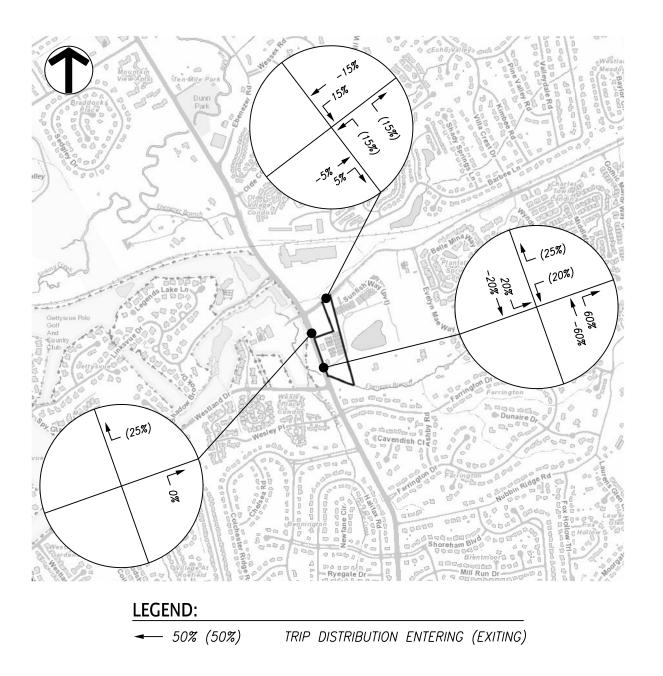


Figure 13: Commercial AM Peak Hour Trip Distribution Pass-By Trips

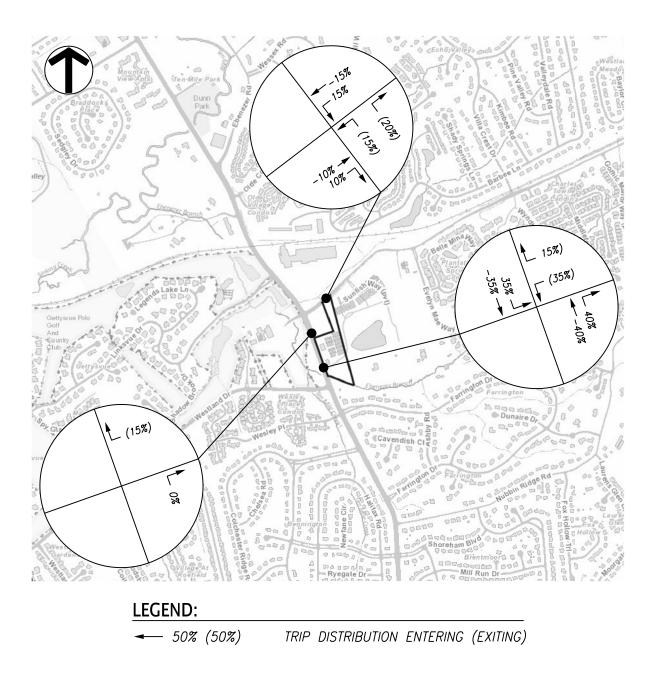
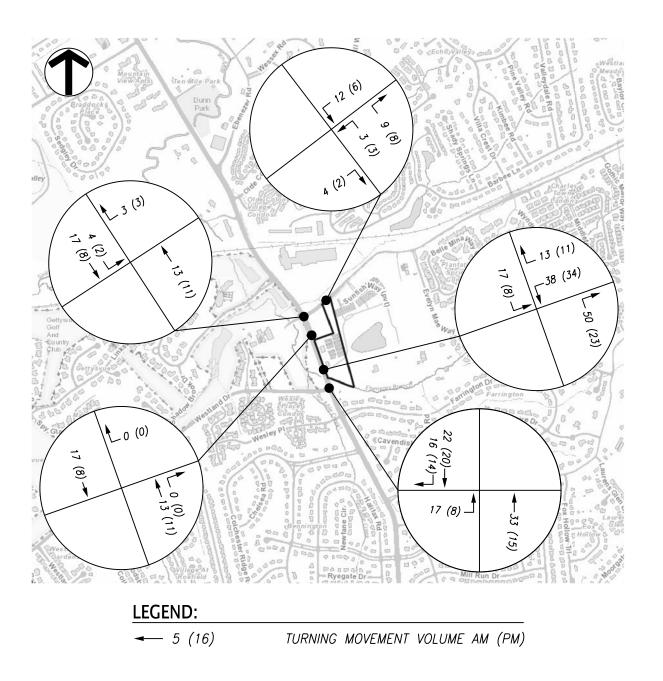



Figure 14: Commercial PM Peak Hour Trip Distribution Pass-By Trips

Figure 15: Commercial Peak Hour Site Traffic

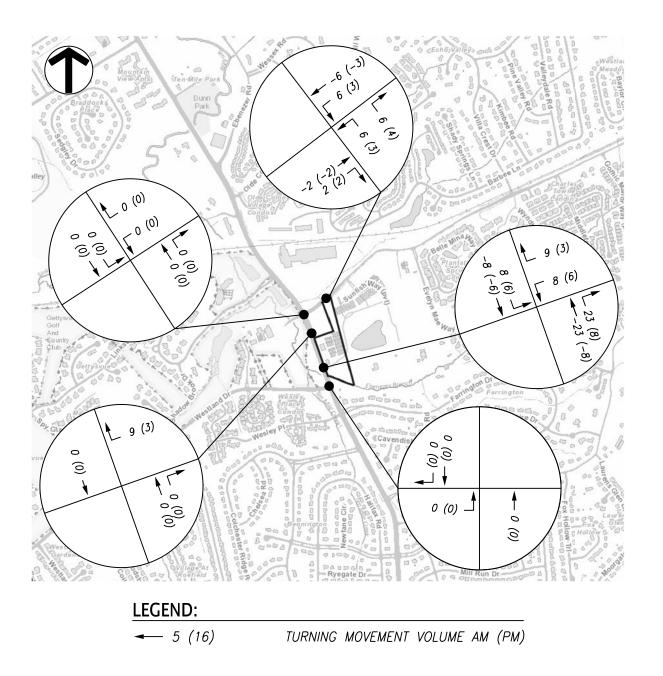


Figure 16: Commercial Peak Hour Pass-By Trips

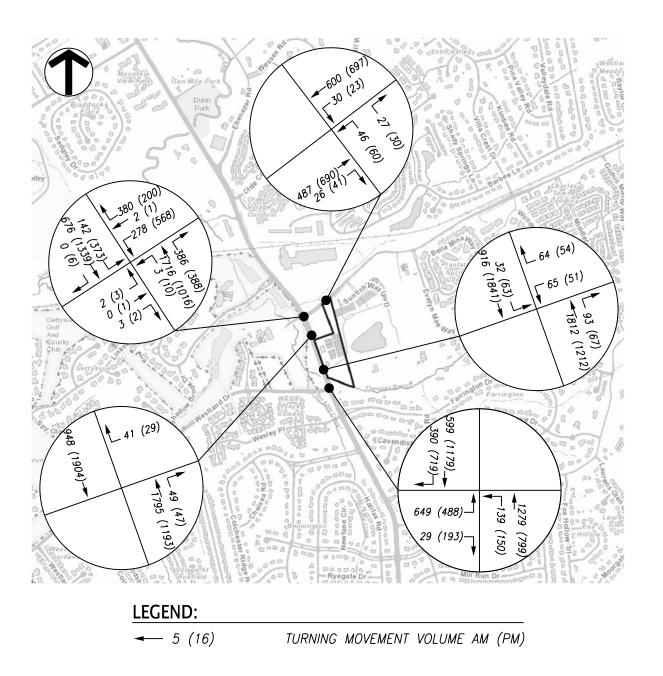


Figure 17: Full Buildout Peak Hour Combined Traffic

5 Projected Capacity and Level of Service

Unsignalized intersection capacity analyses were performed using the Highway Capacity Software (HCS7) for the AM and PM peak hours to evaluate the traffic conditions at the intersections of Ebenezer Road at the proposed driveway connection, Ebenezer Road at Crescent Lake Way and Westland Drive at the proposed driveway location.

Signalized intersection capacity analyses were performed using Highway Capacity Software (HCS7) with the existing signal timing for the AM and PM peak hours to evaluate the traffic conditions at both intersections of Ebenezer Road at Westland Drive. The existing signal timing was provided by Knox County and is included in Attachment 4.

The results from the analyses are expressed with a term "level of service" (LOS), which is based on the amount of delay experienced at the intersection. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions with excessive delay. LOS D generally is considered the minimum acceptable condition in urban areas. The HCS7 worksheets are included in Attachments 5, 6, and 7.

Table 5-1 shows the results of the capacity analyses.

Table 5-1 Intersection Analysis Level of Service (LOS) Summary

		Delay (sec)/LOS
Ebe	nezer Road @ Westland	d Drive (north) (Existing 2018)
AM Peak	Intersection	36.8 / D
PM Peak	Intersection	14.4 / B
Ebe	nezer Road @ Westland	d Drive (south) (Existing 2018)
AM Peak	Intersection	15.4 / B
PM Peak	Intersection	26.2 / C
Ebene	zer Road @ Westland I	Drive (north) (Background 2021)
AM Peak	Intersection	53.4 / D
PM Peak	Intersection	20.2 / C
Ebene	zer Road @ Westland I	Drive (south) (Background 2021)
AM Peak	Intersection	17.8 / B
PM Peak	Intersection	44.1 / D
Eben	ezer Road @ Driveway	Connection (Background 2021)
AM Peak	WB Approach	12.1 / B
PM Peak	WB Approach	9.7 / A
Ebe	nezer Road @ Crescent	Lake Way (Background 2021)
AM Peak	WB Approach SB Approach	22.0 / C 16.6 / C
PM Peak	WB Approach SB Approach	15.5 / C 12.0 / B
V	Vestland Drive @ Drive	eway Connection (Background 2021)
AM Peak	WB Approach NB Approach	8.6 / A 24.5 / C
PM Peak	WB Approach NB Approach	9.4 / A 49.3 / E

Ebenezer Road @	Westland Drive (north	n) (Commercial Site 2021)
AM Peak	Intersection	54.1 / D
PM Peak	Intersection	20.3 / C
Ebenezer Road @	Westland Drive (south	n) (Commercial Site 2021)
AM Peak	Intersection	18.2 / B
PM Peak	Intersection	45.7 / D
Ebenezer Road @	Driveway Connection	(Commercial Site 2021)
AM Peak	WB Approach	12.2 / B
PM Peak	WB Approach	9.7 / A
Ebenezer Road @	Crescent Lake Way (C	ommercial Site 2021)
AM Peak	WB Approach SB Approach	41.5 / E 18.4 / C
PM Peak	WB Approach SB Approach	30.6 / D 12.4 / B
Westland Drive @	Driveway Connection	n (Commercial Site 2021)
AM Peak	WB Approach NB Approach	8.7 / A 24.8 / C
PM Peak	WB Approach NB Approach	9.5 / A 51.0 / F

6 Turn Lane Warrant Analysis

The intersection of Westland Drive at the driveway connection and the intersection of Ebenezer Road at the driveway connection were evaluated to determine if a right turn lane is warranted. The Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy," was used to analyze the information. After the completion of the Crescent at Ebenezer Commercial Site both a right turn lane on Westland Drive at the driveway location and on Ebenezer Road at the driveway location are warranted. The turn lane warrant worksheets and analysis are included in Attachment 8.

The intersection of Ebenezer Road at Crescent Lake Way was not evaluated to determine if a turn lane is warranted. There is an existing two-way left turn lane on Ebenezer Road and a right turn lane is being built as a part of The Crescent at Ebenezer apartment development.

7 Conclusions and Recommendations

7.1 Ebenezer Road @ Westland Drive (north)

The existing traffic conditions at the signalized intersection of Ebenezer Road at Westland Drive (north) operate at a LOS D during the AM peak hour and a LOS B during the PM peak hour using the existing signal timing provided by Knox County.

The background traffic conditions at the signalized intersection of Ebenezer Road at Westland Drive (north) operate at a LOS D during AM peak hour and a LOS C during the PM peak hour using the existing signal timing provided by Knox County.

After the completion of The Crescent at Ebenezer Commercial Site the signalized intersection of Ebenezer Road at Westland Drive (north) will continue to operate at a LOS D during the AM peak hour and a LOS C during the PM peak hour using the existing signal timing provided by Knox County.

The LOS D during the AM peak hour is caused by the westbound thru/right lane having a volume to capacity ratio greater than 1.0. This is the case for the existing traffic volumes and the increase in delay caused by The Crescent at Ebenezer Commercial Site is expected to be minimal.

7.2 Ebenezer Road @ Westland Drive (south)

The existing traffic conditions at the signalized intersection of Ebenezer Road at Westland Drive (south) operate at a LOS B during the AM peak hour and a LOS C during the PM peak hour using the existing signal timing provided by Knox County.

The background traffic conditions at the signalized intersection of Ebenezer Road at Westland Drive (south) operate at a LOS B during the AM peak hour and a LOS D during the PM peak hour using the existing signal timing provided by Knox County.

After the completion of The Crescent at Ebenezer Commercial Site the signalized intersection of Ebenezer Road at Westland Drive (south) will operate at a LOS B during the AM peak hour and a LOS D during the PM peak hour using the existing signal timing provided by Knox County.

The eastbound double left turn lanes operate at a LOS C during the existing traffic conditions and a LOS F during both the background traffic conditions and after the completion of The Crescent at Ebenezer Commercial Site. The delay is caused by the turn lanes having a volume to capacity ratio greater than 1.0 and a queue storage ratio of greater than 2.0. The increase in delay caused by The Crescent at Ebenezer Commercial Site is expected to be minimal.

7.3 Ebenezer Road @ Driveway Connection

Knox County Engineering and Public Works recommended that the Ebenezer Road driveway be a right-in/right-out driveway connection.

The background traffic conditions at the intersection of Ebenezer Road at the Driveway Connection for the westbound approach will operate at a LOS B during the AM peak hour and a LOS A during the PM peak hour.

After the completion of The Crescent at Ebenezer Commercial Site the westbound approach will continue to operate at a LOS B during the AM peak hour and a LOS A during the PM peak hour.

A northbound right turn lane is warranted at the intersection of Ebenezer Road at the driveway connection during both the AM and PM peak hours after the completion of the Weigel's convenience market with gasoline pumps. CDM Smith's recommendation was to "extend the planned northbound right-turn lane on Ebenezer Road for Westland Drive approximately another 100 feet to be also used by traffic entering the Weigel's convenience store." A sketch of the right-turn lane

layout is included in Attachment 8. The turn lane improvements are expected to be installed prior to the construction of the Weigel's.

7.4 Ebenezer Road @ Crescent Lake Way

The background traffic conditions at the intersection of Ebenezer Road at the Crescent Lake Way for the westbound approach will operate at a LOS C during both the AM and PM peak hours and the southbound approach will operate at a LOS C during the AM peak hour and a LOS B during the PM peak hour.

After the completion of The Crescent at Ebenezer Commercial Site the westbound approach will operate at a LOS E during the AM peak hour and a LOS D during the PM peak hours and the southbound approach will operate at a LOS C during the AM peak hour and a LOS B during the PM peak hour.

The unsignalized intersection capacity analyses shows a 95% queue length after the completion of The Crescent at Ebenezer Commercial Site at Crescent Lake Way of approximately two car lengths during the peak hours; therefore the existing storage at the intersection is adequate and no change is necessary.

It is estimated based on field observations that the intersection of Ebenezer Road at Crescent Lake Way is blocked by the traffic from the signalized intersection of Ebenezer Road at Westland Drive (north) and Ebenezer Road at Westland Drive (south) approximately 50% during the AM peak hour and 20% during the PM peak hour.

7.5 Westland Drive @ Driveway Connection

The background traffic conditions at the intersection of Westland Drive at the driveway connection for the westbound approach will operate at a LOS A during both the AM and PM peak hours and the northbound approach will operate at a LOS C during the AM peak hour and a LOS E during the PM peak hour.

After the completion of The Crescent at Ebenezer Commercial Site the westbound approach will continue to operate at a LOS A during both the AM and PM peak hours and the northbound approach will operate at a LOS C during the AM peak hour and a LOS F during the PM peak hour.

The unsignalized intersection capacity analyses shows a 95% queue length at the full buildout for the driveway connection of less than one car length during the AM peak hour and approximately 3 car lengths during the PM peak hour; therefore the existing storage at the intersection is adequate and no change is necessary.

The Crescent at Ebenezer Commercial Site Traffic Impact Study July 8, 2019

The signalized intersection capacity analyses shows a 95% queue length at the full buildout at the intersection of Ebenezer Road at Westland Drive (north) of 1,017 feet at the westbound thru/right lane and 156 feet at the westbound left turn lanes during the AM peak hour and 226 feet at the westbound thru/right lane and 322 feet for the westbound left turn lanes during the PM peak hour. Thus the queue from the signalized intersections of Ebenezer Road at Westland Drive (north) will block the proposed driveway connection for a portion of time during both the AM and PM peak hours.

Westland Drive is classified as a minor arterial. The minimum intersection spacing required for an arterial is 400 feet per the "Minimum Subdivision Regulations" for Knoxville and Knox County. The nearest road intersection to the proposed driveway connection is currently 250 feet east at the intersection of Ebenezer Road. This intersection does not meet the required 400 feet spacing; however, given the constraints this location was determined to be the best fit and has been coordinated with Knox County Engineering & Public Works.

An eastbound right turn lane is warranted at the intersection of Westland Drive at the driveway connection during the PM peak hour after the completion of the Weigel's convenience market with gasoline pumps.

Attachment 1 Traffic Counts

Project: The Crescent at Ebenezer

Intersection: Ebenezer Road at Westland Drive / Ebenezer United Methodist Church

Date Conducted: 05/10/2018

		Ebeneze	r UMC		,	Westland	d Drive			Ebeneze	er Road			Ebeneze	er Road		
		Eastbo				Westb	ound			North				Southb			
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
7:00 AM	0	1	0	1	32	0	37	69	0	161	40	201	12	102	0	114	385
7:15 AM	0	0	0	0	68	0	68	136	0	306	61	367	15	146	0	161	664
7:30 AM	0	0	0	0	51	0	93	144	0	406	101	507	39	167	0	206	857
7:45 AM	2	0	0	2	57	2	91	150	0	449	78	527	32	138	0	170	849
Total	2	1	0	3	208	2	289	499	0	1322	280	1602	98	553	0	651	2755
8:00 AM	l 0	0	3	3	59	0	85	144	3	399	120	522	36	163	0	199	868
8:15 AM	0	0	0	0	50	0	47	97	0	265	73	338	32	174	1	207	642
8:30 AM	0	0	0	ő	61	0	54	115	0	211	91	302	20	128	1	149	566
8:45 AM	0	0	0	ő	47	0	51	98	0	192	65	257	18	112	0	130	485
Total	0	0	3	3	217	0	237	454	3	1067	349	1419	106	577	2	685	2561
Total	1 0	O	,	ار	217	O	237	757	3	1007	343	1415	100	377	_	003	2501
11:00 AM	2	0	0	2	35	0	29	64	1	141	44	186	30	133	0	163	415
11:15 AM	1	0	0	1	35	0	29	64	0	134	60	194	29	134	1	164	423
11:30 AM	0	0	0	0	34	0	41	75	0	138	47	185	32	142	1	1 <i>7</i> 5	435
11:45 AM	2	2	0	4	42	0	42	84	0	183	52	235	37	129	0	166	489
Total	5	2	0	7	146	0	141	287	1	596	203	800	128	538	2	668	1762
12:00 PM	J 7	2	0	9	38	0	45	83	1	126	37	164	24	151	0	175	431
12:15 PM	1	0	0	1	46	0	39	85	0	148	46	194	37	164	0	201	481
12:30 PM	2	1	2	5	50	1	32	83	1	150	39	190	38	164	1	203	481
12:45 PM	0	0	0	ō	52	0	47	99	0	175	50	225	30	167	0	197	521
Total	10	3	2	15	186	1	163	350	2	599	172	773	129	646	1	776	1914
0.00 814				اه				امما		40=		4 = 0 l	=0				l =10
2:00 PM	0	0	0	0	62	0	41	103	0	127	51	178	53	184	1	238	519
2:15 PM	0	0	0	0	70	0	32	102	0	143	40	183	41	191	1	233	518
2:30 PM	0	0	0	0	64 72	1 0	32	97	1 0	147 185	28 47	176 232	36 45	202	0 2	238	511
2:45 PM	1	0	0	1	268	1	42 147	114		602			175	753	4	223	570 2118
Total	, ,	U	U	'	200	1	14/	416	1	602	166	769	1/3	753	4	932	2110
3:00 PM	0	0	0	0	53	0	52	105	0	193	49	242	40	186	0	226	573
3:15 PM	0	0	0	0	53	0	55	108	0	208	64	272	48	184	0	232	612
3:30 PM	0	1	1	2	83	0	56	139	0	169	37	206	54	242	1	297	644
3:45 PM	0	0	2	2	97	1	48	146	0	162	64	226	76	339	0	415	789
Total	0	1	3	4	286	1	211	498	0	732	214	946	218	951	1	1170	2618
4:00 PM	l 0	0	2	2	99	0	34	133	1	165	61	227	62	255	0	317	679
4:15 PM	1	1	0	2	72	0	43	115	1	187	77	265	59	259	0	318	700
4:30 PM	0	0	2	2	93	1	44	138	0	162	72	234	68	245	0	313	687
4:45 PM	0	0	0	0	106	1	47	154	0	181	99	280	74	277	0	351	785
Total	1	1	4	6	370	2	168	540	2	695	309	1006	263	1036	0	1299	2851
5:00 PM	l 1	0	0	1	129	1	49	179	2	189	78	269	75	309	2	386	835
5:00 PM 5:15 PM	1	0	1	2	131	0	53	179	1	213	102	316	75 88	316	0	404	906
5:30 PM	1	1	1	3	126	0	36	162	2	213	83	309	80	308	2	390	864
5:45 PM	0	0	0	0	113	0	39	152	4	277	93	374	91	275	2	368	894
Total	3	1	2	6	499	1	177	677	9	903	356	1268	334	1208	6	1548	3499
Total	, ,		_	١	155		1,,,	9,7	,	505	330	12001	334	1200	3	1570	1 3133
Grand Total	l 6	4	12	22	1580	6	1082	2668	14	4719	1508	6241	1019	4325	9	5353	14284
Approach %	27.3	18.2	54.5	44	59.2	0.2	40.6	2000	0.2	75.6	24.2	0241	19.0	80.8	0.2	3333	14404
Total %	0.0	0.0	0.1	0.2		0.2	7.6	18.7	0.2	33.0	10.6	43.7	7.1	30.3	0.2	37.5	
i Otai 70	0.0	0.0	0.1	0.2	11.1	0.0	7.0	10./	0.1	55.0	10.0	₹3./	7.1	50.5	0.1	57.3	I

Project: The Crescent at Ebenezer Date Conducted: 5/10/2018

AM Peak Hour	7:15 AM - 8:15 AM	3238
PM Peak Hour	5:00 PM - 6:00 PM	3499

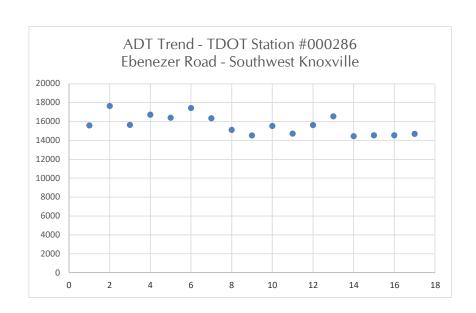
	F	Ebeneze	er UMC	П	,	Westlan	d Drive			Ebenez	er Road			Ebenez	er Road		
		Eastb	ound			Westb	ound			North	oound			Southl	oound		
Start	Left	Thru	Right \p	p. Tota	Left	Thru	Right	pp. Tota	Left	Thru	Right	pp. Tota	Left	Thru	Right \	op. Tota	Int. Total
Peak Hour Analysis fro	m 7:00 Å	M to 9:0	00 AM				•	•			•	•	•		•		
AM Peak Hour begins	at 7:30 Al	М															
7:15 AM	0	0	0	0	68	0	68	136	0	306	61	367	15	146	0	161	664
7:30 AM	0	0	0	0	51	0	93	144	0	406	101	507	39	167	0	206	857
7:45 AM	2	0	0	2	57	2	91	150	0	449	78	527	32	138	0	170	849
8:00 AM	0	0	3	3	59	0	85	144	3	399	120	522	36	163	0	199	868
Total Volume	2	0	3	5	235	2	337	574	3	1560	360	1923	122	614	0	736	3238
Future (2% over 3 yrs)	2	0	3		249	2	358		3	1655	382		129	652	0		3436
PHF	0.25	-	0.25		0.86	0.25	0.91		0.25	0.87	0.75		0.78	0.92	-		0.93
Peak Hour Analysis fro	m 3:00 P/	M to 6:0	0 PM														
PM Peak Hour begins a	at 5:00 PN	Λ															
5:00 PM	1	0	0	1	129	1	49	179	2	189	78	269	75	309	2	386	835
5:15 PM	1	0	1	2	131	0	53	184	1	213	102	316	88	316	0	404	906
5:30 PM	1	1	1	3	126	0	36	162	2	224	83	309	80	308	2	390	864
5:45 PM	0	0	0	0	113	0	39	152	4	277	93	374	91	275	2	368	894
Total Volume	3	1	2	6	499	1	177	677	9	903	356	1268	334	1208	6	1548	3499
Future (2% over 3 yrs)	3	1	2		530	1	188		10	958	378		354	1282	6		3713
PHF	0.75	0.25	0.50		0.95	0.25	0.83		0.56	0.81	0.87		0.92	0.96	0.75		0.97

Project: The Crescent at Ebenezer

Intersection: Ebenezer Road at Westland Drive

Date Conducted: 05/17/2018

]	We	stland Driv	/e	Eben	ezer Roa	d	Eber	nezer Roa	d	
		astbound			rthbound			uthbound		
Start	Left	Right	Total	Left	Thru	Total	Thru	Right	Total	Int. Total
7:00 AM	64	7	71	37	129	166	68	79	147	384
7:15 AM	97	11	108	27	196	223	76	164	240	5 <i>7</i> 1
7:30 AM	149	3	152	33	378	411	111	97	208	<i>77</i> 1
7:45 AM	168	4	172	34	331	365	130	72	202	739
Total	478	25	503	131	1034	1165	385	412	797	2465
,										
8:00 AM	153	8	161	32	241	273	142	80	222	656
8:15 AM	112	12	124	32	199	231	134	85 - 1	219	574
8:30 AM	87	10	97	42	153	195	93	<i>7</i> 1	164	456
8:45 AM	79	14	93	29	154	183	99	51	150	426
Total	431	44	475	135	747	882	468	287	755	2112
11:00 AM	62	15	77	27	99	126	109	60	169	372
11:15 AM	73	15	88	13	126	139	110	71	181	408
11:30 AM	77	19	96	23	128	151	114	54	168	415
11:45 AM	52	15	67	20	143	163	125	61	186	416
Total	264	64	328	83	496	579	458	246	704	1611
			1			1			- 1	
12:00 PM	58	20	78	12	127	139	147	61	208	425
12:15 PM	72	21	93	21	123	144	132	94	226	463
12:30 PM	64	9	73	12	146	158	143	70	213	444
12:45 PM	52	18	70	21	133	154	160	84	244	468
Total	246	68	314	66	529	595	582	309	891	1800
2:00 PM	66	16	82	15	123	138	137	75	212	432
2:15 PM	54	17	<i>7</i> 1	19	111	130	154	93	247	448
2:30 PM	45	21	66	19	111	130	144	110	254	450
2:45 PM	66	34	100	33	170	203	142	105	247	550
Total	231	88	319	86	515	601	577	383	960	1880
2.00 014	70	1.4	93	20	120	1 F o l	121	0.6	217	460
3:00 PM 3:15 PM	79 103	14 31	134	28 23	130 154	158 1 <i>77</i>	131 165	86 103	268	468 579
3:30 PM	87	27	114	23	13 4 144	167	241	103 92	333	614
3:45 PM	69	20	89	20	139	159	289	138	427	675
Total	338	92	430	94	567	661	826	419	1245	2336
10001	330	3 2	.501	J 1	307	00.1	020	113	12.19	2330
4:00 PM	83	32	115	29	144	173	208	105	313	601
4:15 PM	90	43	133	25	164	189	211	128	339	661
4:30 PM	98	37	135	37	149	186	231	116	347	668
4:45 PM	93	40	133	29	159	188	232	126	358	679
Total	364	152	516	120	616	736	882	475	1357	2609
5:00 PM	109	45	154	38	15 <i>7</i>	195	234	158	392	<i>7</i> 41
5:15 PM	98	46	144	27	179	206	291	184	475	825
5:30 PM	124	52	176	40	175	215	307	166	473	864
5:45 PM	98	39	137	36	188	224	232	138	370	731
Total	429	182	611	141	699	840	1064	646	1 <i>7</i> 10	3161
Grand Total	2781	<i>7</i> 15	3496	856	5203	6059	5242	3177	8419	17974
Approach %	79.5	20.5	3490	656 14.1	85.9	0059	62.3	37.7	0419	1/3/4
Total %	79.5 15.5	4.0	19.5	4.8	85.9 28.9	33.7	29.2	37.7 17.7	46.8	
i Ulai /0	15.5	4.0	19.5	4.0	20.9	55.7	29.2	1/./	40.0	

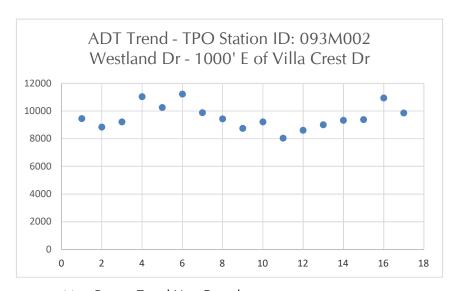

Project: The Crescent at Ebenezer Date Conducted: 5/17/2018

AM Peak Hour	7:30 AM - 8:30 AM	2740
PM Peak Hour	5:00 PM - 6:00 PM	3161

	We	estland Di	rive	Eb	enezer Ro	ad	Ebo	enezer Ro	ad	
		Eastbound	l k	N	lorthboun	d	S	outhboun	d	
Start	Left	Right	App. Total	Left	Thru	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis from 7	:00 AM to 9	:00 AM		-		-	-		-	-
AM Peak Hour begins at 7:	:30 AM									
7:30 AM	149	3	152	33	378	411	111	97	208	771
7:45 AM	168	4	172	34	331	365	130	72	202	739
8:00 AM	153	8	161	32	241	273	142	80	222	656
8:15 AM	112	12	124	32	199	231	134	85	219	574
Total Volume	582	27	609	131	1149	1280	517	334	851	2740
Future (2% over 3 yrs)	618	29)	139	1219		549	354		2908
PHF	0.87	0.56)	0.96	0.76		0.91	0.86		0.89
Peak Hour Analysis from 3	:00 PM to 6:	00 PM								
PM Peak Hour begins at 5:	00 PM						_			
5:00 PM	109	45	154	38	157	195	234	158	392	<i>7</i> 41
5:15 PM	98	46	144	27	179	206	291	184	475	825
5:30 PM	124	52	176	40	175	215	307	166	473	864
5:45 PM	98	39	137	36	188	224	232	138	370	731
Total Volume	429	182	611	141	699	840	1064	646	1 <i>7</i> 10	3161
Future (2% over 3 yrs)	455	19 3	·	150	742		1129	686		3354
PHF	0.86	0.88		0.88	0.93		0.87	0.88		0.91

Attachment 2 ADT Trends

		Adjusted Average
	Year	Daily Traffic
1	2001	15586
2	2002	17645
3	2003	15651
4	2004	16730
5	2005	16397
6	2006	17434
7	2007	16355
8	2008	15111
9	2009	14530
10	2010	15533
11	2011	14717
12	2012	15634
13	2013	16555
14	2014	14456
15	2015	14550
16	2016	14546
1 <i>7</i>	2017	14691


Most Recent Trend Line Growth

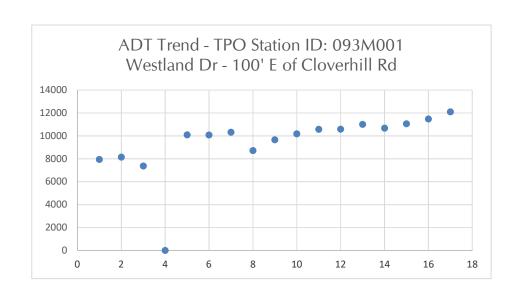
Year	ADT	Year	ADT
2007	16355	2014	14456
2017	14691	2017	14691

Annual Percent Growth -1.02% Annual Percent Growth 0.54%

Average Daily Year Traffic

Adjusted

Most Recent Trend Line Growth Year ADT


2012 8620 2017 9870

Annual Percent Growth

2.90%

Average Daily Traffic Year

Adjusted

Most Recent Trend Line Growth

Year ADT 2012 10600 2017 12110

Annual Percent Growth

2.85%

Attachment 3 **Trip Generation**

Project: Westland and Ebenezer Development

Date Conducted: 6/18/2019

Medical-Dental Office Building 10,850 SF

Average Daily Traffic

T = 38.42(X) - 87.62

T = 38.42(10.85) - 87.62

T = 329

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Ln(T) = 0.89 Ln(X) + 1.31

Ln(T) = 0.89 Ln(10.85) + 1.31

T = 31

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

T = 3.39(X) + 2.02

T = 3.39(10.85) + 2.02

T = 39

		Per	cent	Number		
Time Period	Total Trips	Enter	Exit	Enter	Exit	
Weekday (24 hours)	329	50%	50%	165	165	
AM Peak Hour	31	78%	22%	24	7	
PM Peak Hour	39	28%	72%	11	28	

Project: Westland and Ebenezer Development

Date Conducted: 7/7/2019

Coffee/Donut Shop with Drive-Through Window (LUC 937) 2,152 SF

Average Daily Traffic

Average Rate = 470.95

T = 820.38 * (2.152)

T = 1765

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Average Rate = 88.99

T = 88.99 (2.152)

T = 192

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Average Rate = 43.38

T = 43.38 (2.152)

T = 93

		Per	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	1765	50%	50%	883	883
AM Peak Hour	192	51%	49%	98	94
PM Peak Hour	93	50%	50%	47	47

Pass-By Trips 40%

		Percent		Nun	nber	
Time Period	Total Trips	Enter	Exit	Enter	Exit	
Weekday (24 hours)	706	50%	50%	353	353	
AM Peak Hour	77	51%	49%	39	38	
PM Peak Hour	37	50%	50%	19	19	

New Trips 60%

		Per	cent	Number		
Time Period	Total Trips	Enter	Exit	Enter	Exit	
Weekday (24 hours)	1059	50%	50%	530	530	
AM Peak Hour	115	51%	49%	59	56	
PM Peak Hour	56	50%	50%	28	28	

Project: Westland and Ebenezer Development

Date Conducted: 7/7/2019

Gasoline/Service Station With Convenience Market - LUC 853 3,997 SF

Average Daily Traffic

Average Rate = 624.20

T = 624.20(3.997)

T = 2495

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

Average Rate = 40.59

T = 40.59 (3.997)

T = 162

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Average Rate = 49.29

T = 49.29 (3.997)

T = 197

		Perd	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	2495	50%	50%	1248	1248
AM Peak Hour	162	50%	50%	81	81
PM Peak Hour	197	50%	50%	99	99

Pass-By Trips 65%

		Per	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	1622	50%	50%	811	811
AM Peak Hour	105	50%	50%	53	53
PM Peak Hour	128	50%	50%	64	64

New Trips 35%

		Perd	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	873	50%	50%	437	437
AM Peak Hour	57	50%	50%	28	28
PM Peak Hour	69	50%	50%	34	34

Coffee/Donut Shop with Drive-Through Window

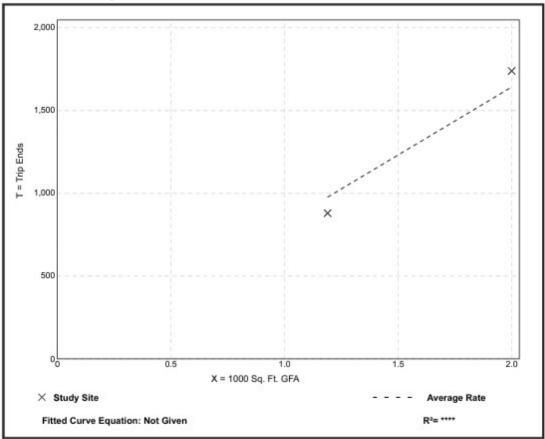
(937)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 2 1000 Sq. Ft. GFA: 2


Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
820.38	738.66 - 869.00	*

Data Plot and Equation

Caution - Small Sample Size

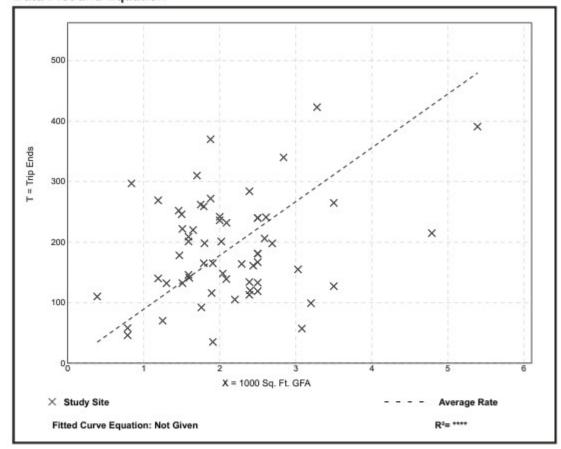
Coffee/Donut Shop with Drive-Through Window

(937)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 61 1000 Sq. Ft. GFA: 2

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
88.99	18.32 - 353.57	48.19

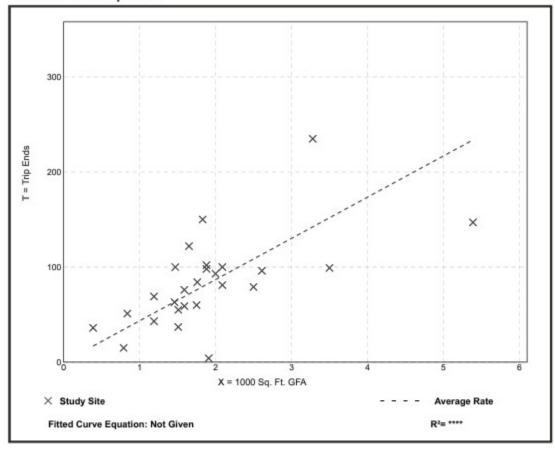
Coffee/Donut Shop with Drive-Through Window

(937)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 26 1000 Sq. Ft. GFA: 2

Directional Distribution: 50% entering, 50% exiting

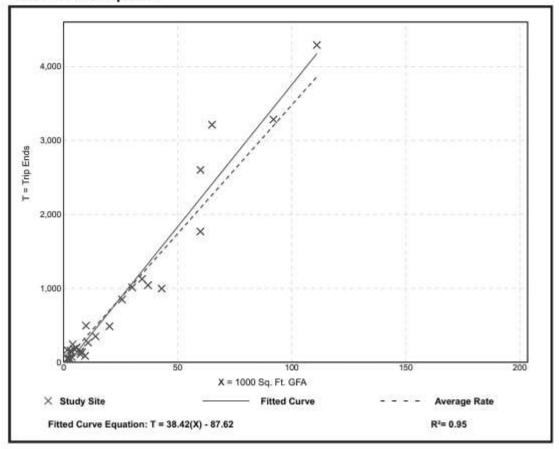
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation	
43.38	2.09 - 92.31	18.88	

Medical-Dental Office Building

(720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 28 1000 Sq. Ft. GFA: 24

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
34.80	9.14 - 100.75	9.79

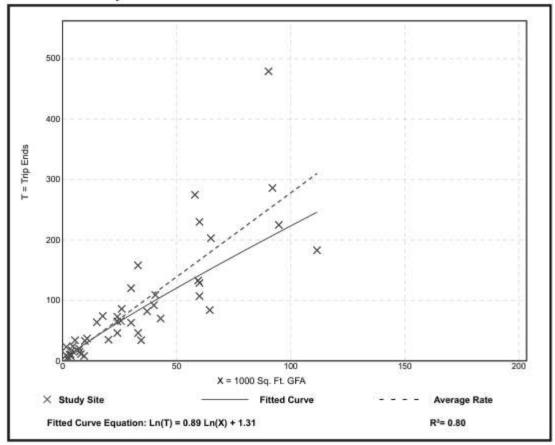
Medical-Dental Office Building

(720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 44 1000 Sq. Ft. GFA: 32

Directional Distribution: 78% entering, 22% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.78	0.85 - 14.30	1.28

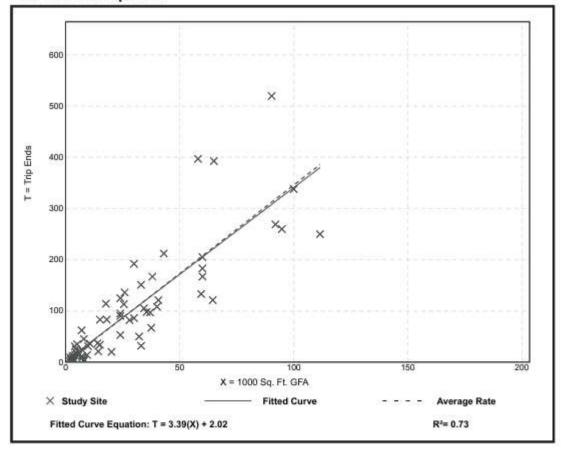
Medical-Dental Office Building

(720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 65 1000 Sq. Ft. GFA: 28

Directional Distribution: 28% entering, 72% exiting

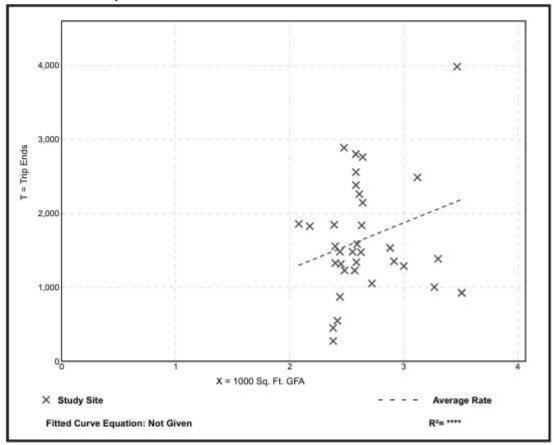
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.46	0.25 - 8.86	1.58

Convenience Market with Gasoline Pumps

(853)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 34 1000 Sq. Ft. GFA: 3

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

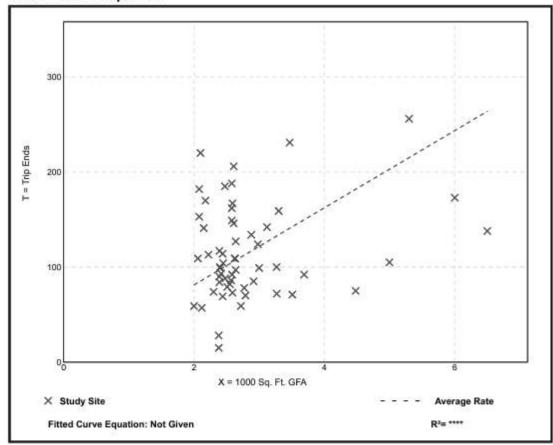
Average Rate	Range of Rates	Standard Deviation
624.20	115.13 - 1167.27	283.35

Convenience Market with Gasoline Pumps

(853)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 57 1000 Sq. Ft. GFA: 3

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

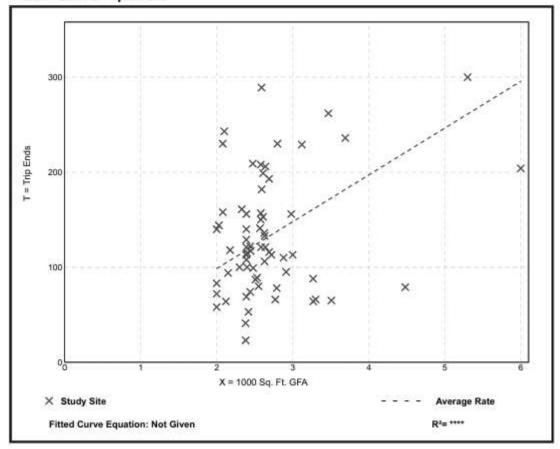
Convenience Market with Gasoline Pumps

(853)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 67 1000 Sq. Ft. GFA: 3

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
49.29	9.66 - 115.71	22.49

Attachment 4 Signal Timing

INTERSECTION NUM	IBER:		19			zo	NE:	D	LOCAL CONTROLLER PROGRAMMING
INTERSECTION: INSTALLATION DATE	E:				ad at V	Vestlar	d Driv	e (north	PEEK 3000 SERIES
PROGRAMMED BY:									, mark out out that
NOTES:	-								MASTER TYPE: PEEK 3000
									ARCHARAGARANA ARCHARAGANA
									MASTER LOCATION:
TIME	BY PI	HASE	(SEC)	& F	UNCT	IONS	Į:		CONTROLLER OPTIONS
PHASE	1	2	3	4	5	6	7	8	PHASE 1 2 3 4 5 6 7 8
INITIAL	6	20	6	8					START UP
PASSAGE	3.0	3.0	3.0	3.0					UCF LAST
YELLOW	4.0	4.5	3.0	3.5					UCF EXIT
RED CLEAR	2.0	1.5	2.5	2.0					SIM. GAP
WALK		7	7	7					MIN RED UCF OVERRIDE PRE-EMPT
PED CLEAR		18	26	25					RED REVERT LICE TEST A OR B. OVERPRIDES
MAX 1			735	(T)		-			AUTO PED PASSAGE
200.000.000									CLEAR SEQUENTIAL STOP TIME START UP START STOP TIME
MAX 2									FLASH ENABLE SIM. GAP
MAX 3 LIMIT									START UP ENHANCED PED OPERATION
MAX 3 ADJUST									START UP EXT. START
CNA1									ALL RED OVERRIDES FLASH
CNA 2									FREE
WALK REST MOD.									SPECIAL
FLASH WALK									CICNAL DICDLAVO
INHIBIT MAX									SIGNAL DISPLAYS
PED RECYCLE									
MIN RECALL									
MAX RECALL									
PED RECALL		_							
NON-LOCK									
VEHICLE OMIT			_			_			
PED OMIT									
MAX OUTS									
TO ADJ MAX 3 GAP OUTS									
TO ADJ MAX 3				1					
	Р	HASII	NG SC	HEM	ATIC				
			in Line		107-51-50-51-51				WALK X
		S. C. L. S.	2	1	k:				WALK
		\blacksquare	\		•				(WAIT) DONT WALK
	^				1				WALK
Side Street 3	<i>→</i>		Î		4	_ _4 S	ide Str	eet	
Sido Olloce o	_		North			- 5%			PHASING SEQUENCE
	+	←	84		▶ ₩				+ 11 A + 11 + + + + + + + + + + + + + +
		Ma	2 in Line	Street		(*)	E CIAL		
				D 4 ***	# #3 B 1000 -			OUNTY	Chech Databases and Sec.
			DE	PARTA	IENT (JF ENG	INEER	CING AN	BLIC WORKS Sheet 1

Sheet 1 of 4

INTERSECTION	NUMB	ER:	19			zo	NE:	D				DE	ГЕСТ	or s	SETT	INGS
INSTALLATION	DATE:		Ebenez	er Road	d at Wes	stland E	rive (no	orth)					TR		EK zu Conpany	
PROGRAMMED NOTES:	вт:												PEEK	3000	SERIE	S
						DETE	ECTIO	N DA	TA							
PHASE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
LOOPS		6	1100													
VIDEO																
					0.		/									
	DET	ECTO	R AS	SIGN	MENT	s					DET		OR MC			
DETECTOR	1	2	3	4	5	6	7	8		DETE	CTOR		CTOR DE	DEL		STRETO STOP E
DETECTOR 1	X										1					
DETECTOR 2		X								:	2					
DETECTOR 3			Х							;	3					
DETECTOR 4				X							4					
DETECTOR 5					Х						5					
DETECTOR 6						Х				(6					
DETECTOR 7							X				7					
DETECTOR 8								Х			8					
	_			_		-		IHIBIT		900	672		2000	l o s	75.00	
PHASE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DETECTOR 1																
DETECTOR 2																
DETECTOR 3																
DETECTOR 4																
DETECTOR 5			1									100				
DETECTOR 6																
DETECTOR 7																
DETECTOR 8									FICIAL							

INTERSECTION NU	MBER: 19	ZONE:	D
INTERSECTION:	Ebenezer Ro	oad at Westland I	Orive (north
INSTALLATION DA	TE:		
PROGRAMMED BY	:		
NOTES:	Offset is referenced a	t beginning of yello	w

COORDINATION AND OPERATION

PEEK 3000 SERIES

PHASE	ALL	OCAT	PIONS	ISEC

PHASE	1	2	3	4	5	6	7	8
CYCLE 1/SPLIT 1	16	66	13	15	16	66	13	15
CYCLE 1/SPLIT 2								
CYCLE 2/SPLIT 1	30	46	15	29	30	46	15	29
CYCLE 2/SPLIT 2								
CYCLE 3/SPLIT 1	16	34	20	20	16	34	20	20
CYCLE 3/SPLIT 2								
CYCLE 4/SPLIT 1								
CYCLE 4/SPLIT 2								

DYNAMIC OMITS

PHASE/OVL	1/A	2/B	3/C	4/D	5/E	6/F	7/G	8/H
OMIT PHASE								
IF PHASE OR OVL ON								
OMIT PHASE								
IF PHASE OR OVL ON								
OMIT PHASE								
IF PHASE OR OVL ON								
OMIT PHASE								
IF PHASE OR OVL ON								

OPERATING MODE

FUNCTION	
AUTO PERM	
END OF MAIN ST	
ENHANCED PERM	
FIXED FORCE OFF	
YELLOW OFFSET	
CENTRAL OVERIDE	
NO PCL OFFSET ADJ	
OFFSET ENTRY IN %	
PERM-PA ENTRY IN %	
INVERT FREE IN	
SPLIT MATRIX	
4 SPLITS / CYCLE	
NO EARLY COORD PED	
CYCLE SOURCE	
SPLIT SOURCE	
OFFSET SOURCE	
FREE SOURCE	
FLASH SOURCE	
INTER. TOD REVERT	
TYPE OF PERM	
OFFSET SEEKING	
PED PERMISSIVE	
YIELD PERCENT	

CYCLE LENGTH / DWELL / OFFSETS

CYCLE	1	2	3	4	5	6
CYCLE LENGTH	110	120	90			
MAX DWELL						
OFFSET 1	21	47	40			
OFFSET 2						
OFFSET 3						
OFFSET 4						
OFFSET 5						

PHASE REVERSAL

PATTERN	MODE	PHASES				
PATTERN	MODE	LEAD	LAG			

DUAL ENTRY

PHASE	1	2	3	4	5	6	7	8
PHASE 1								
PHASE 2								
PHASE 3								
PHASE 4								
PHASE 5								
PHASE 6								
PHASE 7								
PHASE 8								

COORD. PHASES

CYCLE	PHASES TO BE COORD					
1	2	6				
2						
3						
4						
5						
6						

CYCLE / OFFSET / SPLIT / FREE TO TOD CIRCUITS

PLAN	0	C/O/S/FREE				CKT	CKT	CKT
1								
2								

KNOX COUNTY
DEPARTMENT OF ENGINEERING AND PUBLIC WORKS

INTERSECTION NUMBER:	19	ZONE:	D
INTERSECTION: INSTALLATION DATE: PROGRAMMED BY:	Ebenezer Ro	ead at Westland I	Orive (north)
NOTES:			
WEEKLY PRO	OGRAM PLAN		

TIME OF DAY PROGRAMMING

PEEK 3000 SERIES

PLAN	SUN 1	MON 2	TUE 3	WED 4	THU 5	FRI 6	SAT 7
1	2	1	1	1	1	1	2
2							
3							
4							
5							

DAYLIGHT SAVINGS

	монтн	W-O-M
SPRING	3	2
FALL	11	1

CIRCUIT OVERRIDES

скт	SYM	ON/OFF/TOD

TIME DEPENDENT SYNC REF

CYCLE	нн:мм
1	
2	
3	
4	
5	
6	
SYNC REF	

PLAN	нн:мм	CKT PLAN	C/O/S	скт	ON/OFF
1	00:00	FREE			
1	06:30		1/1/1		
1	09:30		3/1/1		
1	14:30		2/1/1		
1	18:00		3/1/1		
1	21:00	FREE			
2	00:00	FREE			
2	09:00		3/1/1		
2	19:00	FREE			

DAY PLAN EVENTS

TOD CIRCUIT PLANS

PLAN	СКТ	ON/OFF	СКТ	ON/OFF	СКТ	ON/OFF	СКТ	ON/OFF
1								
2								
3								

KNOX COUNTY
DEPARTMENT OF ENGINEERING AND PUBLIC WORKS

Sheet 4 of 4

										LOCAL	co	NTR	OLLE	ER PR	ROGF	RAMI	/IING	
INTERSECTION NUM	IBER:		20 Ebene	zer Ro	ad at V	ZOI Vestlan		D e (south)				10	P(EEK	i			
INSTALLATION DATE PROGRAMMED BY:	Ē:	8												0 SERII				*
NOTES:														DE	.EIC 0/	200		
);	_									MASTER						000		
×				-					ľ	MASTER LOCA	ATION:							
TIME	BY PI	HASE	(SEC)	& Fl	JNCT	IONS				<u> </u>	ď	CONT	ROLL	ER OF	топ	IS		
PHASE	1	2	3	4	5	6	7	8		PHASE	1	2	3	4	5	6	7	8
INITIAL	6	16		8		16				START UP								
PASSAGE	3.0	5.0		3.0		5.0				UCF LAST								
YELLOW	4.0	4.0		4.0		4.0				UCF EXIT								
RED CLEAR	2.0	2.0		2.0		2.0				SIM. GAP								
WALK		7		7						MIN RED REVERT		UCI	OVER			Р	RE-EM	PT
PED CLEAR		23		22						RED REVERT		UCF	- Statement - The	A OR B		0	VERRI	DES
MAX 1	20	40		20		110				AUTO PED			PASSA			S	TOP TI	ME
(\$25000000000000000000000000000000000000	THE REAL PROPERTY.	270		4		40				START UP			QUEN	M. GAP		1		1
MAX 2	12	20		200		20		-		FLASH START UP		10.700,000	IANCE	entransanii (
MAX 3 LIMIT										INTERVAL		0	PERAT	ION				
MAX 3 ADJUST										START UP ALL RED			XT. STA					
CNA 1										FLASH								
CNA 2										FREE							_	
WALK REST MOD.				-		-				SPECIAL				NO SECURIO DE LA COMPANSIONA DEL COMPANSIONA DE LA COMPANSIONA DEL COMPANSIONA DE LA	- 500A34V3.	_		
FLASH WALK		1										SIC	SNAL	DISPL	.AYS			
PED RECYCLE														1			4	
MIN RECALL																		
MAX RECALL											(\subseteq					•	
PED RECALL																		
SOFT RECALL			_															
NON-LOCK		-									6		1		6		6	
VEHICLE OMIT PED OMIT		-	+								0	5	(<u></u>	6		6	5
MAX OUTS											6	5	(6	<u> </u>	6	5
TO ADJ MAX 3 GAP OUTS	-		-				-			(+)	6	9	1	$\widetilde{\oplus}$				
TO ADJ MAX 3										Θ			-					
	F			CHEM						7	7							*
		Ma		Street										WALK)	W	ALK		1
		1	2 1	1								2		WAIT)	D	ONT	Me	
		←	*		+										two chr	ALK	-	
	-		Δ			_												
Side Street 4	\rightarrow				4		Drivew	ay				B111				-		
	-1		North	1	Г	_					-	PHA	SING	SEQL) FNC	E		
	•	1 M	∱ 6 ain Line	e Street	* *	(OFFICIAL STREET				1	≒ ↑		↓ <□↑		ĵ		
			D	EPART	MENT			OUNTY RING A	D PUBLI	c works								Sheet 1

Sheet 1 of 4

INTERSECTION INTERSECTION INSTALLATION PROGRAMMED NOTES:	: DATE:		20 Ebenez	zer Road	d at Wes	ZON		D outh)				PEEK 3000 SERIES							
								-											
						DETE	СТІО	N DA	TA										
PHASE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
LOOPS																			
VIDEO																			
	DET	ECTO	OR AS	SIGNI	MENT	s			ř		DET	ECTO	2002/2007/2017/2017	0.14	Market Street	No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	TCU		
DETECTOR	1	2	3	4	5	6	7	8		DETE	CTOR	MO	CTOR DE		ME	STRE STOP			
DETECTOR 1	Х										1								
DETECTOR 2		X								;	2		ii.						
DETECTOR 3			Х				<u>III.</u>				3								
DETECTOR 4				Х						-	4								
DETECTOR 5					X						5								
DETECTOR 6						X					6								
DETECTOR 7							X				7								
DETECTOR 8		4						Х			В								
						1075	AY IN							1	To any said		V)		
PHASE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
DETECTOR 1																			
DETECTOR 2																			
DETECTOR 3																			
DETECTOR 4																			
DETECTOR 5													0						
DETECTOR 6																			
DETECTOR 7																			
DETECTOR 8																			

KNOX COUNTY
DEPARTMENT OF ENGINEERING AND PUBLIC WORKS

INTERSECTION NU	MBER	:	20			zoi		D					COO	KUIN	ATIC	PE		PERA	- 110	i.M
INTERSECTION:			Eben	ezer R	oad at	West	land D	rive (s	outh)						lelle.	104	F I C			
INSTALLATION DA															PEEK		SERIE	S		
PROGRAMMED BY									Ž.											
NOTES:		rrset is	retere	enced a	it begi	ining c	r yello	W												
	эилс	ΕΔΙΙ	OCA:	TIONS	SEC	2)								DY	намі	СОМ	ITS			
PHASE	1	2	3	4	5	6	7	8	l		PHASI	/OVL	1/A	2/B	3/C	4/D	5/E	6/F	7/G	8/H
CYCLE 1/SPLIT 1	18	58		34		76		34	İ		ON PH	T20(T01.51)								
	(364)			220		5.5			l		IF PH									
CYCLE 1/SPLIT 2					-						OR ON									
CYCLE 2/SPLIT 1	15	85		20		100		20			PH/	SE								
CYCLE 2/SPLIT 2									1		OR O									
CYCLE 3/SPLIT 1	18	44		28		62		28			ON	1IT								
	.0	10.00						1777			PH/ IF Ph						-		-	
CYCLE 3/SPLIT 2											OR O					_				
CYCLE 4/SPLIT 1											PH									
CYCLE 4/SPLIT 2		0					14		1		OR O									
Service Control of the Control of th						4					ONO	LON								
OPER	ATING	MOI	Œ				CYC	LE LE	NGT	1 / DV	VELL /	OFF	SETS				PHASI	EREV	ERSA	.L
FUNCTI	ON				1		CYCL	E	1	2	3	4	5	6]	PAT	TERN	MODE	PHA	SES
AUTO PERM					1	CYC	LE LE	NGTH	110	120	90					FAI	1121314	WOOL	LEAD	LAG
END OF MAIN ST						M	AX DW	ELL												
ENHANCED PERM						C	FFSE	Т1	31	76	44				1					
FIXED FORCE OF	=					- 0	OFFSE	T 2												_
YELLOW OFFSET							OFFSE	61.0304												
CENTRAL OVERIE						-	FFSE								ł	_		-		
NO PCL OFFSET	909100			-)FFSE	T 5							J					
OFFSET ENTRY IN	20000									MILL	ENTR	v					cc	ORD.	РΗΔ	SES
PERM-PA ENTRY INVERT FREE IN	IIN 70	_			1	PH	IASE	1 1	2	3	4	5	6	7	8	1				SES TO
SPLIT MATRIX			1		-		ASE 1	<u> </u>			200						CY	CLE	1.000	OORD
4 SPLITS / CYCLE			16.	-	1		ASE 2											1	2	6
NO EARLY COOR					1		ASE 3											2		
CYCLE SOURCE					1	PH	ASE 4											3		
SPLIT SOURCE					1	PHASE 5												4		
OFFSET SOURCE					1	PHASE 6												5		
FREE SOURCE						PH	ASE 7											6		
FLASH SOURCE					1	PH	ASE 8										4		-	
INTER. TOD REVE	RT								**				12	17.	A	- 20				
TYPE OF PERM					4	CYCLE / OFFSET				LIT /	FREE	TO T	OD C	IRCU	ITS					

C/O/S/FREE

PLAN

1

OFFSET SEEKING

PED PERMISSIVE

YIELD PERCENT

CKT CKT CKT CKT

KNOX COUNTY
DEPARTMENT OF ENGINEERING AND PUBLIC WORKS

INTERSEC'	TION NU	JMBER:		20			ZONE:	D
INTERSEC	ION DA	1		Ebene	ezer R	oad al	: Westland	Drive (south)
PROGRAM NOTES:	MED BY	/ :						
	WEE	KLY P	ROG	RAMI	PLAN			
PLAN	SUN 1	MON 2	TUE 3	WED 4	THU 5	FRI 6	SAT 7	PLA
	1							

TIME OF DAY PROGRAMMING

PEEK 3000 SERIES

ON/OFF

CKT

DAY PLAN EVENTS

C/O/S

1/1/1 3/1/1

2/1/1

3/1/1

3/1/1

CKT PLAN

FREE

FREE FREE

FREE

нн:мм

00:00

06:30

09:30

14:30

18:00

21:00

00:00

09:00

19:00

1

1

1 1

1

1

2

2

2

PLAN	SUN 1	MON 2	TUE 3	WED 4	THU 5	FRI 6	SAT 7
1	2	1	1	1	1	1	2
2							
3							
4							
5							

DAYLIGHT SAVINGS

	MONTH	W-O-M			
SPRING	3	2			
FALL	11	1			

CIRCUIT OVERRIDES

скт	SYM	ON/OFF/TOD					

TIME DEPENDENT SYNC REF

OTHO IXEL								
CYCLE	нн:мм							
1								
2								
3								
4								
5								
6								
SYNC REF								

TOD CIRCUIT PLANS

PLAN	CKT	ON/OFF	CKT	ON/OFF	CKT	ON/OFF	CKT	ON/OFF
1								
2								
3								

KNOX COUNTY DEPARTMENT OF ENGINEERING AND PUBLIC WORKS

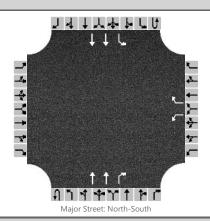
Sheet 4 of 4

Attachment 5 Intersection Worksheets – Existing AM/PM Peaks

HCS7 Signalized Intersection Results Summary しゅてやけとい **General Information Intersection Information** FMA Duration, h 0.25 Agency Analyst Addie Kirkham Analysis Date 5/31/2018 Area Type Other PHF 0.93 Jurisdiction Knox County Time Period Existing AM Peak **Urban Street** Ebenezer Road Analysis Year 2018 **Analysis Period** 1> 7:00 Ebenezer Road at Westl... File Name Existing AM Peak Westland (north).xus Intersection **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 2 337 Demand (v), veh/h 2 0 3 235 3 1560 360 122 614 0 Signal Information ᇨ JE. Cycle, s 110.0 Reference Phase 2 *****17 Offset, s 0 Reference Point End Green 5.9 0.3 16.1 0.0 65.1 0.6 Uncoordinated No Simult. Gap E/W Off Yellow 3.0 4.5 3.5 0.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.4 21.9 21.6 71.6 10.4 82.0 6.1 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.5 4.5 5.5 6.5 Max Allow Headway (MAH), s 3.9 4.4 4.3 4.3 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.1 2.2 4.6 17.6 5.0 Green Extension Time (g_e), s 0.0 0.0 1.9 0.0 0.0 0.2 0.0 Phase Call Probability 0.06 0.09 1.00 1.00 0.98 0.07 0.14 Max Out Probability 0.09 1.00 0.13 WB **Movement Group Results** EΒ NB SB Approach Movement L Т R L Т R Т R L Т L R **Assigned Movement** 3 8 18 7 4 14 5 2 12 1 6 16 2 3 253 328 3 1677 387 131 660 0 Adjusted Flow Rate (v), veh/h 1585 1730 1587 774 1585 1781 1870 Adjusted Saturation Flow Rate (s), veh/h/ln 1781 1781 0 2.6 29.4 3.0 2.2 Queue Service Time (g_s), s 0.1 0.2 15.6 0.1 5.4 0.0 Cycle Queue Clearance Time (g_c), s 0.1 0.2 2.6 15.6 0.1 29.4 5.4 3.0 2.2 0.0 Green Ratio (g/C) 0.00 0.01 0.15 0.14 0.59 0.59 0.74 0.66 0.69 Capacity (c), veh/h 72 8 632 225 524 2108 1168 257 2568 Volume-to-Capacity Ratio (X) 0.030 0.397 0.400 1.456 0.006 0.796 0.331 0.511 0.257 0.000 Back of Queue (Q), ft/ln (95 th percentile) 2.8 129.6 802.3 0.9 264.4 170.8 63.3 31.6 7 0 Back of Queue (Q), veh/ln (95 th percentile) 0.1 0.3 5.1 31.6 0.0 10.4 6.7 2.5 1.2 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.11 0.00 0.30 0.00 0.01 0.00 0.74 0.45 0.00 0.00 Uniform Delay (d 1), s/veh 54.5 54.5 38.3 44.6 4.7 7.8 12.7 14.3 1.6 Incremental Delay (d 2), s/veh 0.2 28.5 0.4 228.3 0.0 3.2 8.0 1.6 0.2 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 54.7 82.9 38.7 272.9 4.8 11.0 13.5 15.9 1.8 Level of Service (LOS) D F D F Α В В В Α 71.6 Ε 171.0 F 11.5 В 4.1 Approach Delay, s/veh / LOS Α Intersection Delay, s/veh / LOS 36.8 D **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS С С 3.0 2.9 2.4 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.4 Α 2.2 В 1.1 Α

HCS7 S	ignalize	d Inte	ersect	tion R	esu	ılts	Sun	nmar	у					
General Information						Intor	rooot	ion Inf	ormotic	\n		14741	b L	
V							Intersection Information Duration, h 0.25					11		
1.134.14)	A l	IA 1 : D : IM 04 0040						0.25						
Analyst Addie Kirkham		Analysis Date May 31										w F	2	
Jurisdiction Knox County Libon Street Ebonozer Road		Time Period Existin		ng AIM P	еак	PHF		D!I	0.89	20		W.T.		
Urban Street Ebenezer Road		is Year		4445				Period	1> 7:0	JU			7	
Intersection Ebenezer Road at West			Existin	ng AM P	eak_	Westl	land ((south).	xus		_ 1	<u>ነተተ</u>		
Project Description 223.013 The Crescent a	it Ebenezer											I H I PY	r r	
Demand Information		EB			W	/B			NB			SB		
Approach Movement	L			L	 		R	L T R			L T R			
Demand (v), veh/h	582		27					131	1149	_	1	517	334	
Signal Information			171											
Cycle, s 110.0 Reference Phase 2		72.64	R.A	K							V .	_	- ₹∵	
Offset, s 0 Reference Point En	d Green	8 9	59.5	23.6	0.0	1	0.0	0.0		1	2	3	Y 4	
Uncoordinated No Simult. Gap E/W Or			4.0	4.0	0.0		0.0	0.0		< 2	1	7		
Force Mode Fixed Simult. Gap N/S Or		2.0	2.0	2.0	0.0		0.0	0.0	コ	5	6	7	8	
Timer Results	EBL		EBT	WBI	<u> </u>	WB	ST.	NBI	-	NBT	SBI	L	SBT	
Assigned Phase			4				_	5		2			6	
Case Number			9.0				_	1.0		4.0			8.3	
Phase Duration, s			29.6					14.9	9	80.4		65.5		
Change Period, (Y+Rc), s			6.0					6.0		6.0			6.0	
Max Allow Headway (MAH), s			4.1					4.1		0.0			0.0	
Queue Clearance Time (g_s), s			21.9				_	5.6						
Green Extension Time (g_{e}), s			1.7					0.3		0.0			0.0	
Phase Call Probability			1.00					0.99)					
Max Out Probability		(0.53		\perp			0.00)					
Movement Group Results		EB			WE	2			NB			SB		
Approach Movement		Т	R	L	T		R	L	T	R	L	T	R	
Assigned Movement	7	1	14			-		5	2	I N	-	6	16	
Adjusted Flow Rate (v), veh/h	654		30			+	-	147	1291		_	512	444	
Adjusted Flow Rate (v), verim	1730		1585			+	\rightarrow	1781	1781			1870	1624	
, ,,	19.9		1.4			+	-	3.6	7.5		_	20.5	13.2	
Queue Service Time (g s), s			1.4			+	\rightarrow	3.6	7.5		-	20.5	13.2	
Cycle Queue Clearance Time (g c), s Green Ratio (g/C)	19.9					+	-				-	0.54	_	
Capacity (c), veh/h	741		0.30 468					0.64 418	0.68 2410			1013	0.54 879	
Volume-to-Capacity Ratio (X)	_		_										+	
Back of Queue (Q), ft/ln (95 th percentile)	0.883		0.065					0.352 58.4	0.536 80.7			0.506	0.506	
Back of Queue (Q), rivin (95 th percentile)	13.5		0.9					2.3	3.2			8.1	7.3	
Queue Storage Ratio (RQ) (95 th percentile)	13.5		0.00					0.61	0.00			0.00	0.00	
Uniform Delay (d 1), s/veh	38.0		25.3					10.5	2.1			8.9	8.9	
Incremental Delay (d 2), s/veh	9.3		_										_	
Initial Queue Delay (d 3), s/veh	0.0		0.1					0.5	0.9			0.0	0.0	
* * * *			-										_	
Control Delay (d), s/veh Level of Service (LOS)	47.3 D		25.4 C					11.0 B	3.0			10.7 B	10.9 B	
					0.0									
Approach Delay, s/veh / LOS		46.3 D 0.0					3.8 A					10.8 B		
Intersection Delay, s/veh / LOS			15	0.4							В			
	FR W				/B NR					SB				
Multimodal Results		FB			WF	3			NB			SB		
Multimodal Results Pedestrian LOS Score / LOS	2.9	EB	С	2.7	WE	3 C	\dashv	0.7	NB	A	2.4	SB	В	

HCS7 Signalized Intersection Results Summary しゅてやけとい **General Information Intersection Information** FMA Duration, h 0.25 Agency Analyst Addie Kirkham Analysis Date 5/31/2018 Area Type Other PHF 0.97 Jurisdiction Knox County Time Period Existing PM Peak **Urban Street** Ebenezer Road Analysis Year 2018 **Analysis Period** 1> 7:00 Ebenezer Road at Westl... File Name Intersection Existing PM Peak Westland (north).xus **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** EB **WB** NB SB Approach Movement L R L R L R R 499 Demand (v), veh/h 3 1 2 1 177 9 903 356 334 1208 6 Signal Information ᇨ JE. Cycle, s 120.0 Reference Phase 2 *****17 Offset, s 0 Reference Point End Green 12.9 17.4 0.0 66.6 0.6 0.5 Uncoordinated No Simult. Gap E/W Off Yellow 3.0 4.5 3.5 0.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.6 6.1 23.4 22.9 73.1 17.4 90.5 Change Period, (Y+Rc), s 6.0 6.0 6.5 4.5 6.0 5.5 6.5 Max Allow Headway (MAH), s 3.9 4.3 4.2 4.2 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.2 2.2 14.8 12.3 11.6 Green Extension Time (g_e), s 0.0 0.0 2.6 2.7 0.0 1.3 0.0 Phase Call Probability 0.10 0.10 1.00 0.99 1.00 0.00 0.00 0.02 Max Out Probability 0.01 0.00 WB SB **Movement Group Results** EΒ NB Approach Movement L Т R L Т R Т R L Т R L **Assigned Movement** 3 8 18 7 4 14 5 2 12 1 6 16 3 3 514 146 9 931 367 344 626 625 Adjusted Flow Rate (v), veh/h 1781 1730 1587 444 1781 1585 1781 1870 1867 Adjusted Saturation Flow Rate (s), veh/h/ln 1670 0.2 10.3 0.7 12.5 7.0 Queue Service Time (g_s), s 0.2 12.8 9.6 4.8 4.8 Cycle Queue Clearance Time (g_c), s 0.2 0.2 12.8 10.3 0.7 12.5 7.0 9.6 4.8 4.8 Green Ratio (g/C) 0.01 0.00 0.15 0.14 0.56 0.56 0.70 0.68 0.70 0.70 Capacity (c), veh/h 69 8 622 224 306 1977 1110 522 1309 1307 Volume-to-Capacity Ratio (X) 0.045 0.377 0.827 0.655 0.030 0.471 0.331 0.659 0.478 0.478 Back of Queue (Q), ft/ln (95 th percentile) 4.5 290.8 186 3.7 182.1 67.1 148.8 68 66.9 7 Back of Queue (Q), veh/ln (95 th percentile) 0.2 0.3 11.4 7.3 0.1 7.2 2.6 5.9 2.7 2.7 Queue Storage Ratio (RQ) (95 th percentile) 0.18 0.00 0.68 0.00 0.04 0.00 0.29 1.06 0.00 0.00 Uniform Delay (d 1), s/veh 59.3 59.4 45.0 46.0 7.0 8.6 8.5 9.3 1.4 1.4 Incremental Delay (d 2), s/veh 0.3 26.3 2.9 3.2 0.2 8.0 8.0 1.4 1.3 1.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 59.6 85.7 47.9 49.3 7.2 9.4 9.3 10.7 2.6 2.6 Level of Service (LOS) Ε F D D Α Α Α В Α Α 72.7 Ε 48.2 9.3 Α 4.4 Approach Delay, s/veh / LOS D Α Intersection Delay, s/veh / LOS 14.4 В **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS С С 3.0 2.9 2.5 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.6 В 1.6 В 1.8


	HCS	7 Sig	nalize	d In	tersec	tion R	lesi	ılts	Sun	nmar	У				
General Information								Inte	oreact	ion Inf	ormatio	n n		14741	Ļ Ļ
Agency FMA									ration,		0.25	<i>)</i>	- 1	41	
1.91.1.7	Kirkham		Analya	io Doi	te May 3	1 2010					Other				
			Time F					PH	еа Тур	-	0.89			w 1 €	<u>;</u>
Jurisdiction Knox C Urban Street Ebene.	zer Road					ng PM F	еак	-		Doriod	1> 7:0	20	_ <u>_</u>		
		N/4l	Analys			DM F) = = l :			Period		JU	_ 5		7
	zer Road at \				EXISTII	ng PM F	еак_	vves	stiana	(soutn).	xus		_	<u>ነተ</u>	2- 7
Project Description 223.01	3 The Cresco	ent at E	benezei												rı
Demand Information				EB			V	/B			NB			SB	
Approach Movement			L	Т	R	L	Т-	тТ	R		Т	R	L	Т	R
Demand (v), veh/h			429		182	╅			- ' '	141	699		 -	1064	646
Domana (1), totali			120		.02								_	100	0.0
Signal Information					11	Π_	П								
Cycle, s 110.0 Refere	ence Phase	2		N 51		E.							4	-	~~
Offset, s 0 Refere	ence Point	End	Green	I II	64.2	18.9	0.	<u> </u>	0.0	0.0		1	2	3	4
Uncoordinated No Simult	. Gap E/W	On	Yellow		4.0	4.0	0.		0.0	0.0		< ₂	4	7	
Force Mode Fixed Simult	. Gap N/S	On	Red	2.0	2.0	2.0	0.		0.0	0.0	コ	5	6	7	8
			,												
Timer Results			EBL	-	EBT	WB	L	W	ВТ	NBI	-	NBT	SB	L	SBT
Assigned Phase					4					5		2			6
Case Number					9.0					1.0		4.0			8.3
Phase Duration, s					24.9					14.9)	85.1			70.2
Change Period, (Y+Rc), s					6.0					6.0		6.0			6.0
Max Allow Headway (MAH), s	3				4.2					4.1		0.0			0.0
Queue Clearance Time (g s),	S				16.5					7.3					
Green Extension Time (g e), s	 S				2.4					0.4		0.0			0.0
Phase Call Probability					1.00					0.99	,				
Max Out Probability				\neg	0.11					0.00	,				
Movement Group Results				EB			WI	В			NB			SB	
Approach Movement			L	Т	R	L	T		R	L	T	R	L	T	R
Assigned Movement			7		14					5	2			6	16
Adjusted Flow Rate (v), veh/h	1		482		204					158	785			964	957
Adjusted Saturation Flow Rate	(s), veh/h/l	n	1730		1585					1781	1781			1870	1646
Queue Service Time (g_s), s			14.5		11.9					5.3	1.4			64.4	63.3
Cycle Queue Clearance Time	(<i>g c</i>), s		14.5		11.9					5.3	1.4			64.4	63.3
Green Ratio (g/C)			0.17		0.25					0.68	0.72			0.58	0.58
Capacity (c), veh/h			594		401					210	2562			1091	960
Volume-to-Capacity Ratio (X)			0.812		0.510					0.754	0.307			0.883	0.997
Back of Queue (Q), ft/ln (95	th percentile)		256		198.2					196.5	19.8			426.2	649
Back of Queue (Q), veh/ln (9	5 th percenti	le)	10.1		7.8					7.7	0.8			16.8	26.0
Queue Storage Ratio (RQ) (95 th percent	ile)	0.93		0.00					2.07	0.00			0.00	0.00
Uniform Delay (d 1), s/veh			40.7		32.7					31.9	0.7			9.5	12.1
Incremental Delay (d 2), s/vel	า		3.6		1.0					5.4	0.3			10.4	28.3
Initial Queue Delay (d 3), s/ve			0.0		0.0					0.0	0.0			0.0	0.0
Control Delay (d), s/veh			44.4		33.7			\top		37.3	1.0			19.9	40.4
Level of Service (LOS)			D		С					D	Α			В	D
Approach Delay, s/veh / LOS			41.2		D	0.0				7.1		Α	30.	1	С
Intersection Delay, s/veh / LOS	3				26	5.2							С		
,,															
Multimodal Results				EB			WI	В			NB			SB	
Pedestrian LOS Score / LOS			2.9		С	2.7	T	(2	0.7		Α	2.4	1	В
	cycle LOS Score / LOS				F					1.3		Α	2.1		В

Attachment 6 Intersection Worksheets – Background AM/PM Peaks

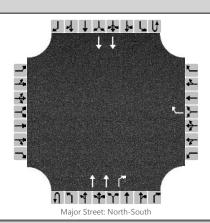
HCS7 Signalized Intersection Results Summary 147年176 **General Information Intersection Information** FMA Duration, h 0.25 Agency Analyst Addie Kirkham Analysis Date Jul 7, 2019 Area Type Other Jurisdiction Knox County Time Period Background AM PHF 0.93 Peak Ebenezer Road **Urban Street** Analysis Year 2021 **Analysis Period** 1> 7:00 Intersection Westland (north) File Name Phase 3 AM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer WB NB SB **Demand Information** ΕB Approach Movement L Т R L R L R L R Demand (v), veh/h 2 0 3 278 2 377 3 1703 386 138 659 0 JI. 泒 Signal Information Cycle, s 110.0 Reference Phase 2 ₹ Offset, s 0 Reference Point End Green 5.9 0.3 16.1 0.0 65.1 0.6 Uncoordinated No Simult. Gap E/W Off Yellow 3.0 4.5 3.5 0.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.4 6.1 21.9 21.6 71.6 10.4 82.0 6.0 Change Period, (Y+Rc), s 6.0 5.5 6.0 6.5 4.5 6.5 Max Allow Headway (MAH), s 3.9 4.4 4.3 4.3 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.1 2.2 6.0 17.6 5.4 Green Extension Time (g_e), s 0.0 0.0 2.1 0.0 0.0 0.2 0.0 Phase Call Probability 0.06 0.09 1.00 1.00 0.99 Max Out Probability 0.07 0.14 0.18 1.00 0.20 **Movement Group Results** EΒ WB NB SB L Т R L Т R Т R Т R Approach Movement L L 3 12 **Assigned Movement** 8 18 7 4 14 5 2 1 6 16 2 Adjusted Flow Rate (v), veh/h 3 299 369 3 1718 389 148 709 0 1781 1585 1730 1586 740 1781 1585 1781 1870 Adjusted Saturation Flow Rate (s), veh/h/ln 0 Queue Service Time (g_s), s 0.1 0.2 4.0 15.6 0.1 43.3 8.6 3.4 2.4 0.0 Cycle Queue Clearance Time (g c), s 0.1 0.2 0.1 43.3 8.6 3.4 0.0 4.0 15.6 2.4 Green Ratio (g/C) 0.00 0.01 0.15 0.14 0.59 0.59 0.74 0.66 0.69 8 632 503 2107 1167 Capacity (c), veh/h 72 225 218 2568 Volume-to-Capacity Ratio (X) 0.030 0.397 0.473 1.638 0.006 0.815 0.334 0.681 0.276 0.000 Back of Queue (Q), ft/ln (95 th percentile) 2.8 155.7 1001. 1.1 590.5 271.5 113.6 34.2 0 3 10.7 Back of Queue (Q), veh/ln (95 th percentile) 0.1 0.3 6.1 39.4 0.0 23.2 4.5 1.3 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.11 0.00 0.37 0.00 0.01 0.00 1.18 0.81 0.00 0.00 54.5 44.6 19.9 23.9 22.6 Uniform Delay (d 1), s/veh 54.5 38.7 6.8 1.6 Incremental Delay (d 2), s/veh 0.2 28.5 0.6 306.3 0.0 2.4 0.5 3.7 0.3 0.0 0.0 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 54.7 82.9 39.2 350.9 6.8 22.3 24.4 26.3 1.8 Level of Service (LOS) D F D F Α С С С Α Approach Delay, s/veh / LOS 71.6 Ε 211.4 F 22.7 C 6.1 Α Intersection Delay, s/veh / LOS 53.4 D **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 3.0 С 2.9 С 2.5 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.6 2.3 1.2

HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information Intersection Information** Agency FMA Duration, h 0.25 Analyst Addie Kirkham Analysis Date Jul 7, 2019 Area Type Other 0.89 Jurisdiction Knox County Time Period Background AM PHF Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** Westland (south) File Name Intersection Phase 3 AM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** EΒ WB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 632 29 139 1246 577 374 Л Signal Information Cycle, s 110.0 Reference Phase 2 Offset, s 0 Reference Point End Green 8.9 25.1 0.0 0.0 0.0 58.0 Uncoordinated No Simult, Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 4 5 2 6 Case Number 9.0 1.0 4.0 8.3 Phase Duration, s 31.1 14.9 78.9 64.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 4.1 4.1 0.0 0.0 Queue Clearance Time (g_s), s 23.6 6.0 Green Extension Time (g_e), s 1.4 0.3 0.0 0.0 Phase Call Probability 1.00 0.99 Max Out Probability 0.94 0.02 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R 7 14 5 6 **Assigned Movement** 2 16 Adjusted Flow Rate (v), veh/h 710 33 156 1400 541 470 Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1585 1781 1870 1623 1781 Queue Service Time (g_s), s 21.6 1.4 4.0 10.6 23.9 17.2 Cycle Queue Clearance Time (g_c), s 21.6 4.0 10.6 1.4 23.9 17.2 Green Ratio (g/C) 0.23 0.31 0.63 0.66 0.53 0.53 789 490 383 856 Capacity (c), veh/h 2361 986 Volume-to-Capacity Ratio (X) 0.067 0.900 0.408 0.593 0.549 0.549 320.9 Back of Queue (Q), ft/ln (95 th percentile) 373.8 24.9 66 108.1 233 Back of Queue (Q), veh/ln (95 th percentile) 14.7 1.0 2.6 4.3 12.6 9.3 Queue Storage Ratio (RQ) (95 th percentile) 1.36 0.00 0.69 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 37.1 24.1 12.2 2.8 15.1 12.0 Incremental Delay (d 2), s/veh 11.4 0.1 0.7 1.1 2.1 2.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 48.5 12.9 14.4 Control Delay (d), s/veh 24.2 3.9 17.2 Level of Service (LOS) D С В В В Α Approach Delay, s/veh / LOS 47.5 D 0.0 4.8 15.9 Α В Intersection Delay, s/veh / LOS 17.8 В **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.9 С 2.7 С 0.7 Α 2.4 В Bicycle LOS Score / LOS F 1.8 В 1.4 Α

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Ebenezer at Crescent Lake
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Crescent Lake Way
Analysis Year	2021	North/South Street	Ebenezer Road
Time Analyzed	Background AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	213.013 The Crescent at Ebenezer		

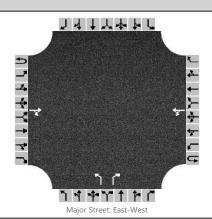
Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	0	2	1	0	1	2	0
Configuration						L		R			Т	R		L	Т	
Volume, V (veh/h)						19		42			1858	20		7	932	
Percent Heavy Vehicles (%)						2		2						2		
Proportion Time Blocked						0.500		0.500						0.500		
Percent Grade (%)						()									
Right Turn Channelized		Ν	lo			N	lo			Ν	lo			N	lo	
Median Type/Storage				Left	Only							:	1			
Critical and Follow-up H	leadwa	ıys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.84		6.94						4.14		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.52		3.32						2.22		
Delay, Queue Length, ar	nd Leve	el of S	ervice	9												
Flow Rate, v (veh/h)						21		46						8		
Capacity, c (veh/h)						115		542						320		
v/c Ratio						0.18		0.08						0.03		
95% Queue Length, Q ₉₅ (veh)						0.6		0.3						0.1		
Control Delay (s/veh)						43.4		12.3						16.6		
Level of Service, LOS						Е		В						С		

Approach Delay (s/veh)


Approach LOS

Vehicle Volumes and Adjustments

22.0


0.1

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Ebenezer at Driveway
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Weigel's Driveway
Analysis Year	2021	North/South Street	Ebenezer Road
Time Analyzed	Background AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	213.013 The Crescent at Ebenezer		

Vehicle Volumes and Ac	ljustme	ents															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	1	0	0	2	1	0	0	2	0	
Configuration								R			Т	R			Т		
Volume, V (veh/h)								32			1819	49			939		
Percent Heavy Vehicles (%)								2									
Proportion Time Blocked								0.500									
Percent Grade (%)						(0										
Right Turn Channelized		١	10			Ν	lo			Ν	lo			Ν	lo		
Median Type/Storage				Left	Only								1				
Critical and Follow-up H	leadwa	ıys															
Base Critical Headway (sec)								6.9									
Critical Headway (sec)								6.94									
Base Follow-Up Headway (sec)								3.3									
Follow-Up Headway (sec)								3.32									
Delay, Queue Length, ar	nd Leve	el of S	ervice	9													
Flow Rate, v (veh/h)	T							35									
Capacity, c (veh/h)								542									
v/c Ratio								0.06									
95% Queue Length, Q ₉₅ (veh)								0.2									
Control Delay (s/veh)								12.1									
Level of Service, LOS								В									
Approach Delay (s/veh)						12	2.1							No			
Approach LOS							В										

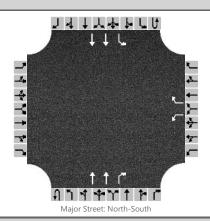
	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Westland at Driveway
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Westland Drive
Analysis Year	2021	North/South Street	Driveway Connection
Time Analyzed	Background AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	223.013 The Crescent at Ebenezer		

V	ehi	C	e '	V	o	lume	es	and	Α	ď	justments
---	-----	---	-----	---	---	------	----	-----	---	---	-----------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Ţ	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0
Configuration				TR		LT				L		R				
Volume, V (veh/h)			491	20		12	612			37		12				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked						0.000				0.000		0.000				
Percent Grade (%)										()					
Right Turn Channelized		Ν	10			Ν	lo			Ν	lo			Ν	lo	
Median Type/Storage				Undi	vided											

Critical and Follow-up Headways

Base Critical Headway (sec)			4.1		7.1	6.2		
Critical Headway (sec)			4.12		6.42	6.22		
Base Follow-Up Headway (sec)			2.2		3.5	3.3		
Follow-Up Headway (sec)			2.22		3.52	3.32		

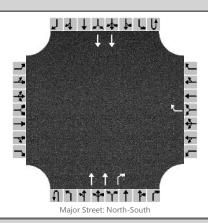

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)			13			40		13		
Capacity, c (veh/h)			1014			192		538		
v/c Ratio			0.01			0.21		0.02		
95% Queue Length, Q ₉₅ (veh)			0.0			0.8		0.1		
Control Delay (s/veh)			8.6			28.6		11.9		
Level of Service, LOS			А			D		В		
Approach Delay (s/veh)			0	.3		24	4.5			
Approach LOS						(С			

HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information** Intersection Information FMA Duration, h 0.25 Agency Analyst Addie Kirkham Analysis Date Jul 7, 2019 Area Type Other Jurisdiction Knox County Time Period Background PM PHF 0.97 Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** File Name Intersection Westland (north) Phase 3 PM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer ΕB WB NB SB **Demand Information** Approach Movement L R L R L R L R 2 1005 Demand (v), veh/h 3 1 568 1 197 10 388 371 1331 6 JI. 泒 Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End Green 15.2 0.5 20.0 0.0 61.7 0.6 Uncoordinated No Simult, Gap E/W Off Yellow 3.0 4.5 3.5 0.0 3.5 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.6 6.1 26.0 25.5 68.2 19.7 87.9 Change Period, (Y+Rc), s 6.0 6.0 4.5 5.5 6.0 6.5 6.5 Max Allow Headway (MAH), s 3.9 4.3 4.2 4.2 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.2 2.2 17.0 14.9 13.8 Green Extension Time (g_e), s 0.0 0.0 3.0 3.1 0.0 1.4 0.0 Phase Call Probability 0.10 0.10 1.00 1.00 1.00 Max Out Probability 0.00 0.00 0.05 0.03 0.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R 3 4 14 5 2 12 **Assigned Movement** 8 18 7 1 6 16 Adjusted Flow Rate (v), veh/h 3 3 586 185 9 906 350 382 690 689 Adjusted Saturation Flow Rate (s), veh/h/ln 1781 1670 1730 1586 393 1781 1585 1781 1870 1867 Queue Service Time (g_s), s 0.2 0.2 15.0 12.9 1.1 22.5 10.7 11.8 8.3 8.3 Cycle Queue Clearance Time (g_c), s 0.2 0.2 12.9 22.5 10.7 11.8 8.3 15.0 1.1 8.3 Green Ratio (g/C) 0.01 0.00 0.17 0.16 0.51 0.51 0.68 0.66 0.68 0.68 69 8 697 262 1080 486 1267 Capacity (c), veh/h 258 1831 1269 Volume-to-Capacity Ratio (X) 0.045 0.377 0.840 0.715 0.034 0.495 0.324 0.787 0.544 0.544 Back of Queue (Q), ft/ln (95 th percentile) 4.5 7 322.2 222.5 5.1 358 248.8 190.6 107.2 105.5 Back of Queue (Q), veh/ln (95 th percentile) 0.2 0.3 12.7 8.8 0.2 14.1 9.8 7.5 4.2 4.2 Queue Storage Ratio (RQ) (95 th percentile) 0.18 0.00 0.76 0.00 0.05 0.00 1.08 1.36 0.00 0.00 44.4 Uniform Delay (d 1), s/veh 59.3 59.4 43.2 12.0 23.7 15.4 14.5 2.2 2.2 Incremental Delay (d 2), s/veh 0.3 26.3 4.0 3.7 0.2 0.6 0.5 2.9 1.7 1.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.2 Control Delay (d), s/veh 59.6 85.7 48.1 12.1 24.4 15.9 17.3 3.9 3.9 Level of Service (LOS) Ε F D D В С В В Α Α 22.0 Approach Delay, s/veh / LOS 72.7 Ε 47.4 С 6.8 D Α Intersection Delay, s/veh / LOS 20.2 С **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 3.0 С 2.9 С 2.4 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.8 В 1.7 В 1.9

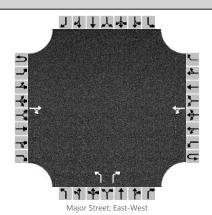
HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information** Intersection Information Agency FMA Duration, h 0.25 Analyst Addie Kirkham Analysis Date Jul 7, 2019 Area Type Other Jurisdiction Knox County Time Period Background PM PHF 0.91 Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** Westland (south) File Name Intersection Phase 3 PM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** EΒ WB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 480 193 150 784 1159 705 Л Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End Green 9.0 0.0 0.0 0.0 79.0 14.0 Uncoordinated No Simult, Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 4 5 2 6 Case Number 9.0 1.0 4.0 8.3 Phase Duration, s 20.0 15.0 100.0 85.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 4.2 Max Allow Headway (MAH), s 4.1 0.0 0.0 Queue Clearance Time (g_s), s 16.0 5.6 Green Extension Time (g_e), s 0.0 0.1 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability 1.00 1.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R 7 14 5 6 **Assigned Movement** 2 16 Adjusted Flow Rate (v), veh/h 527 212 165 862 980 980 Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1585 1781 1781 1870 1646 Queue Service Time (g_s), s 14.0 14.0 3.6 0.0 52.3 57.1 52.3 Cycle Queue Clearance Time (g_c), s 14.0 14.0 0.0 57.1 3.6 Green Ratio (g/C) 0.12 0.19 0.75 0.78 0.66 0.66 404 303 2790 1084 Capacity (c), veh/h 234 1232 Volume-to-Capacity Ratio (X) 1.307 0.699 0.704 0.309 0.795 0.904 580.5 Back of Queue (Q), ft/ln (95 th percentile) 259.8 169.6 5.1 551.9 635.7 Back of Queue (Q), veh/ln (95 th percentile) 22.9 10.2 6.7 0.2 21.7 25.4 Queue Storage Ratio (RQ) (95 th percentile) 2.11 0.00 1.79 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 50.7 43.3 29.4 0.0 12.5 13.6 Incremental Delay (d 2), s/veh 155.1 6.9 9.1 0.3 4.0 9.4 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 205.7 Control Delay (d), s/veh 50.3 38.5 0.3 16.5 23.0 Level of Service (LOS) F D D В С Α Approach Delay, s/veh / LOS 161.1 F 0.0 19.7 6.4 Α В Intersection Delay, s/veh / LOS 44.1 D **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.9 С 2.8 С 0.6 Α 2.4 В Bicycle LOS Score / LOS F 1.3 Α 2.2

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Ebenezer at Crescent Lake
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Crescent Lake Way
Analysis Year	2021	North/South Street	Ebenezer Road
Time Analyzed	Background PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	213.013 The Crescent at Ebenezer		



Approach		Eastb	ound			Westl	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	0	2	1	0	1	2	0
Configuration						L		R			Т	R		L	Т	
Volume, V (veh/h)						11		40			1228	36		49	1853	
Percent Heavy Vehicles (%)						2		2						2		
Proportion Time Blocked						0.200		0.200						0.200		
Percent Grade (%)						()									
Right Turn Channelized		N	lo			N	О			Ν	lo			N	О	
Median Type/Storage				Left	Only							:	1			
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.84		6.94						4.14		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.52		3.32						2.22		
Delay, Queue Length, an	d Leve	l of S	ervice	9												
Flow Rate, v (veh/h)						12		43						53		
Capacity, c (veh/h)						131		766						566		
v/c Ratio						0.09		0.06						0.09		
95% Queue Length, Q ₉₅ (veh)						0.3		0.2						0.3		
Control Delay (s/veh)						35.2		10.0						12.0		
Level of Service, LOS						Е		А						В		
Approach Delay (s/veh)			_	-		15	5.5						L T			

Approach LOS


Vehicle Volumes and Adjustments

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Addie Kirkham	Intersection	Ebenezer at Driveway							
Agency/Co.	FMA	Jurisdiction	Knox County							
Date Performed	7/7/2019	East/West Street	Weigel's Driveway							
Analysis Year	2021	North/South Street	Ebenezer Road							
Time Analyzed	Background PM Peak	Peak Hour Factor	0.92							
Intersection Orientation North-South Analysis Time Period (hrs) 0.25										
Project Description 213.013 The Crescent at Ebenezer										

Vehicle Volumes and Ac	ljustm	ents															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	1	0	0	2	1	0	0	2	0	
Configuration								R			Т	R			Т		
Volume, V (veh/h)								26			1195	47			1902		
Percent Heavy Vehicles (%)								2									
Proportion Time Blocked								0.200									
Percent Grade (%)						()										
Right Turn Channelized		١	10			Ν	lo			Ν	lo			Ν	lo		
Median Type/Storage				Left	Only								1				
Critical and Follow-up H	leadwa	ays															
Base Critical Headway (sec)	T							6.9									
Critical Headway (sec)								6.94									
Base Follow-Up Headway (sec)								3.3									
Follow-Up Headway (sec)								3.32									
Delay, Queue Length, a	nd Leve	el of S	ervic	9													
Flow Rate, v (veh/h)	T							28									
Capacity, c (veh/h)								792									
v/c Ratio								0.04									
95% Queue Length, Q ₉₅ (veh)								0.1									
Control Delay (s/veh)								9.7									
Level of Service, LOS								А									
Approach Delay (s/veh)		9.7															
Approach LOS		A															

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Addie Kirkham	Intersection	Westland at Driveway							
Agency/Co.	FMA	Jurisdiction	Knox County							
Date Performed	7/7/2019	East/West Street	Westland Drive							
Analysis Year	2021	North/South Street	Driveway Connection							
Time Analyzed	Background PM Peak	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25								
Project Description 223.013 The Crescent at Ebenezer										

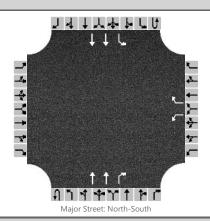
Vehicle	Volumes	and Ad	ustments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0
Configuration				TR		LT				L		R				
Volume, V (veh/h)			694	37		14	703			54		18				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked						0.000				0.000		0.000				
Percent Grade (%)										(0					
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			Ν	10	
Median Type/Storage				Undi	vided											

Critical and Follow-up Headways

Base Critical Headway (sec)			4.1		7.1	6.2		
Critical Headway (sec)			4.12		6.42	6.22		
Base Follow-Up Headway (sec)			2.2		3.5	3.3		
Follow-Up Headway (sec)			2.22		3.52	3.32		

Delay, Queue Length, and Level of Service

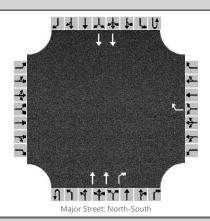

Flow Rate, v (veh/h)			15			59		20		
Capacity, c (veh/h)			827			120		398		
v/c Ratio			0.02			0.49		0.05		
95% Queue Length, Q ₉₅ (veh)			0.1			2.2		0.2		
Control Delay (s/veh)			9.4			61.1		14.5		
Level of Service, LOS			А			F		В		
Approach Delay (s/veh)			0	1.5		49	9.3			
Approach LOS							E			

Attachment 7 Intersection Worksheets - Commercial Site AM/PM Peaks

HCS7 Signalized Intersection Results Summary 147年176 **General Information Intersection Information** FMA Duration, h 0.25 Agency Analyst Addie Kirkham Analysis Date Jul 7, 2019 Area Type Other Commercial AM Jurisdiction Knox County Time Period PHF 0.93 Peak Ebenezer Road **Urban Street** Analysis Year 2021 **Analysis Period** 1> 7:00 Intersection Westland (north) File Name Phase 4 AM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer WB NB SB **Demand Information** ΕB Approach Movement L Т R L R L R L R Demand (v), veh/h 2 0 3 278 2 380 3 1716 386 142 676 0 JI. 泒 Signal Information Cycle, s 110.0 Reference Phase 2 ₹ Offset, s 0 Reference Point End Green 5.9 0.3 16.1 0.0 65.1 0.6 Uncoordinated No Simult. Gap E/W Off Yellow 3.0 4.5 3.5 0.0 0.0 3.5 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.4 6.1 21.9 21.6 71.6 10.4 82.0 6.0 4.5 Change Period, (Y+Rc), s 6.0 5.5 6.0 6.5 6.5 Max Allow Headway (MAH), s 3.9 4.4 4.3 4.3 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.1 2.2 6.0 17.6 5.5 Green Extension Time (g_e), s 0.0 0.0 2.2 0.0 0.0 0.2 0.0 Phase Call Probability 0.06 0.09 1.00 1.00 0.99 Max Out Probability 0.07 0.14 0.19 1.00 0.22 **Movement Group Results** EΒ WB NB SB L Т R L Т R Т R Т R Approach Movement L L 3 12 **Assigned Movement** 8 18 7 4 14 5 2 1 6 16 2 Adjusted Flow Rate (v), veh/h 3 299 372 3 1766 397 153 727 0 1781 1585 1730 1586 728 1781 1585 1781 1870 Adjusted Saturation Flow Rate (s), veh/h/ln 0 Queue Service Time (g_s), s 0.1 0.2 4.0 15.6 0.1 45.6 8.9 3.5 2.4 0.0 Cycle Queue Clearance Time (g c), s 0.1 0.2 0.1 45.6 8.9 3.5 0.0 4.0 15.6 2.4 Green Ratio (g/C) 0.00 0.01 0.15 0.14 0.59 0.59 0.74 0.66 0.69 8 632 496 1167 Capacity (c), veh/h 72 225 2106 210 2568 Volume-to-Capacity Ratio (X) 0.030 0.397 0.473 1.652 0.006 0.838 0.340 0.728 0.283 0.000 Back of Queue (Q), ft/ln (95 th percentile) 2.8 155.7 1017. 1.1 616 278.5 119.9 35.1 0 2 4.7 Back of Queue (Q), veh/ln (95 th percentile) 0.1 0.3 6.1 40.0 0.0 24.3 11.0 1.4 0.0 Queue Storage Ratio (RQ) (95 th percentile) 0.11 0.00 0.37 0.00 0.01 0.00 1.21 0.86 0.00 0.00 Uniform Delay (d 1), s/veh 54.5 44.6 20.4 24.2 23.7 54.5 38.7 6.9 1.6 Incremental Delay (d 2), s/veh 0.2 28.5 0.6 312.6 0.0 2.7 0.5 5.1 0.3 0.0 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 54.7 82.9 39.2 357.2 6.9 23.1 24.7 28.7 1.8 Level of Service (LOS) D F D F Α С С С Α Approach Delay, s/veh / LOS 71.6 Ε 215.5 F 23.4 С 6.5 Α Intersection Delay, s/veh / LOS 54.1 D **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 3.0 С 2.9 С 2.5 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.6 2.4 1.2

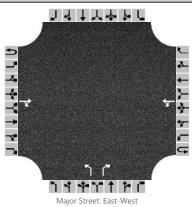
HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information Intersection Information** Agency FMA Duration, h 0.25 Jul 7, 2019 Analyst Addie Kirkham Analysis Date Area Type Other 0.89 Jurisdiction Knox County Time Period Commercial AM PHF Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** Westland (south) File Name Phase 4 AM Peak_Signalized.xus Intersection **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** EΒ WB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 649 29 139 1279 599 390 Л Signal Information Cycle, s 110.0 Reference Phase 2 Offset, s 0 Reference Point End Green 8.9 25.6 0.0 0.0 0.0 57.5 Uncoordinated No Simult, Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 4 5 2 6 Case Number 9.0 1.0 4.0 8.3 Phase Duration, s 31.6 14.9 78.4 63.5 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 Max Allow Headway (MAH), s 4.1 4.1 0.0 0.0 Queue Clearance Time (g_s), s 24.3 6.0 Green Extension Time (g_e), s 1.3 0.3 0.0 0.0 Phase Call Probability 1.00 0.99 Max Out Probability 1.00 0.03 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R 7 14 5 6 **Assigned Movement** 2 16 Adjusted Flow Rate (v), veh/h 729 33 156 1437 551 478 Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1585 1781 1870 1622 1781 Queue Service Time (g_s), s 22.3 1.4 4.0 11.7 25.3 17.8 Cycle Queue Clearance Time (g_c), s 22.3 4.0 11.7 25.3 17.8 1.4 Green Ratio (g/C) 0.23 0.31 0.62 0.66 0.52 0.52 804 497 370 848 Capacity (c), veh/h 2345 978 Volume-to-Capacity Ratio (X) 0.907 0.066 0.422 0.613 0.563 0.564 384.4 Back of Queue (Q), ft/ln (95 th percentile) 24.7 67.1 118.4 326.5 236.7 Back of Queue (Q), veh/ln (95 th percentile) 15.1 1.0 2.6 4.7 12.9 9.5 Queue Storage Ratio (RQ) (95 th percentile) 1.40 0.00 0.71 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 36.8 23.7 12.9 3.0 15.2 12.2 Incremental Delay (d 2), s/veh 12.3 0.1 8.0 1.2 2.2 2.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 49.1 13.7 Control Delay (d), s/veh 23.8 4.2 17.5 14.7 Level of Service (LOS) D С В В В Α Approach Delay, s/veh / LOS 48.0 D 0.0 16.2 5.1 Α В Intersection Delay, s/veh / LOS 18.2 В **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.9 С 2.7 С 0.7 Α 2.4 В Bicycle LOS Score / LOS F 1.8 В 1.4 Α

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Addie Kirkham	Intersection	Ebenezer at Crescent Lake							
Agency/Co.	FMA	Jurisdiction	Knox County							
Date Performed	7/7/2019	East/West Street	Crescent Lake Way							
Analysis Year	2021	North/South Street	Ebenezer Road							
Time Analyzed	Commercial AM Peak	Peak Hour Factor	0.92							
Intersection Orientation North-South Analysis Time Period (hrs) 0.25										
Project Description 213.013 The Crescent at Ebenezer										



	,																
Approach		Eastbound				Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	T	10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		1	0	1	0	0	2	1	0	1	2	0	
Configuration	T					L		R			Т	R		L	Т		
Volume, V (veh/h)						65		64			1812	93		32	916		
Percent Heavy Vehicles (%)	T					2		2						2			
Proportion Time Blocked						0.500		0.500						0.500			
Percent Grade (%)	T					()										
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			N	10		
Median Type/Storage	T			Left	Only								1				
Critical and Follow-up H	eadwa	ıys															
Base Critical Headway (sec)						7.5		6.9						4.1			
Critical Headway (sec)						6.84		6.94						4.14			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.52		3.32						2.22			
Delay, Queue Length, ar	ıd Leve	el of S	ervic	e													
Flow Rate, v (veh/h)	Т					71		70						35			
Capacity, c (veh/h)						121		542						304			
v/c Ratio						0.59		0.13						0.12			
95% Queue Length, Q ₉₅ (veh)						2.9		0.4						0.4			
Control Delay (s/veh)						70.0		12.6						18.4			
Level of Service, LOS						F		В						С			
Approach Delay (s/veh)						41	L.5						0.6				

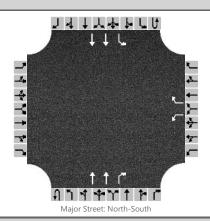
Approach LOS


Vehicle Volumes and Adjustments

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Addie Kirkham	Intersection	Ebenezer at Driveway							
Agency/Co.	FMA	Jurisdiction	Knox County							
Date Performed	7/7/2019	East/West Street	Weigel's Driveway							
Analysis Year	2021	North/South Street	Ebenezer Road							
Time Analyzed	Commercial AM Peak	Peak Hour Factor	0.92							
Intersection Orientation	0.25									
Project Description 213.013 The Crescent at Ebenezer										

Vehicle Volumes and Ac	ljustm	ents														
Approach		Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	0	1	0	0	2	1	0	0	2	0
Configuration								R			Т	R			Т	
Volume, V (veh/h)								41			1795	49			948	
Percent Heavy Vehicles (%)								2								
Proportion Time Blocked								0.500								
Percent Grade (%)						(0									
Right Turn Channelized		١	10			Ν	lo			١	lo			Ν	lo	
Median Type/Storage				Left	Only				1							
Critical and Follow-up H	leadwa	ıys														
Base Critical Headway (sec)								6.9								
Critical Headway (sec)								6.94								
Base Follow-Up Headway (sec)								3.3								
Follow-Up Headway (sec)								3.32								
Delay, Queue Length, ar	nd Leve	el of S	ervic	9												
Flow Rate, v (veh/h)								45								
Capacity, c (veh/h)								542								
v/c Ratio								0.08								
95% Queue Length, Q ₉₅ (veh)								0.3								
Control Delay (s/veh)								12.2								
Level of Service, LOS							В									
Approach Delay (s/veh)			12.2													
Approach LOS		В														

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Addie Kirkham	Intersection	Westland at Driveway							
Agency/Co.	FMA	Jurisdiction	Knox County							
Date Performed	7/7/2019	East/West Street	Westland Drive							
Analysis Year	2021	North/South Street	Driveway Connection							
Time Analyzed	Commercial AM Peak	Peak Hour Factor	0.92							
Intersection Orientation	0.25									
Project Description 223.013 The Crescent at Ebenezer										

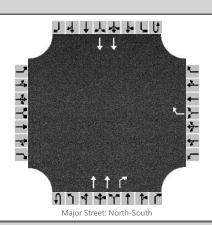


Vehicle Volumes and Ac	ljustme	ents														
Approach	Τ	Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0
Configuration				TR		LT				L		R				
Volume, V (veh/h)			487	26		30	600			46		27				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked						0.000				0.000		0.000				
Percent Grade (%)										()					
Right Turn Channelized		١	10			Ν	lo			Ν	lo			Ν	lo	
Median Type/Storage				Undi	ivided											
Critical and Follow-up H	leadwa															
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, ar	nd Leve	el of S	ervic	9												
Flow Rate, v (veh/h)	Т					33				50		29				
Capacity, c (veh/h)						1013				182		540				
v/c Ratio						0.03				0.28		0.05				
95% Queue Length, Q ₉₅ (veh)						0.1				1.1		0.2				
Control Delay (s/veh)						8.7				32.2		12.1				
Level of Service, LOS						А				D		В				
Approach Delay (s/veh)						0	.8			24	1.8					
Approach LOS										(2					

HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information** Intersection Information FMA Duration, h 0.25 Agency Jul 7, 2019 Analyst Addie Kirkham Analysis Date Area Type Other Jurisdiction Knox County Time Period Commercial PM PHF 0.97 Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** File Name Intersection Westland (north) Phase 4 PM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer EΒ WB NB SB **Demand Information** Approach Movement L R L R L R L R 2 Demand (v), veh/h 3 1 568 1 200 10 1016 388 373 1339 6 JI. 泒 Signal Information Cycle, s 120.0 Reference Phase 2 517 Offset, s 0 Reference Point End Green 15.3 0.5 20.0 0.0 61.6 0.6 Uncoordinated No Simult, Gap E/W Off Yellow 3.0 4.5 3.5 0.0 3.5 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.5 2.0 2.0 0.0 2.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 3 8 7 4 2 1 6 Case Number 1.2 4.0 1.3 4.0 5.3 1.0 4.0 Phase Duration, s 6.6 6.1 26.0 25.5 68.1 19.8 87.9 Change Period, (Y+Rc), s 6.0 6.0 4.5 5.5 6.0 6.5 6.5 Max Allow Headway (MAH), s 3.9 4.3 4.2 4.2 0.0 4.1 0.0 Queue Clearance Time (g_s), s 2.2 2.2 17.0 15.2 13.9 Green Extension Time (g_e), s 0.0 0.0 3.0 3.1 0.0 1.4 0.0 Phase Call Probability 0.10 0.10 1.00 1.00 1.00 Max Out Probability 0.00 0.00 0.05 0.04 0.00 SB **Movement Group Results** EΒ WB NB Approach Movement L Т R L Т R L Т R L Т R 3 4 14 5 2 12 **Assigned Movement** 8 18 7 1 6 16 Adjusted Flow Rate (v), veh/h 3 3 586 188 9 921 352 385 694 693 Adjusted Saturation Flow Rate (s), veh/h/ln 1781 1670 1730 1586 390 1781 1585 1781 1870 1867 Queue Service Time (g_s), s 0.2 0.2 15.0 13.2 1.1 22.9 10.7 11.9 8.4 8.4 Cycle Queue Clearance Time (g_c), s 0.2 0.2 13.2 1.2 22.9 10.7 11.9 15.0 8.4 8.4 Green Ratio (g/C) 0.01 0.00 0.17 0.16 0.51 0.51 0.68 0.66 0.68 0.68 69 8 698 260 1828 1078 482 1266 Capacity (c), veh/h 258 1268 Volume-to-Capacity Ratio (X) 0.045 0.377 0.839 0.727 0.035 0.504 0.326 0.797 0.547 0.547 Back of Queue (Q), ft/ln (95 th percentile) 4.5 7 322.1 226.1 5.1 361.3 246.6 192.8 108.4 106.6 Back of Queue (Q), veh/ln (95 th percentile) 0.2 0.3 12.7 8.9 0.2 14.2 9.7 7.6 4.3 4.3 Queue Storage Ratio (RQ) (95 th percentile) 0.18 0.00 0.76 0.00 0.05 0.00 1.07 1.38 0.00 0.00 Uniform Delay (d 1), s/veh 59.3 59.4 43.2 44.5 11.9 23.8 15.3 14.8 2.3 2.3 Incremental Delay (d 2), s/veh 0.3 26.3 4.0 3.9 0.2 0.6 0.5 3.1 1.7 1.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.2 Control Delay (d), s/veh 59.6 85.7 48.4 12.1 24.4 15.8 17.9 4.0 4.0 Level of Service (LOS) Ε F D D В С В В Α Α 22.0 Approach Delay, s/veh / LOS 72.7 Ε 47.5 С 7.0 D Α Intersection Delay, s/veh / LOS 20.3 С **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 3.0 С 2.9 С 2.4 В 2.2 В Bicycle LOS Score / LOS 0.5 Α 1.8 В 1.7 В 1.9

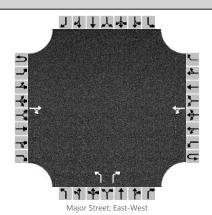
HCS7 Signalized Intersection Results Summary しゅてやけたい **General Information Intersection Information** Agency FMA Duration, h 0.25 Jul 7, 2019 Analyst Addie Kirkham Analysis Date Area Type Other Jurisdiction Knox County Time Period Commercial PM PHF 0.91 Peak **Urban Street** Ebenezer Road Analysis Year 2021 1> 7:00 **Analysis Period** Westland (south) File Name Intersection Phase 4 PM Peak_Signalized.xus **Project Description** 223.013 The Crescent at Ebenezer **Demand Information** ΕB WB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 488 193 150 799 1179 719 Л Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Point End Green 9.0 0.0 0.0 0.0 79.0 14.0 Uncoordinated No Simult, Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 2.0 2.0 2.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 4 5 2 6 Case Number 9.0 1.0 4.0 8.3 Phase Duration, s 20.0 15.0 100.0 85.0 Change Period, (Y+Rc), s 6.0 6.0 6.0 6.0 4.2 Max Allow Headway (MAH), s 4.1 0.0 0.0 Queue Clearance Time (g_s), s 16.0 5.8 Green Extension Time (g_e), s 0.0 0.1 0.0 0.0 Phase Call Probability 1.00 1.00 Max Out Probability 1.00 1.00 **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R 7 14 5 6 **Assigned Movement** 2 16 Adjusted Flow Rate (v), veh/h 536 212 165 878 984 984 Adjusted Saturation Flow Rate (s), veh/h/ln 1730 1585 1781 1781 1870 1646 Queue Service Time (g_s), s 14.0 14.0 3.8 0.0 54.6 57.8 Cycle Queue Clearance Time (g_c), s 14.0 14.0 3.8 0.0 54.6 57.8 Green Ratio (g/C) 0.12 0.19 0.75 0.78 0.66 0.66 404 303 2790 1084 Capacity (c), veh/h 232 1232 Volume-to-Capacity Ratio (X) 1.329 0.699 0.709 0.315 0.799 0.908 Back of Queue (Q), ft/ln (95 th percentile) 601.1 259.8 170.6 5.2 556.8 644.4 Back of Queue (Q), veh/ln (95 th percentile) 23.7 10.2 6.7 0.2 21.9 25.8 Queue Storage Ratio (RQ) (95 th percentile) 2.19 0.00 1.80 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 50.7 43.3 29.9 0.0 12.5 13.7 Incremental Delay (d 2), s/veh 164.2 6.9 9.5 0.3 4.1 9.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 214.9 50.3 39.5 0.3 16.6 23.4 Level of Service (LOS) F D D В С Α Approach Delay, s/veh / LOS 168.2 F 0.0 20.0 В 6.5 Α Intersection Delay, s/veh / LOS 45.7 D **Multimodal Results** FB WB NB SB Pedestrian LOS Score / LOS 2.9 С 2.8 С 0.6 Α 2.4 В Bicycle LOS Score / LOS F 1.3 Α 2.2

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Ebenezer at Crescent Lake
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Crescent Lake Way
Analysis Year	2021	North/South Street	Ebenezer Road
Time Analyzed	Commercial PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	213.013 The Crescent at Ebenezer		


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	0	2	1	0	1	2	0
Configuration						L		R			Т	R		L	Т	
Volume, V (veh/h)						51		54			1212	67		63	1841	
Percent Heavy Vehicles (%)						2		2						2		
Proportion Time Blocked						0.200		0.200						0.200		
Percent Grade (%)						()									
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			N	lo	
Median Type/Storage				Left	Only							:	1			
Critical and Follow-up H	eadwa															
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.84		6.94						4.14		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.52		3.32						2.22		
Delay, Queue Length, ar	d Leve	el of S	ervic	е												
Flow Rate, v (veh/h)						55		59						68		
Capacity, c (veh/h)						128		780						556		
v/c Ratio						0.43		0.08						0.12		
95% Queue Length, Q ₉₅ (veh)						1.9		0.2						0.4		
Control Delay (s/veh)						52.7		10.0						12.4		
Level of Service, LOS						F		А						В		
Approach Delay (s/veh)						30).6							0	.4	
	-															

Approach LOS

Vehicle Volumes and Adjustments


D

	HCS7 Two-Way Sto	Stop-Control Report							
General Information		Site Information							
Analyst	Addie Kirkham	Intersection	Ebenezer at Driveway						
Agency/Co.	FMA	Jurisdiction	Knox County						
Date Performed	7/7/2019	East/West Street	Weigel's Driveway						
Analysis Year	2021	North/South Street	Ebenezer Road						
Time Analyzed	Commercial PM Peak	Peak Hour Factor	0.92						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	213.013 The Crescent at Ebenezer								

Vehicle Volumes and Ad	ljustme	ents															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	0	1	0	0	2	1	0	0	2	0	
Configuration								R			Т	R			Т		
Volume, V (veh/h)								29			1193	47			1904		
Percent Heavy Vehicles (%)								2									
Proportion Time Blocked								0.200									
Percent Grade (%)						(0										
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			Ν	lo		
Median Type/Storage				Left	Only								1				
Critical and Follow-up H	<u> </u>																
Base Critical Headway (sec)								6.9									
Critical Headway (sec)								6.94									
Base Follow-Up Headway (sec)								3.3									
Follow-Up Headway (sec)								3.32									
Delay, Queue Length, ar	nd Leve	el of S	ervice	9													
Flow Rate, v (veh/h)	Т							32									
Capacity, c (veh/h)								794									
v/c Ratio								0.04									
95% Queue Length, Q ₉₅ (veh)	Ì							0.1									
Control Delay (s/veh)								9.7									
Level of Service, LOS	Ì							А									
Approach Delay (s/veh)		•		•		9	.7				•						
Approach LOS						,	Ą										

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Westland at Driveway
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/7/2019	East/West Street	Westland Drive
Analysis Year	2021	North/South Street	Driveway Connection
Time Analyzed	Commercial PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	223.013 The Crescent at Ebenezer		

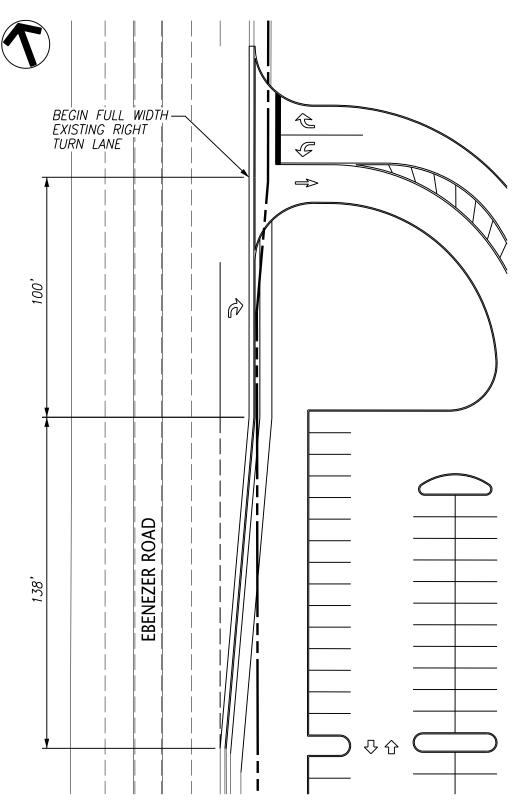
Vehicle	Volumes	and Ad	ustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		1	0	1		0	0	0
Configuration				TR		LT				L		R				
Volume, V (veh/h)			690	41		23	697			60		30				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked						0.000				0.000		0.000				
Percent Grade (%)										()					
Right Turn Channelized		١	10			N	lo			N	lo			N	10	
Median Type/Storage				Undi	vided											

Critical and Follow-up Headways

Base Critical Headway (sec)			4.1		7.1	6.2		
Critical Headway (sec)			4.12		6.42	6.22		
Base Follow-Up Headway (sec)			2.2		3.5	3.3		
Follow-Up Headway (sec)			2.22		3.52	3.32		

Delay, Queue Length, and Level of Service


Flow Rate, v (veh/h)			25			65		33		
Capacity, c (veh/h)			826			116		399		
v/c Ratio			0.03			0.56		0.08		
95% Queue Length, Q ₉₅ (veh)			0.1			2.7		0.3		
Control Delay (s/veh)			9.5			69.4		14.8		
Level of Service, LOS			А			F		В		
Approach Delay (s/veh)			0.	.8		53	1.0			
Approach LOS							F			

Attachment 8 Turn Lane Warrant Analysis

Project: The Crescent at Ebenezer Commercial Site

Background (Weigel's)					
Westland Drive	VOLUMES				
at Proposed Driveway					
RIGHT TURN	_	Thru	RT	RT MAX	Warrant Met
AM		491	20	99	NO
PM		694	37	25	YES
Ebenezer Road	VOLUMES				
at Proposed Driveway					
RIGHT TURN		Thru	RT	RT MAX	Warrant Met
AM	_	955*	49	25	YES
PM		627*	47	25	YES
Commercial Site					
Westland Drive	VOLUMES				
at Proposed Driveway					
RIGHT TURN	_	Thru	RT	RT MAX	Warrant Met
AM	_	487	26	99	NO
PM		690	41	25	YES

^{*} The volume per lane was multiplied by 1.05 in accordance with the Knox County Department of Engineering and Public Works "Access Control and Driveway Design Policy"

Future Turn Lane Scale: 1"=40'

TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	THRO	UGH VOLUM	E PLUS LEI	T-TURN	VOLUME	; *
VOLUME	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99						
100 - 149 150 - 199				ļ	_	<u> </u>
200 - 249 250 - 299			<u> </u>		Yes	Yes Yes
300 - 349 350 - 399			Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/>600	
Fewer Than 25 25 - 49 50 - 99			AM Peak 20 R	Yes	Yes Yes	Yes Yes M Peak 37	
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes	
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or Mare	Yes	Yes	Yes	Yes	Yes	Yes	

^{*} Or through volume only if a left-turn lane exists.

TABLE 6B

RIGHT-TURN LANE VOLUME THRESHOLDS: FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 46 TO 55 MPH

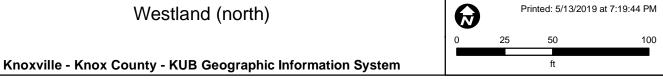
RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
VOLUME	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399	
Fewer Than 25 25 - 49 50 - 99							
100 - 149 150 - 199						Yes	
200 - 249 250 - 299				Yes	Yes Yes	Yes Yes	
300 - 349 350 - 399	<u>-</u>		Yes Yes	Yes Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499	 	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600	
Fewer Than 25 25 - 49 50 - 99			Yes	Yes PM Yes AM	 Peak 47 Peak 49	RT Yes	
100 - 149	Yes	Yes	Yes	Yes	Yes	Yes	
150 - 199		Yes	Yes	Yes	Yes	Yes	
200 - 249	Yes	Yes	Yes	Yes	Yes	Yes	
250 - 299	Yes	Yes	Yes	Yes	Yes	Yes	
300 - 349	Yes	Yes	Yes	Yes	Yes	Yes	
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes	
400 - 449	Yes	Yes	Yes	Yes	Yes `	Yes	
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes	
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes	
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

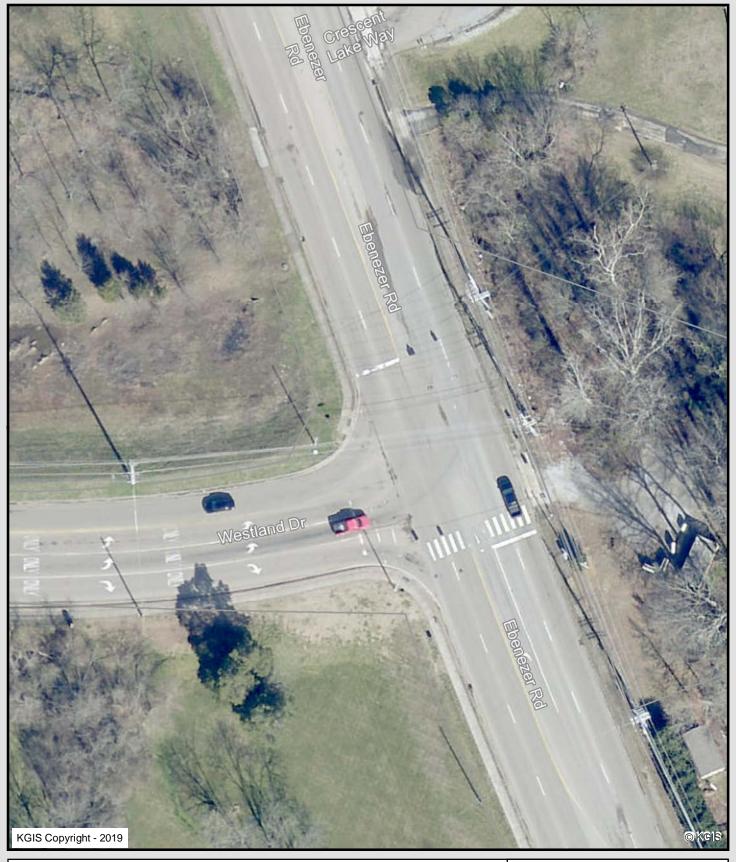
^{*} Or through volume only if a left-turn lane exists.

TABLE 5B

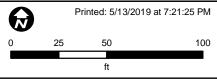
RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH


RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
Fewer Than 25 25 - 49 50 - 99				-				
100 - 149 150 - 199				<u> </u>	_			
200 - 249 250 - 299	<u> </u>		<u> </u>		Yes	Yes Yes		
300 - 349 350 - 399			Yes	Ves Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *						
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+/>600	
Fewer Than 25 25 - 49 50 - 99			AM Peak 26 R	Yes	Yes Yes PM	Yes Peak 41 F	
100 - 149 150 - 199		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	


^{*} Or through volume only if a left-turn lane exists.

Attachment 9 Aerial Photos



KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

Knoxville - Knox County - KUB Geographic Information System

KGIS makes no representation or warranty as to the accuracy of his map and its information nor to its fitness for use. Any user of this map product accepts the same AS IS ,WITH ALL FAULTS, and assumes all responsibility for the use thereof, and futher covenants and agrees to hold KGIS harmless from any and all damage, loss, or liability arising from any use of this map product.

Date: July 8, 2019

Project Name: The Crescent at Ebenezer Commercial Site

To: Knoxville-Knox County Planning

Subject: TIS Comment Response Document for The Crescent at Ebenezer Commercial Site TIS Comments (7-E-19-UR) Dated June 6, 2019.

Dear Knoxville-Knox County Planning staff,

The following comment response document is submitted to address comments dated June 6, 2019 and the additional comments dated June 28, 2019:

1. **Reviewer Comment:** Throughout the report please identify if "The Crescent at Ebenezer" is for the commercial or the residential portion of the site. For example, on page 1 (Table of Contents) 3.1 is labeled "The Crescent at Ebenezer." We assume this title is for the residential, but there are also sections where the report could be referencing the commercial property for the whole site. It helps to provide more clarification on what is being discussed.

<u>Response:</u> The Crescent at Ebenezer refers to the apartments and senior adult housing units and The Crescent at Ebenezer Commercial Site refers to the proposed commercial development.

a. **Reviewer Comment:** On page 1, please add a description to "7.3 Ebenezer Road @ Driveway Connection" to know which driveway connection the report is talking about. This should also be replicated in the Conclusions and Recommendations section. Which driveway connection are you talking about? The main driveway for residential & proposed commercial, or the other driveway for the proposed commercial & Weigel's site? Depending upon which driveway connection this one is referring to, there should be the other driveway connection to Ebenezer Road discussed throughout the report.

Response: The Crescent at Ebenezer apartment driveway connection on Ebenezer Road is named Crescent Lake Way and the driveway connection on Westland Drive is named Serene Breeze Way All mention of these roadways have been updated to reflect the new names.

2. Reviewer Comment: Throughout the report the development mentions 10,800 SF of medical-dental building, but the site plan layout submitted to Planning Staff

shows multiple tenant spaces. Please verify these tenant spaces (10,800 SF) will all be medical-office spaces.

<u>Response:</u> The medical-dental building was assumed for all tenants with the exception of the coffee shop with a drive-through window.

3. **Reviewer Comment:** On page 5 last paragraph, please indicate that the "westbound thru lane" is actually a "westbound thru/right lane." Also, when mentioning "westbound left turn lane," it should be "westbound left turn lanes."

Response: Adjusted the turn lane descriptions on page 5 and page 37.

4. **Reviewer Comment:** In all Figures, please outline or provide a directional arrow to the appropriate site for the proposed commercial.

<u>Response:</u> Revised the background info to show the property line for the Crescent Commercial site.

5. **Reviewer Comment:** On page 9 second to last line, please make the correction concerning the sidewalk and where it extends to the north and south. The Ebenezer Road sidewalk extends from this property northbound to S Peters Road and Kingston Pike, and southbound to S Northshore Drive.

Response: Revised to "The existing sidewalk on Ebenezer Road extends northbound to the intersection of S Peters Road at Kingston Pike and southbound to the intersection with S Northshore Drive. The existing sidewalk on Westland Drive (north) extends 425 feet eastbound from the intersection with Ebenezer Road."

6. **Reviewer Comment:** Section 3 – Background Growth (pg 12) should include the surrounding roadway traffic between the initial traffic count year & the full buildout year, the approved apartments & senior adult housing site traffic, the approved Weigel's development site traffic, and the total background. Please add a paragraph that describes the inclusion of these into the background growth, and update all Figures to reflect this inclusion. See below for reference.

Intersections	Existing	Background	Combined
		growth	growth
Ebenezer Rd @	1	1	1
Westland Dr (north)			
Ebenezer Rd @	1	1	1
Westland Dr (south)			
Ebenezer Rd @		1	1
Apt. driveway			
Ebenezer Rd @		1	1
Proposed driveway			
Westland Dr @			

Proposed driveway		
-------------------	--	--

<u>Response:</u> Revised Figures and Capacity Analysis to included Weigel's in the background section.

a. **Reviewer Comment:** Page 16 (3.2 Weigel's) should mention the change of the original access points on the Weigel's site from full access off Ebenezer Rd and Westland Dr, to full access off Westland Dr and right-in/right-out off Ebenezer Rd.

<u>Response:</u> Added the following to page 16. "Knox County Engineering and Public Works made the recommendation that the Westland Road driveway connection remain a full access driveway and that the Ebenezer Road driveway be revised to a right-in/right-out driveway connection."

7. **Reviewer Comment:** The first two paragraphs in Section 4 (pg 17) should be removed and placed into the Background growth section. The fourth paragraph mentions the pass-by rate of 65% used for the convenience market (Weigel's), which should not apply in this instance since the Weigel's full buildout site traffic is being used in the background section.

<u>Response:</u> Relocated the first two paragraphs to the background section and added "3.1 The Crescent at Ebenezer" and "3.2 Weigel's".

a. **Reviewer Comment:** With the inclusion of the apartments, senior adult housing, & the Weigel's into the background, the Trip Generation discussed on page 17-19, should remove these from the discussion and Table 4-1.

<u>Response:</u> Revised section "4 Trip Generation and Trip Distribution" to only include the information regarding the proposed Commercial Site.

b. Reviewer Comment: In Table 4-1, please correct the Land Use description for the Coffee/Donut Shop to say "Coffee/Donut Shop w/ Drive-Through Window."

Response: Added "w/ Drive-Through Window" to Table 4-1.

c. **Reviewer Comment:** The Figures to have in this section should be the Primary trips, Pass-by trips, Combined Site trips, and Full Buildout (Background total + Combined) site trips.

<u>Response:</u> Moved the Weigel's figures to the background section and included only the commercial site figures in section 4.

8. **Reviewer Comment:** In the Conclusions & Recommendations section (pg 35), please include a sentence or two describing the extension of the right-turn lane by 100 ft once the Weigel's comes in, per Weigel's 2012 study. What will this look like? Please provide an access diagram to include this extension since this is one of the proposed access points.

Response: Added the following paragraph to the Conclusions & Recommendations. "A northbound right turn lane is warranted at the intersection of Ebenezer Road at the driveway connection during both the AM and PM peak hours after the completion of the Weigel's convenience market with gasoline pumps. CDM Smith's recommendation was to "extend the planned northbound right-turn lane on Ebenezer Road for Westland Drive approximately another 100 feet to be also used by traffic entering the Weigel's convenience store." A sketch of the right-turn lane layout is included in Attachment 8. The turn lane improvements are expected to be installed prior to the construction of the Weigel's."

Additional Knox County Comments dated June 28, 2019:

1. **Reviewer Comment:** Page 18 – The maximum pass-by split for a convenience market under 10,000 SF is 60%. I have attached the local values used. Please let me know if Tarren had approved a higher rate.

<u>Response:</u> MPC had recommended a 65% pass-by rate due to Ebenezer Road and Westland Drive having an ADT between 10,000 – 20,000 trips per day.

2. **Reviewer Comment:** Page 25 – The entering/exiting splits do not match the Trip Generation worksheets. Please revise as needed.

Response: Revised entering/exiting splits to match the Trip Generation 10th edition.

3. **Reviewer Comment:** Page 27 – One bubble is for Ebenezer/Westland (north) and not the site driveway.

Response: Revised the bubble on page 27.

4. **Reviewer Comment:** Page 36 – Use the name of the apartment roadway.

Response: Revised to Crescent Lake Way on page 36.

5. **Reviewer Comment:** Appendix pages – see comment for page 25.

<u>Response:</u> Revised the trip generation worksheets in the appendix to match the Trip Generation 10th edition.

Ms. Barrett July 8, 2019 Page 5 of 5

Sincerely,

Addie Kirkham, P.E.