POST OAK BEND SUBDIVISION

KNOXVILLE, TENNESSEE

TRAFFIC IMPACT STUDY

Submitted to:

Safe Harbor Development

June 2018 Revised July 2018 Submitted by:

CDM Smith, Inc. 1100 Marion Street, Suite 300 Knoxville, Tennessee 37921

Table of Contents

Chapter 1 Introduction and Existing Conditions	1-1
Introduction	1-1
Site Plan and Proposed Development	1-1
Regional Setting and Daily Traffic	1-1
Data Collection	1-4
Existing Traffic Conditions	1-4
Sight Distance	1-4
Level of Service Definition	1-8
Traffic Volumes and Level of Service	1-8
Existing Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive	.1-11
Crash Data and Knox County Strategic Safety Plan	.1-11
Chapter 2- Future Conditions without Development	. 2-1
Projected 2028 Traffic Growth without Development	2-1
AM and PM Peak Hour 2028 Traffic Volumes and LOS	2-1
2028 Background Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive	2-1
Chapter 3- Development Impact	3-1
Trip Generation	3-1
Anticipated Trip Distribution Pattern	3-1
Daily Traffic Assignment	3-2
Peak Hour Traffic Assignment	3-2
2028 Peak Hour Traffic and LOS with Development	3-4
Tooles Bend Road Segment Assessment	3-4
2028 Projected Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive	e.3-7
2028 Roundabout Analysis- Tooles Bend Road at South Northshore Drive	3-7
Chapter 4- Summary and Recommendations	4-1
South Northshore Drive at Tooles Bend Road	4-1
Traffic Signal	4-1
Roundabout	4-1
Traffic Signal and Roundabout Comparison	4-2
Badgett Road at Tooles Bend Road	4-2
North Access on Tooles Bend Road	4-2
South Access on Tooles Bend Road	4-2
Tedford Road at Tooles Bend Road	4-3
Tooles Bend Road	4-3
48-Lot Off-Site Single Family Tract	4-3

Appendix

List of Tables

Table 1: Level of Service Criteria	1-8
Table 2: Trip Generation	3-1
Table 3: Capacity and Level of Service Summary	4-4

List of Figures

Figure 1: Site Plan1-2
Figure 2: Vicinity Map1-3
Figure 3: Intersection Geometry1-5
Figure 4: Sign Inventory1-6
Figure 5: Intersection Sight Distance1-7
Figure 6: 2018 Existing Peak-Hour & Average Daily Traffic1-9
Figure 7: 2018 Existing Peak-Hour Levels of Service1-10
Figure 8: 2028 Background Peak-Hour Traffic2-2
Figure 9: 2028 Background Peak-Hour Levels of Service2-3
Figure 10: 2028 Projected Development Distributions and Assignments
Figure 11: 2028 Projected Peak-Hour Traffic
Figure 12: 2028 Projected Peak-Hour Levels of Service
Figure 13: 2028 Projected Peak-Hour Levels of Service with Improvements – Option 1
Figure 14: 2028 Projected Peak Hour Levels of Service with Improvements – Option 2
Figure 15: Tooles Bend Guardrail Notes- South of Badgett Road4-4
Figure 16: Tooles Bend Guardrail Notes- Near North Access

Chapter 1 Introduction and Existing Conditions

Introduction

Post Oak Bend, LLC. is proposing a residential development, Post Oak Bend Subdivision, off Tooles Bend Road positioned between I-140 (Pellissippi Parkway) and Fort Loudon Lake in southwest Knox County. This study also included analysis of a separate 48-unit single family component on a triangle shaped 16-acre parcel of land along Tooles Bend Road southeast of Tedford Lane. Those 48 lots are not part of the initial development submitted in the conceptual drawing for Use on Review but are included in the analysis to ensure recommended improvements have considered all planned development for the study area. Buildout of the development is anticipated to be 2028 but will ultimately be dictated by the residential market.

Site Plan and Proposed Development

Figure 1 illustrates the site plan for Post Oak Bend Subdivision. Including the 48-single family unit lots on the west side of I-140 (as opposed to the primary development on the east side of I-140), 670 residential units are proposed with 240 being apartments in 15 "Stacked Flats" and 317 being single family units (269 east of I-140 and 48 west of I-140). Another component includes 113 executive townhomes.

Regional Setting and Daily Traffic

Post Oak Bend Subdivision will be located on Tooles Bend Road, a Knox County minor collector road with a 2016 daily traffic volume of 1,670 vehicles per day (VPD) just south of South Northshore Drive (State Route 332). CDM Smith recently collected a 24-hour count on Tooles Bend Road, south of Badgett Road with the detailed results included in the Appendix. This count indicates a daily traffic volume south of Badgett Road of 1,500 VPD. **Figure 2** depicts the vicinity map for the proposed development. Tooles Bend Road intersects and terminates at South Northshore Drive, which is a state route with a daily traffic volume of 13,859 VPD west of Tooles Bend Road (see Appendix for maps of the referenced count locations).

Motorists along Tooles Bend Road can also access South Northshore Drive via a combination of Tedford Lane and Keller Bend Road. This route is circuitous, but it leads to a signalized intersection at South Northshore Drive and Keller Bend Road.

Data Collection

Intersection turning movement counts were conducted as follows:

- Tooles Bend Road at South Northshore Drive (8 hours on January 25, 2018)
- Tooles Bend Road at Badgett Road (AM and PM peak hours on January 11, 2018)
- Tooles Bend Road at Tedford Lane (AM and PM peak hours on January 11, 2018)

The mechanical 24-hour count on Tooles Bend Road, just south of Badgett Road was conducted on January 24, 2018. All counts were conducted while Knox County Schools and the University of Tennessee were in session. CDM Smith also measured sight distances and conducted an inventory of signs along Tooles Bend Road.

Existing Traffic Conditions

Figures 3 and **4** show existing lane geometry and traffic control devices at the study area intersections and along Tooles Bend Road. Because of horizontal curvature, there are several appropriate curve warning and arrow signs in the south section of Tooles Bend Road. The posted speed limit on Tooles Bend Road is 30 miles per hour (MPH) while the curve warnings signs note advisory speeds of 20 or 25 MPH. Using TDOT's Tennessee Roadway Information Management System Database, or TRIMS, Tooles Bend Road is noted as being 20 feet wide without shoulders. However, field measurements observed a varied road width of 17 to 20 feet along Tooles Bend Road from South Northshore Drive to the proposed southern access. It contains a double-yellow striped centerline and white edge lines on both sides, and rumble strips do not exist. Some sections of Tooles Bend Road contain guardrails, some of which are in poor condition.

Sight Distance

Sight distance was measured at the study intersections along Tooles Bend Road and the results are depicted in **Figure 5**. With a posted speed limit of 30 MPH, the desirable intersection sight distance is 300 feet. At all existing intersections except Badgett Road, that distance is achieved. Looking right from Badgett Road, the sight distance is 220 feet due to a vertical curve. Very few vehicles were observed making a left turn from Badgett Road onto Tooles Bend Road- none in the morning observation period and three in the evening.

At the proposed north site access on Tooles Bend Road, sight distance is limited looking both left and right. Looking left, a horizontal curve restricts sight distance to 185 feet and looking right, sight distance is restricted to 125 feet due to a vertical curve. There is adequate sight distance at the proposed south site access. The developer is aware of these restrictions and is prepared to make modifications to Tooles Bend Road and the access roads to achieve adequate sight distance.

SIGN INVENTORY

Post Oak Bend Subdivision Traffic Impact Study

Level of Service Definition

To express traffic conditions as perceived by drivers, traffic engineering professionals utilize the concept of "level of service" (LOS). Level of service is a qualitative statement of the acceptability of traffic conditions. It reflects the additional travel time, or delay, incurred by drivers at intersections. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions and excessive delay. LOS D is generally considered the minimum acceptable condition in urban areas. The criteria for signalized and unsignalized intersections are presented in **Table 1**.

	Delay in seconds per vehicle								
	Signalized Stop-controlled								
	Intersections	Intersections							
А	≤ 10	≤ 10							
В	> 10 and ≤ 20	> 10 and ≤ 15							
С	> 20 and ≤ 35	> 15 and ≤ 25							
D	> 35 and ≤ 55	> 25 and ≤ 35							
Е	> 55 and ≤ 80	> 35 and ≤ 50							
F	> 80	> 50							

Table	1:	Level	of	Service	Criteria
Iable	.	LEVEI	U.	JEIVICE	CITCINA

For stop-controlled intersections, LOS is measured only for those drivers that must yield to other traffic, such as drivers entering or crossing a major road from a side-street, or major-street drivers turning left onto a side-street. For signalized intersections, the most meaningful measure is the intersection-wide LOS reflecting the average of conditions for all drivers entering the signalized intersection.

Traffic Volumes and Level of Service

Figure 6 presents existing AM and PM peak hour intersection traffic volumes and recent average daily traffic (ADT) volumes on Tooles Bend Road and neighboring streets. **Figure 7** shows the resulting existing peak hour LOS analysis using Synchro 9.1. The measured approach peak hour factor (PHF) was used in calculating the existing LOS. Peak hours for the study area intersections are:

- Tooles Bend Road at South Northshore Drive- hours beginning 7:30 AM and 5:00 PM
- Tooles Bend Road at Badgett Road- hours beginning 7:00 AM and 5:00 PM
- Tooles Bend Road at Tedford Lane- hours beginning 7:15 AM and 4:00 PM

The westbound movement from Tooles Bend Road onto South Northshore Drive operates at LOS D in both the AM and PM peak hours. All other unsignalized study area intersection movements operate at LOS A during both peak hours.

Existing Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive

A traffic signal warrant evaluation was conducted at the intersection of South Northshore Drive and Tooles Bend Road using criteria in Federal Highway Administration's (FHWA) Manual on Uniform Traffic Control Devices (MUTCD). Specifically, three traffic volume warrants were evaluated including:

- Warrant 1- 8- Hour Vehicular Volume; Part A: Minimum Volume and Part B: Interruption
- Warrant 2- 4- Hour Vehicular Volume
- Warrant 3- Peak Hour

Current volumes at the intersection of South Northshore Drive and Tooles Bend Road do not meet the criteria for a traffic signal. The traffic signal warrant assessment table is in the Appendix. The main street volumes on South Northshore Drive are all above the criteria for all warrants but the volumes on Tooles Bend Road fall well below the thresholds.

Crash Data and Knox County Strategic Safety Plan

In three consecutive years from 2014-2016, Knox County undertook a strategic safety plan to evaluate their major and minor collector and minor arterial roads in terms of crashes and daily traffic thresholds. The 2016 study, which was published in 2017, was supplemented with an evaluation of state routes. Tooles Bend Road is a minor collector and South Northshore Drive is a state route, hence both were part of the 2016 study.

The 1.26-mile segment of Tooles Bend Road had 10 crashes reported in the four years between 2012 and 2015 with seven being property damage only and three resulting in non-disabling injuries. The final 2016 crash score was 0.673, which ranked 318th of 554; hence, the segment ranked very low in terms of a safety problem relative to other roads in Knox County. All but 2 of the 10 crashes occurred north of Badgett Road, and most were lane departures.

Segment 9165 on South Northshore Drive (SR 332) is 0.42 miles long and falls between Little Creek Lane and a point east of Tooles Bend Road. This segment of SR 332 experienced 18 crashes in the four-year reporting period with 14 of those being property damage only, 2 resulting in nondisabling injuries, and 2 resulting in disabling injuries. The crash score for this segment of South Northshore Drive was 0.816, which ranked 79th of 198 for the state route segments evaluated. The Appendix includes excerpts from the 2016 safety study related to the Tooles Bend Road and South Northshore Drive assessments.

Chapter 2- Future Conditions without

Development

This chapter describes the analysis of 2028 projected conditions without buildout of Post Oak Bend Subdivision, also known as background conditions. It includes a 2028 LOS analysis and a 2028 Tooles Bend Road at South Northshore Drive traffic signal warrant analysis without the proposed development.

Projected 2028 Traffic Growth without Development

Historic traffic volumes at TDOT Station T287 on South Northshore Drive and MPC Station M264 on Tooles Bend Road were examined to estimate future traffic growth up to 2028. The Appendix includes the location of the two count stations and past daily traffic volumes. Traffic has maintained constant at Station T287 with volumes ranging from 13,161 in 2001 to 13,879 in 2016. Station M264 has sporadic data dating back to 2001, with counts made every other year from 2001 to 2009, but a count was made in 2016 with a recorded volume of 1,670 VPD. Ultimately, a two-percent annual simple growth rate was applied to all movements at all intersections. Thus, for the 2028 traffic projections, a 1.20 growth factor was applied to existing traffic volumes. The argument could be made that Post Oak Bend Subdivision would account for the majority of traffic growth on Tooles Bend Road, and consequently, traffic should not be factored up by 1.20; however, it is more conservative from an analysis standpoint to apply this growth rate to traffic on Tooles Bend Road.

AM and PM Peak Hour 2028 Traffic Volumes and LOS

Figure 8 illustrates projected year 2028 background traffic volumes for the study area intersections. **Figure 9** depicts the projected 2028 LOS's. All movements that now operate at LOS A should continue to operate at LOS A in 2028. Traffic movements from Tooles Bend Road onto South Northshore Drive will worsen from LOS D in both peak hours to LOS E in the AM peak hour and LOS F in the PM peak hour.

2028 Background Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive

A traffic signal warrant analysis was performed at the Tooles Bend Road and South Northshore Drive intersection using 2028 projected background traffic- the 20-percent rate was applied to all volumes for the 8-hour evaluation period. Traffic on Tooles Bend Road will not meet the criteria to warrant a traffic signal, but the South Northshore Drive traffic continues to exceed the threshold. Even though the LOS's on Tooles Bend Road will worsen to E and F, a traffic signal will not be warranted. The Appendix includes the 2028 background signal warrant analysis assessment table.

Chapter 3- Development Impact

This chapter describes the traffic Post Oak Bend Subdivision will generate and its impacts on the street network.

Trip Generation

Table 2 presents the expected trip generation of Post Oak Bend Subdivision. Based on discussions with the developer, CDM Smith took the development descriptions and interpreted the Institute of Transportation Engineers (ITE) Trip Generation Manual category. For example, the single-family lots, villas, and estate lots are classified as single family homes and the executive town homes are classified as residential condominiums or townhomes. Note that 48 single family lots are proposed west of I-140 and would be separate from the primary development and are not part of the conceptual plan submitted for Use on Review. Fifteen "Stacked Flats" are proposed with 16 units per building resulting in 240 total units. Based on the description, CDM Smith categorized these buildings as apartments. For the apartment trips, the MPC trip generation rates were used instead of the ITE Trip Generation Manual rates. The Appendix has copies of the ITE and MPC Trip Generation pages referenced for the applicable residential land uses.

At buildout, Post Oak Bend Subdivision should generate nearly 5,960 daily trips with 418 occurring in the AM peak hour and 547in the PM peak hour. The AM peak hour should realize very directional traffic with 77 percent departing the development. It will be less directional in the PM peak hour with 61 percent oriented towards the development.

				DAILY		AM PEAK HOUR			PM PEAK HOUR			
LAND USE CODE	RESIDENTIAL TYPE	DEVELOPMENT DESCRIPTION	UNITS	In	Out	Total	In	Out	Total	In	Out	Total
MPC	Apartments	Stacked Flats	240	1,048	1,048	2,096	26	94	120	94	77	171
210	Single Family	Single Family Lots, Villas, & Estate Lots	269	1,305	1,305	2,610	50	149	198	161	95	256
230	Condo/Townhouse	Executive Townhomes	113	358	358	715	10	47	57	45	22	66
Subtotal			622	2,711	2,711	5,422	86	289	375	300	193	493
210	Single Family	Off-Site Future Developed Homesites	48	267	267	535	11	33	43	34	20	54
Total			670	2 0 7 9	2 0 7 9	E 0E6	06	222	410	224	214	547

Table 2 : Trip Generation

Sources: ITE Trip Generation, 9th Edition and Knoxville-Knox County MPC

Anticipated Trip Distribution Pattern

Based on current peak hour traffic patterns, the anticipated traffic distribution pattern is illustrated in **Figure 10** and summarized as follows:

- South on South Northshore Drive 55 percent
- North on South Northshore Drive- 35 percent
- Tedford Lane/Keller Bend Road 5 percent
- Badgett Road- 5 percent

CDM Smith considered the likelihood of Post Oak Bend Subdivision traffic using Tedford Lane and Keller Bend Road to reach South Northshore Drive. Keller Bend Road at South Northshore Drive is a signalized intersection and this route is being used today by Tooles Bend Road traffic south of Tedford Lane. A travel time survey was performed to support the traffic assignment decision

between using Tooles Bend Road or Tedford Lane and Keller Bend Road to access South Northshore Drive. The results of the travel time survey are:

- Tedford Lane to Keller Bend Road to the intersection of South Northshore Drive and Keller Bend Road: 4 minutes 30 seconds
- Tooles Bend Road to southbound South Northshore Drive to the intersection of South Northshore Drive and Keller Bend Road: 5 minutes 30 seconds

These times exclude any signal delay at the intersection of Keller Bend Road and South Northshore Drive and left turn stop delay at the intersection of Tooles Bend Road at South Northshore Drive.

CDM Smith chose to go against the trend exhibited with today's traffic patterns and assigned five percent of the Post Oak Bend Subdivision trips to Tedford Lane. The reasons are: 1) a left turn is required from the north development access road onto Tooles Bend Road to access Tedford Lane, which is reverse of the intended direction, 2) Tooles Bend Road at South Northshore Drive will need to be improved with either a signal or roundabout upon buildout and should attract traffic, and 3) the travel time difference between Tedford Lane and Tooles Bend is negligible.

The majority of new trips on Tedford Lane was assumed to originate and be destined to the southern site access to avoid left-turn conflicts. Therefore, of the five percent of anticipated trips using Tedford Lane, 75-percent were assumed to use the southern access and the remaining 25-percent to the north access.

Additionally, the subdivision trips were distributed to either the north or south access based on the location of the residence as shown in the site plan. For example, all of the Stacked Flats are located in the southernmost part of the development; therefore, all trips to and from the Stacked Flats were assigned to use the south access. For the remaining single-family lots and townhome lots that are dispersed throughout the development, a 50-50 split of trips was determined. This results in 34 percent of traffic to the subdivision using the north access and 66 percent using the south access.

Daily Traffic Assignment

A daily traffic assignment of the Post Oak Bend Subdivision trips suggests that Tooles Bend Road will realize a 5,360 to 5,660 daily traffic volume increase. Figure 10 also includes the daily traffic assignment.

Peak Hour Traffic Assignment

The AM and PM peak hour traffic assignments shown in Figure 10 reflect the aforementioned distribution pattern. Today, traffic from Tooles Bend Road favors turning left onto South Northshore Drive versus right by a 60 to 40 ratio. Most of that traffic is probably oriented to I-140 or commercial development near the interchange.

2028 Peak Hour Traffic and LOS with Development

Post Oak Bend Subdivision traffic was superimposed on year 2028 background traffic and the results are shown in **Figure 11**. The resulting LOS's are shown in **Figure 12**. All of the study area intersections, except Tooles Bend Road at South Northshore Drive, should continue to operate with acceptable LOS's. This includes the site access road junctions with Tooles Bend Road. At the intersection of Tooles Bend Road and South Northshore Drive, the westbound movement should operate at LOS F in the AM and PM peak hours with several minutes of delay expected. For analysis purposes, separate left and right turn lanes were analyzed to isolate where the delay is worst, and predictably, the right turn would operate at acceptable delays and the left turn would experience excessively long delays (several minutes). The unsignalized movement LOS/ delay values are unreliable when they are excessive, in part because drivers tend to take more risks when they experience long delays.

Tooles Bend Road Segment Assessment

CDM Smith's 24-hour count on Tooles Bend Road, south of Badgett Road, recorded 1,500 VPD on January 24, 2018. At 20-percent growth, the daily traffic should increase to approximately 1,800 VPD by year 2028. Post Oak Bend Subdivision will generate approximately 5,660 trips per day on Tooles Bend Road at buildout, so the total daily traffic on Tooles Bend Road should reach 7,460 VPD. A summary of projected daily traffic on Tooles Bend Road is as follows:

- Existing: 1,500 VPD
- Background traffic growth: 300 VPD
- Post Oak Bend Subdivision traffic: 5,660 VPD
- Total: 7,460 VPD

In Knox County's Strategic Safety Plan, a Minimum Standard Line (MSL) concept was introduced to help evaluate road segments for operation and safety. The MSL is not a LOS or capacity concept, but rather a road segment scoring component associated with the idea that heavily traveled roads should ideally be wider. The line is primarily linear and is a relationship between road width and daily traffic. In the studies for the Safety Plan, two points were added to the overall score of a segment when the segment's ADT was above the listed value for its width and the initial crash score was equal to or greater than 1.5. For a 17-20-foot wide road like Tooles Bend Road, the MSL ADT value ranges from 1,000 to 4,000 VPD.

From a planning level capacity standpoint, it is the opinion of CDM Smith that Tooles Bend Road can accommodate more than 4,000 VPD, with perhaps 9,000 VPD being a good approximation of the operating threshold. The exact value is hard to quantify because little research has been conducted on the capacity of facilities like Tooles Bend Road As reported in Chapter 2, the 2016 Tooles Bend Road crash score was 0.673 and obviously 2 points were not added because the ADT was 1,670 and the crash score was less than 1.5. With the added traffic, it is not appropriate to add 2 points to the current crash score of 0.673 since the crash score is below the 1.5 threshold. Additionally, an increase in daily traffic would change the initial crash score because the exposure rate would increase. It is important to note that Tooles Bend Road will experience more traffic as a result of Post Oak Bend Subdivision, so some safety enhancements are desirable.

2028 Projected Traffic Signal Warrant Analysis- Tooles Bend Road at South Northshore Drive

To reevaluate the need for a traffic signal at the intersection of South Northshore Drive at Tooles Bend Road, year 2028 traffic generated by Post Oak Bend Subdivision was projected for the hours of 7:00 to 9:00 AM, 11:00 to 1:00 PM, and 2:00 to 6:00 PM using the trip generation estimates previously discussed and the projected turning movement volumes at South Northshore Drive and Tooles Bend Road. These calculations are included in the Appendix. By year 2028, Warrants 1 (A and B), 2, and 3 should be met.

Figure 13 illustrates the anticipated projected LOS's with the added turn lanes and signalization at South Northshore Drive and Tooles Bend Rd. The overall intersection is expected to improve to LOS B in the AM peak hour and LOS C in the PM peak hour.

CDM Smith conducted additional analysis to determine when the traffic signal would be warranted, or when the development will generate enough traffic to meet the traffic signal warrant criteria. The analysis assumed a linear relationship between project development and buildout years. For example, 50% of the project development was assumed to be completed halfway to the projected completion year. This analysis indicated a traffic signal at the intersection of South Northshore Drive and Tooles Bend Road would be warranted by year 2022, or with 40% of the development constructed, and meets Warrants 1B, 2, and 3. The signal warrant assessment table for this projected condition is located in the Appendix.

2028 Roundabout Analysis- Tooles Bend Road at South Northshore Drive

To mitigate anticipated year 2028 delays and poor LOS's, a roundabout was considered in the second iteration of this study for the Tooles Bend Road at South Northshore Drive intersection. In the initial roundabout analysis contained in the previous version of this study dated June 2018, the SIDRA software produced unexpected results when a northbound right turn bypass lane was contemplated. Adding a northbound right turn bypass lane to South Northshore Drive caused the Tooles Bend Road approach LOS to worsen. This occurred because of the gap acceptance formula in SIDRA that credits right turning traffic in a roundabout to create gaps. Hence, at this intersection, removing the northbound right turn traffic from the roundabout decreased the gaps in the northbound flow that right turn traffic on Tooles Bend Road would use to enter the roundabout.

The unexpected SIDRA results from the previous study prompted CDM Smith to analyze the subject intersection with three different roundabout software packages and eight total versions:

- SIDRA with HCM 6 Methodology
- SIDRA with Standard Capacity Model (SIDRA Standard)
- SIDRA with HCS 2010
- HCS 7.5 with HCM 6 Methodology
- HCS 2010
- Synchro 10 with HCS 2010
- Synchro 10 with HCM 6 Methodology

• SimTraffic 2010

A comparison of the software package results from the previous version of this study is tabulated in the Appendix. Year 2028 AM and PM peak hour volumes at South Northshore Drive and Tooles Bend Road were analyzed as a roundabout intersection without and with a northbound South Northshore Drive right turn bypass lane. As the reader can see from the table, SIDRA with HCM 6 methodology generates some outlying results when analyzing the right turn bypass lane option.

This report includes updated development land use, and the roundabout LOS analysis was rerun with the up-to-date traffic volumes. However, CDM Smith did not rerun the roundabout analysis using all of the software versions mentioned in the preceding paragraph. Instead, and as a result of the extensive examination of the software packages, CDM Smith limited its most recent analysis to SIDRA using the 2010 HCM methodology.

Conclusions that can be reached from the roundabout analysis include:

- Northbound South Northshore Drive will operate at LOS F in the 2028 PM peak hour
- A northbound bypass lane is needed to mitigate the LOS F
- With a northbound bypass lane, the overall intersection LOS is C in the AM and D in the PM using HCS 2010

Figure 14 illustrates the anticipated projected LOS's with a roundabout and northbound bypass right turn lane at South Northshore Drive and Tooles Bend Road with HCS 2010 results.

Chapter 4- Summary and Recommendations

Post Oak Bend Subdivision would be constructed over an approximate 10-year period and ultimately contain 670 total residential units at buildout. A 48-lot single family component is included but would be separated from the main development. Two access roads that intersect Tooles Bend Road are proposed for the primary tract of land. Access to this smaller tract would be on Tooles Bend Road, just south of Tedford Lane. The remainder of this chapter describes the recommendations developed based on the traffic analysis, and **Table 3** details a summary of the capacity and LOS analyses conducted for the study.

South Northshore Drive at Tooles Bend Road

The proposed Post Oak Bend Subdivision will generate enough traffic to justify improvements to the intersection of South Northshore Drive and Tooles Bend Road. A traffic signal and roundabout are both viable options. With both alternatives, Tooles Bend Road needs to be realigned to intersect South Northshore Drive at a 90-degree angle. More discussion on both alternatives is provided in the following paragraphs.

Traffic Signal

Install a 100-foot southbound South Northshore Drive left turn lane with a 320-foot approach taper and 110-foot bay taper. There is a northbound left turn lane on South Northshore Drive at Bickerstaff Boulevard that has a taper ending 220 feet east of Tooles Bend Road. That taper will have to be modified to construct a new left turn lane on South Northshore Drive for Tooles Bend Road. Alternatively, it will be more effective to construct a continuous left turn lane between Bickerstaff Boulevard and Tooles Bend Road.

Install a 150-foot northbound right turn lane on South Northshore Drive at Tooles Bend Road with a 300-foot approach taper.

Widen Tooles Bend Road at South Northshore Drive to allow for two 175-foot turn lanes, one left and one right. This would require a 180-foot approach taper, assuming the taper is directed to the right.

When warranted, in approximately 2022, install a traffic signal.

Improvements to this intersection should come in two phases, with phase one to include building the turn lanes and phase two installing the traffic signal. Phase one construction can include as much of the traffic signal equipment as feasible.

Roundabout

A single lane roundabout is a viable option but would need to include a northbound South Northshore Drive right turn bypass lane. The design details have not been developed for this report. Unlike a traffic signal that should be constructed when warranted, a roundabout could be constructed at any time because it is not tied to warrants.

Traffic Signal and Roundabout Comparison

It is CDM Smith's belief that a roundabout at this intersection will function at an acceptable LOS. In the PM peak hour, the HCS 2010 results project an overall LOS D. By comparison, a traffic signal will operate at LOS B. As drivers get better acquainted with roundabouts, the LOS will likely improve.

In considering whether to select a traffic signal or a roundabout, the following factors will be extremely important:

- Maintenance of traffic
- Drainage impacts
- ROW needs
- Environmental impacts
- Disruptions to driveways
- Cost
- Community acceptance
- Commuter acceptance
- Service life
- Schedule and improvement phasing

In fact, these factors will determine which improvement to select (signal versus roundabout) instead of which provides the better LOS and minimizes delays.

Badgett Road at Tooles Bend Road

Looking right from Badgett Road the intersection sight distance is 220 feet, thus falling 80 feet short of the 300-foot minimum distance established by MPC for a 30 MPH road. The stopping sight distance for a 30 MPH road is 200 feet and is met. An intersection warning sign (W2-2L) should be installed on southbound Tooles Bend Road before the intersection with a 25 MPH Advisory Speed plaque (W13-1P). Improving the vertical curve would be extremely costly and may not be feasible given other transportation needs in Knox County. Additionally, no turn lanes are warranted or recommended from Tooles Bend Road to Badgett Road, and no turn lanes are recommended for the Badgett Road approach.

North Access on Tooles Bend Road

A single approach lane to Tooles Bend Road is recommended; separate left and right turn lanes are not needed. Although it does not meet the Knox County criterion for a left turn lane, a 100-foot southbound left turn lane on Tooles Bend Road with a 150-foot approach taper and 50-foot bay taper is desired.

South Access on Tooles Bend Road

A single approach lane to Tooles Bend Road is recommended; separate left and right turn lanes are not needed. Although it does not meet the Knox County criterion for a left turn lane, a 100-foot southbound left turn lane with a 150-foot approach taper and 50-foot bay taper is desired.

Tedford Road at Tooles Bend Road

No turn lanes are warranted or recommended on Tooles Bend Road to Tedford Lane, and the approach to Tooles Bend Road does not need separate turn lanes.

Tooles Bend Road

Tooles Bend Road is 20 feet wide without shoulders and there are some horizontal curves in the southern section between Badgett Road and the I-140 underpass. There were 10 crashes reported in the 4-year timespan between 2012 and 2015 with most occurring north of Badgett Road. The Knox County safety study ranked the road segment 318th in its crash evaluation, suggesting it is a safe road in comparison to others. Nevertheless, since it will be accommodating more traffic generated by Post Oak Bend Subdivision, certain improvements would enhance safety. In addition, Knox County has recently repaved and restriped the edge lines and center lines along Tooles Bend Road. The following is recommended:

- Replace the existing guardrail in the curved section south of Badgett Road where the guardrail is damaged or lower than 2.5 feet above the roadway. See Figures 15 and 16 for illustrations of these locations.
- Add centerline raised pavement markings along the corridor.
- Add edge line rumble stripes along the corridor, except where guardrails are located.

48-Lot Off-Site Single Family Tract

This component of the development is not included in the current site plan submitted for Use on Review, but the following recommendations should be carried out when it is constructed:

One access to Tooles Bend Road should be provided. It does not need separate left and right turn lanes on its approach to Tooles Bend Road. A left turn lane from Tooles Bend Road into the development is not warranted according to Knox County criteria and is not recommended.

The intersection sight distance of 300 feet is achievable at almost every point where the access could be provided because this section of Tooles Bend Road is straight and level. The exceptions are potentially at the extreme north or south portions of the property.

		PEAK	2018 EXISTING TRAFFIC			2028 BACK	GROUND TR	AFFIC	2028 PROJECTED TRAFFIC			
INTERSECTION	TRAFFIC CONTROL	PERIOD	V/C	DELAY	LOS	V/C	DELAY	LOS	V/C	DELAY	LOS	
Tooles Bend Rd	STOP	АМ	0.41 / 0.03	32.2 / 0.7	D/A	0.40 / 0.03	38.9 / 0.8	E / A	2.70 / 0.08	>500.0 / 2.0	F/A	
at Northshore Dr	NWL/SBL	PM	0.39 / 0.04	34.5 / 1.1	D/A	0.49 / 0.06	53.7 / 1.5	F/A	4.11 / 0.28	>500.0 / 7.7	F/A	
Mitigation	STOP	AM							2.15 / 0.39	>500.0 / 20.0	F/C	
Add Exclusive Turn Lanes	NWL/NWR	PM							3.00 / 0.32	>500.0 / 20.2	F / C	
Mitigation	SIGNAL	AM							0.80	18.0	В	
Add Exclusive Turn Lanes & Provide Signalization		PM							0.83	20.3	С	
Mitigation	ROUNDABOUT	AM							0.86	24.0	С	
Construct Roundabout with Northbound Right Turn Bypass Lane	9	PM							0.96	30.5	D	
Tooles Bend Rd	STOP	AM	0.03 / 0.01	9.0 / 2.8	A / A	0.03 / 0.01	8.7 / 2.9	A / A	0.05 / 0.01	11.0 / 1.1	B / A	
at Badgett Rd	WBL/SBL	PM	0.04 / 0.02	8.6 / 4.8	A / A	0.03 / 0.02	8.6 / 4.8	A / A	0.08 / 0.03	11.8 / 1.0	B / A	
Tooles Bend Rd	STOP	AM	0.01 / 0.03	8.7 / 3.9	A / A	0.01 / 0.02	8.5 / 3.9	A / A	0.02 / 0.03	9.3 / 1.5	A / A	
at Tedford Ln	EBL/NBL	PM	0.04 / 0.01	8.6 / 3.0	A / A	0.04 / 0.01	8.5 / 3.0	A / A	0.08 / 0.02	10.2 / 1.0	B / A	
Tooles Bend Rd	STOP	AM							0.14 / 0.02	10.5 / 2.5	B / A	
at North Site Access	WBL/SBL	PM							0.08 / 0.08	9.8 / 2.9	A / A	
Tooles Bend Rd	STOP	AM							0.05 / 0.01	10.0 / 1.1	B / A	
at Apartment Access	WBL/SBL	PM							0.03 / 0.03	9.3 / 1.2	A / A	
Tooles Bend Rd	STOP	AM							0.21 / 0.04	9.6 / 6.1	A / A	
at South Site Access	WBL/SBL	PM							0.14 / 0.14	9.1 / 6.4	A / A	

Table 3: Capacity and Level of Service Summary

Note: Average vehicle delay estimated in seconds. STOP control analyses presented by minor approach.

Roundabout analyses reports HCM 2010 results.

Appendix

Traffic Counts

File Name: Tooles Bend at BadgettSite Code: 00000111Start Date: 1/11/2018Page No: 1

· · · · · · · · · · · · · · · · · · ·							Group	os Printea-	- Unshift	ea							
	T	OOLES	BEND	RD		BADG	ETT RD)	T	OOLES	BEND	RD		BADG	ETT RD)	
		South	nbound			West	bound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	1	8	0	9	0	0	4	4	0	6	0	6	0	0	0	0	19
07:15 AM	2	8	0	10	0	0	5	5	0	4	0	4	0	0	0	0	19
07:30 AM	6	2	0	8	0	0	8	8	0	26	3	29	0	0	0	0	45
07:45 AM	4	3	0	7	0	0	6	6	0	4	1	5	0	0	0	0	18
Total	13	21	0	34	0	0	23	23	0	40	4	44	0	0	0	0	101
08:00 AM	3	2	0	5	0	0	2	2	0	4	1	5	0	0	0	0	12
08:15 AM	5	2	0	7	0	0	4	4	0	0	1	1	0	0	0	0	12
08:30 AM	1	7	0	8	0	0	3	3	0	6	0	6	0	0	0	0	17
08:45 AM	5	4	0	9	0	0	7	7	0	4	0	4	0	0	0	0	20
Total	14	15	0	29	0	0	16	16	0	14	2	16	0	0	0	0	61
*** BREAK ***																	
04:00 PM	6	5	0	11	1	0	3	4	0	4	1	5	0	0	0	0	20
04:15 PM	7	5	0	12	1	0	6	7	0	2	0	2	0	0	0	0	21
04:30 PM	3	6	0	9	0	0	2	2	0	4	0	4	0	0	0	0	15
04:45 PM	7	1	0	8	1	0	2	3	0	6	0	6	0	0	0	0	17
Total	23	17	0	40	3	0	13	16	0	16	1	17	0	0	0	0	73
05:00 PM	6	2	0	8	0	0	6	6	0	6	0	6	0	0	0	0	20
05:15 PM	10	3	0	13	0	0	2	2	0	7	0	7	0	0	0	0	22
05:30 PM	4	6	0	10	0	0	3	3	0	6	2	8	0	0	0	0	21
05:45 PM	9	5	0	14	0	0	11	11	0	5	1	6	0	0	0	0	31
Total	29	16	0	45	0	0	22	22	0	24	3	27	0	0	0	0	94
Grand Total	79	69	0	148	3	0	74	77	0	94	10	104	0	0	0	0	329
Apprch %	53.4	46.6	0		3.9	0	96.1		0	90.4	9.6		0	0	0		
Total %	24	21	0	45	0.9	0	22.5	23.4	0	28.6	3	31.6	0	0	0	0	

	T	OOLES South	BEND F	RD		BADG	ETT RD		T	OOLES North	BEND F	RD		BADG	ETT RD		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 07:00	AM to 1	1:45 AM -	Peak 1	of 1									-		
Peak Hour for E	ntire Inte	ersectior	n Begins	at 07:00	AM												
07:00 AM	1	8	0	9	0	0	4	4	0	6	0	6	0	0	0	0	19
07:15 AM	2	8	0	10	0	0	5	5	0	4	0	4	0	0	0	0	19
07:30 AM	6	2	0	8	0	0	8	8	0	26	3	29	0	0	0	0	45
07:45 AM	4	3	0	7	0	0	6	6	0	4	1	5	0	0	0	0	18
Total Volume	13	21	0	34	0	0	23	23	0	40	4	44	0	0	0	0	101
% App. Total	38.2	61.8	0		0	0	100		0	90.9	9.1		0	0	0		
PHF	.542	.656	.000	.850	.000	.000	.719	.719	.000	.385	.333	.379	.000	.000	.000	.000	.561
PER Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1																	
05:00 PM	6	2	0	8	0	0	6	6	0	6	0	6	0	0	0	0	20
05:15 PM	10	3	Ő	13	0	0	2	2	Ő	7	0	7	0	Ő	Ő	Ő	22
05:30 PM	4	6	0	10	0	0	3	3	0	6	2	8	0	0	0	0	21
05:45 PM	9	5	Ō	14	Ō	Ō	11	11	Ō	5	1	6	Ō	Ō	Ō	Ō	31
Total Volume	29	16	0	45	0	0	22	22	0	24	3	27	0	0	0	0	94
% App. Total	64.4	35.6	0	-	0	0	100		0	88.9	11.1		0	0	0		
PHF	.725	.667	.000	.804	.000	.000	.500	.500	.000	.857	.375	.844	.000	.000	.000	.000	.758

Groups Printed- Unshifted

_ .

.

File Name : Tooles Bend at Northshore Site Code : 0000000 Start Date : 1/25/2018 Page No : 1

							Grou	ps Printed	- Unshift	ted							
	TOOLES BEND RD		N	ORTHS	HORE	DR	T	OOLES	BEND	RD	N	ORTHS	HORE	DR			
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App Total	Int Total
						70		App. 10tal	14		r tigrit	1C		70	7	70	176
07.00 AN	0	0	0	0	2	19	0	407	11	0	10	10	0	100	1	19	170
07:15 AM	0	0	0	0	5	102	0	107	11	0	13	24	0	102	3	105	236
07:30 AM	0	0	0	0	5	149	0	154	9	0	13	22	0	112	3	115	291
07:45 AM	0	0	0	0	2	127	0	129	8	0	3	11	0	173	10	183	323
Total	0	0	0	0	14	457	0	471	39	0	34	73	0	459	23	482	1026
08:00 AM	0	0	0	0	6	130	0	136	6	0	4	10	0	150	3	153	299
08:15 AM	0	0	0	0	6	118	0	124	8	0	3	11	0	170	6	176	311
08:30 AM	0	0	0	0	11	110	0	121	4	0	9	13	0	132	3	135	269
08:45 AM	0	0	0	0	3	126	0	129	0	0	3	3	0	131	6	137	269
Total	0	0	0	0	26	484	0	510	18	0	19	37	0	583	18	601	1148
	U U	Ũ	Ũ	0			Ũ	0.0		•		0.1	Ũ				
*** BREAK ***																	
DIVEAN																	
11.00 AM	0	0	0	0	4	70	0	76	2	0	0	10	0	01	2	07	172
	0	0	0	0	4	12	0	70	2	0	0	10	0	04	5	07	1/3
11:15 AM	0	0	0	0	3	82	0	85	3	0	6	9	0	93	5	98	192
11:30 AM	0	0	0	0	3	94	0	97	4	0	9	13	0	103	6	109	219
11:45 AM	0	0	0	0	5	91	0	96	9	0	3	12	0	101	6	107	215
Total	0	0	0	0	15	339	0	354	18	0	26	44	0	381	20	401	799
12:00 PM	0	0	0	0	3	95	0	98	8	0	3	11	0	86	7	93	202
12:15 PM	0	0	0	0	6	130	0	136	4	0	14	18	0	98	1	99	253
12:30 PM	0	0	0	0	6	109	0	115	3	0	4	7	0	122	6	128	250
12.45 PM	0	0	0	0	1	119	0	120	5	0	4	9	0	126	3	129	258
Total	0	0	0	0	16	453	0	469	20	0	25	45	0	432	17	449	963
Total	Ū	Ū	0	01	10	400	0	400	20	Ŭ	20	40	U	402		440	000
*** BREAK ***																	
DIVEAN																	
02.00 DM	0	0	0	0	4	105	0	106	4	0	F	0	0	110	2	111	220
02.00 PM	0	0	0	0	1	105	0	106	4	0	5	9	0	112	2	114	229
02:15 PM	0	0	0	0	2	113	0	115	6	0	4	10	0	118	6	124	249
02:30 PM	0	0	0	0	9	117	0	126	3	0	8	11	0	117	10	127	264
02:45 PM	0	0	0	0	5	106	0	111	9	0	6	15	0	93	5	98	224
Total	0	0	0	0	17	441	0	458	22	0	23	45	0	440	23	463	966
03:00 PM	0	0	0	0	7	117	0	124	3	0	7	10	0	107	5	112	246
03:15 PM	0	0	0	0	4	139	0	143	8	0	7	15	0	130	8	138	296
03:30 PM	0	0	0	0	8	107	0	115	2	0	5	7	0	137	6	143	265
03·45 PM	0	0	0	0	11	109	0	120	8	0	8	16	0	142	18	160	296
Total	0	0	0	0	30	472	0	502	21	0	27	48	0	516	37	553	1103
Total	Ū	Ū	0	01	00	472	0	002	21	Ŭ	21	40	U	010	07	000	1100
04-00 PM	0	0	0	0	6	86	0	02	٥	0	7	16	0	157	15	172	280
04.00 FIM	0	0	0	0	0	447	0	92	9	0	<u>'</u>	10	0	1.07	10	172	200
04:15 PM	0	0	0	0	3	117	0	120	3	0	5	8	0	144	13	157	285
04:30 PM	0	0	0	0	[129	0	136	1	0	4	11	0	164	11	175	322
04:45 PM	0	0	0	0	5	130	0	135	2	0	14	16	0	122	6	128	279
Total	0	0	0	0	21	462	0	483	21	0	30	51	0	587	45	632	1166
05:00 PM	0	0	0	0	6	125	0	131	9	0	3	12	0	138	15	153	296
05:15 PM	0	0	0	0	9	126	0	135	12	0	7	19	0	190	21	211	365
05:30 PM	0	0	0	0	7	138	0	145	5	0	8	13	0	157	20	177	335
05:45 PM	0	0	0	0	10	127	0	137	4	0	4	8	0	190	20	210	355
Total	0	0	0	0	32	516	0	548	30	0	22	52	0	675	76	751	1351
, etai	Ũ	Ũ	Ŭ	5	02	0.0	5	0.0		Ŭ		02	Ŭ	5.0			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Grand Total	0	0	0	0	171	3624	0	3795	189	0	206	395	0	4073	259	4332	8522
Appreh %	ň	ñ	0	J J	45	95.5	0	5100	47.8	ñ	52.2	000	n n	94	602	1002	
Total %	0	0	0	0	-1.0	42.5	0	115	27.0	0	2.2	16	0	بر ⊿7 ۵	2	50 P	
	0	0				H/ .)		44 J			/ 4	40		71.0			1

File Name : Tooles Bend at Northshore Site Code : 00000000 Start Date : 1/25/2018 Page No : 2

	Т	TOOLES BEND RD Southbound			N	ORTHS	HORE	DR	T	OOLES	BEND I	RD	Ν	ORTHS	HORE	DR	
		South	nbound			Wes	tbound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 07:00	AM to 0)9:45 AM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	ersectior	n Begins	at 07:30	AM												
07:30 AM	0	0	0	0	5	149	0	154	9	0	13	22	0	112	3	115	291
07:45 AM	0	0	0	0	2	127	0	129	8	0	3	11	0	173	10	183	323
08:00 AM	0	0	0	0	6	130	0	136	6	0	4	10	0	150	3	153	299
08:15 AM	0	0	0	0	6	118	0	124	8	0	3	11	0	170	6	176	311
Total Volume	0	0	0	0	19	524	0	543	31	0	23	54	0	605	22	627	1224
% App. Total	0	0	0		3.5	96.5	0		57.4	0	42.6		0	96.5	3.5		
PHF	.000	.000	.000	.000	.792	.879	.000	.881	.861	.000	.442	.614	.000	.874	.550	.857	.947
	. –	40.00															
Peak Hour Anal	ysis ⊢ror	n 10:00		1:45 PM -	Peak 1	OT 1											
Peak Hour for E	ntire Inte	ersection	1 Begins	s at 12:00	РМ	0.5	•	00	-	•	•		•	~~~	_		
12:00 PM	0	0	0	0	3	95	0	98	8	0	3	11	0	86	7	93	202
12:15 PM	0	0	0	0	6	130	0	136	4	0	14	18	0	98	1	99	253
12:30 PM	0	0	0	0	6	109	0	115	3	0	4	7	0	122	6	128	250
12:45 PM	0	0	0	0	1	119	0	120	5	0	4	9	0	126	3	129	258
Total Volume	0	0	0	0	16	453	0	469	20	0	_ 25	45	0	432	17	449	963
% App. Total	0	0	0		3.4	96.6	0		44.4	0	55.6		0	96.2	3.8		
PHF	.000	.000	.000	.000	.667	.871	.000	.862	.625	.000	.446	.625	.000	.857	.607	.870	.933
Deak Llaur Anal	voia Fran	~ 02.00			Deak 1	of 1											
Peak Hour Anal	ysis rivi ntira Inte	II UZ.UU		05.40 FIVI -													
				al 05.00		105	0	121	0	0	2	10	0	120	15	150	206
05.00 PM		0	0	0	0	120	0	131	40	0	37	12	0	100	10	100	290
05.15 PM		0	0	0	9	120	0	135	12	0	/	19	0	190	21	211	300
05:30 PM		0	0	0	10	138	0	145	Э 4	0	0	13	0	157	20	1//	335
	0		0	0	10	127	0	<u> </u>	4	0	4	8	0	190	20	210	300
		0	0	0	32	010	0	548	30	0	40.0	52	0	0/5	10	/51	1351
<u>% App. Total</u>		0	0	000	5.8	94.2	0	045	5/./	0	42.3	004	0	89.9	10.1	000	005
PHF	.000	.000	.000	.000	.800	.935	.000	.945	.625	.000	.688	.684	.000	.888	.905	.890	.925

File Name : Tooles Bend at Tedford Site Code : 00003333 Start Date : 1/11/2018 Page No : 1

							Group	s Printea	- Unshin	lea							
	T	DOLES	BEND	RD		TEDF	ORD LN	I	T	OOLES	BEND	RD		TEDF	ORD LN	I	
		South	nbound			West	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	5	4	0	9	0	0	0	0	9
07:15 AM	0	0	0	0	0	0	0	0	7	4	0	11	1	0	0	1	12
07:30 AM	0	1	0	1	0	0	0	0	9	12	0	21	0	0	2	2	24
07:45 AM	0	3	0	3	0	0	0	0	8	3	0	11	1	0	1	2	16
Total	0	4	0	4	0	0	0	0	29	23	0	52	2	0	3	5	61
08:00 AM	0	1	0	1	0	0	0	0	4	6	0	10	0	0	3	3	14
08:15 AM	0	0	0	0	0	0	0	0	2	2	0	4	0	0	5	5	9
08:30 AM	0	4	1	5	0	0	0	0	3	2	0	5	1	0	1	2	12
08:45 AM	0	4	2	6	0	0	0	0	6	2	0	8	0	0	4	4	18
Total	0	9	3	12	0	0	0	0	15	12	0	27	1	0	13	14	53
*** BREAK ***																	
				. 1				- 1				1					
04:00 PM	0	5	1	6	0	0	0	0	1	6	0	7	2	0	5	7	20
04:15 PM	0	2	0	2	0	0	0	0	2	1	0	3	0	0	10	10	15
04:30 PM	0	1	1	2	0	0	0	0	3	5	0	8	0	0	7	7	17
04:45 PM	0	1	0	1	0	0	0	0	6	5	0	11	0	0	8	8	20
Total	0	9	2	11	0	0	0	0	12	17	0	29	2	0	30	32	72
1																	1
05:00 PM	0	1	1	2	0	0	0	0	0	10	0	10	2	0	2	4	16
05:15 PM	0	4	0	4	0	0	0	0	1	3	0	4	2	0	5	7	15
05:30 PM	0	3	0	3	0	0	0	0	5	2	0	7	3	0	7	10	20
05:45 PM	0	3	0	3	0	0	0	0	1	3	0	4	0	0	2	2	9
Total	0	11	1	12	0	0	0	0	7	18	0	25	7	0	16	23	60
1																	1
Grand Total	0	33	6	39	0	0	0	0	63	70	0	133	12	0	62	74	246
Apprch %	0	84.6	15.4		0	0	0		47.4	52.6	0		16.2	0	83.8		
Total %	0	13.4	2.4	15.9	0	0	0	0	25.6	28.5	0	54.1	4.9	0	25.2	30.1	

	Т	DOLES South	BEND I	RD		TEDF0 West	DRD LN		Т	OOLES North	BEND F	RD		TEDF0 Fast	ORD LN		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	sis Fron	n 07:00	AM to 1	1:45 AM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsectior	Begins	at 07:15	AM												
07:15 AM	0	0	0	0	0	0	0	0	7	4	0	11	1	0	0	1	12
07:30 AM	0	1	0	1	0	0	0	0	9	12	0	21	0	0	2	2	24
07:45 AM	0	3	0	3	0	0	0	0	8	3	0	11	1	0	1	2	16
08:00 AM	0	1	0	1	0	0	0	0	4	6	0	10	0	0	3	3	14
Total Volume	0	5	0	5	0	0	0	0	28	25	0	53	2	0	6	8	66
% App. Total	0	100	0		0	0	0		52.8	47.2	0		25	0	75		
PHF	.000	.417	.000	.417	.000	.000	.000	.000	.778	.521	.000	.631	.500	.000	.500	.667	.688
Peak Hour Analy Peak Hour for E	Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Entire Intersection Begins at 04:00 PM																
04:00 PM	0	5	ັ1	6	0	0	0	0	1	6	0	7	2	0	5	7	20
04:15 PM	0	2	0	2	0	0	0	0	2	1	0	3	0	0	10	10	15
04:30 PM	0	1	1	2	0	0	0	0	3	5	0	8	0	0	7	7	17
04:45 PM	0	1	0	1	0	0	0	0	6	5	0	11	0	0	8	8	20
Total Volume	0	9	2	11	0	0	0	0	12	17	0	29	2	0	30	32	72
% App. Total	0	81.8	18.2		0	0	0		41.4	58.6	0		6.2	0	93.8		
PHF	.000	.450	.500	.458	.000	.000	.000	.000	.500	.708	.000	.659	.250	.000	.750	.800	.900

Groups Printed- Unshifted

Greater Traffic Company

TOOLES BEND RD S OF NORTHSHORE DR

M264

Start	10/17/2016	NB		Hour Total	s	SB		Hour Tota	als	
Time	Mon	AM	PM	AM	PM	AM	PM	AM	PM	
12:00		2	18			1	19			
12:15		0	14			0	17			
12:30		0	7			0	8			
12:45		0	14	2	53	0	18	1	62	
01:00		0	15			3	10			
01:15		0	16			0	11			
01:30		0	10			0	10			
01:45		0	6	0	47	0	15	3	46	
02:00		0	21			0	6			
02:15		0	9			1	10			
02:30		2	14			0	21			
02:45		0	6	2	50	0	9	1	46	
03:00		0	5	_		0	11	-		
03.15		0	12			0	11			
02.20		0	20			0	10			
03.30		0	20			U	19			
03:45		0	21	0	58	0	20	0	61	
04:00		0	17			0	18			
04.15		0	18			0	14			
04:10		0	10			1	20			
04:45		1	13	1	67	0	20	1	75	
04.40		4	10		07	0	16		10	
05:00		1	19			2	10			
05:15		1	18			1	23			
05:30		5	9			0	22			
05:45		1	17	11	63	2	29	5	00	
05.45		4	10	11	03	2	14	5	90	
00.00		1 E	10			3	21			
00.15		10	12			3	21			
06.30		12	12	20	40	0	21	26	07	
00.45		3	9	20	43	14	31	20	07	
07:00		32	6			11	8			
07:15		19	13			11	12			
07:30		30	3			7	10			
07.45		22	7	100	20	11	10	40	44	
07:45		40	/	103	29	10	11	40	41	
08:00		18	9			10	9			
08:15		17	9			9	9			
08:30		10	8	00	00	6	1	0.4	00	
08:45		17	10	62	30	9	8	34	33	
09:00		8	7			14	7			
09:15		28	2			18	2			
00.30		16	1			5	Q			
09.00		10		04	10	15	5	50	00	
09:45		9	2	61	12	10	4	52	22	
10:00		21	1			9	4			
10:15		11	0			10	1			
10:30		8	1	= 4	•	13	3		-	
10:45		11	1	51	3	9	0	41	8	
11:00		13	2			6	0			
11:15		18	0			9	2			
11:30		22	0		-	17	0		-	
11:45		9	0	62	2	10	0	42	2	
Peak	-	07:00	03:30	-	-	09:00	05:00	-	-	-
Vol.	-	103	76	-	-	52	90	-	-	-
<u> </u>		0.805	0.905			0.722	0.776			
Lane		846				819				
Total		0-10				010				

Page 1

Site Code: TOOLES BEND Station ID:

Latitude: 0' 0.0000 Undefined

Start	24-Jan-18									
lime	Wed	NB	SB				 			lotal
12:00 AM		2	1							3
01:00		0	3							3
02.00		2	1							0
03.00		1	1							2
05:00		11	5							16
06:00		28	26							54
07:00		103	40							143
08:00		62	34							96
00.00		61	52							113
10.00		45	30							75
11:00		44	29							73
12:00 PM		48	39							87
01:00		47	64							111
02:00		30	47							77
03:00		64	60							124
04.00		71	48							119
05:00		56	62							118
06:00		41	61							102
07:00		29	41							70
08:00		36	33							69
09:00		12	22							34
10:00		3	8							11
11:00		2	2							4
Total		798	709							1507
Percent		53.0%	47.0%							
AM Peak	-	07:00	09:00	-	-	-	-	-	-	07:00
Vol.	-	103	52	-	-	-	-	-	-	143
PINI Peak	-	10:00	13:00	-	-	-	-	-	-	15:00
Vol.	-	()	04	-	-	-	 -	-	-	124
Total		798	709							1507
Percent		53.0%	47.0%							
1 0.00111		00.070								
ADT	A	DT 1,507	AA	DT 1,507						

Traffic History

	Traffic History reflects th	e Annual Average Daily Traffic (AADT) count along specific locations on	Tennessee's	road networ	k
View stations	on map: Select a county ▼	Non-Map Record Search: Anderson v	Station Num	ber: 287	Search
Page But	thishore D		Stati	Station I ion te	information 000287 SR332
allow Dr		ad	Locat	tion SOUTHV	VEST KNOXVILL
	> K) (K K 🔹 🎢 👘	allert	Cour	nty	Knox
		Ba	201	.6	13879
	700%		201	.5	13133
lin the	and the second		201	.4	14108
Ge (A A A A A A A A A A A A A A A A A A A		201	.3	14516
nada	J. J.		201	.2	13611
- alia			201	.1	12898
	$\sum (1 + \lambda)$		201	.0	13984
			200	19	13148
332		ie s	200	8	12603
20	PKWY	end p.	200)/	14005
	Pellissi/lissipp.		200	10	14294
			200	15	13141
11407	TedfcTedford Ln		200	14	14731
	$\mathcal{F} \sim \mathcal{F}$		200	12	13323
gender			200)1	13161
aller			200	00	11981
ž –			199	9	11292
Google		- AND	199	98	10737
(https://maps.g s: I/S&kgl≠dd6§lmaq	oogle.com/maps?ll=35.869158,-84.04149&z=1)noblematp⇒a/@25)8691579,-84.0414905,14z/data=!10n	4&t=m&hl=en- n1!1e1!12b1?sod vtæpapata%2a0s1&=6piø@] e	199)7	12515
Download File: Open	KML (/Applications/Files/TrfcHist.kmz) Google Earth	ESRI Geodatabase ESRI Shapefile (/Applications/Files/TrfcHistFGDB.zip) (/Applications/Files/TrfcHi ArcGIS Explorer	stSHP.zip)	C (/Applicatio MS	atabase Table ns/Files/TrfcHis Access or Exce
with:	(https://earth.google.com/)	(http://www.esri.com/software/arcgis/explorer/index.htm	11)		

© 2018 - TDOT Applications

Knox County Engineering & Public Works 205 W. Baxter Ave. Knoxville, TN 37917 865-215-5800

Site: #485 TEDFORD RD 4/29/2015 Wednesday

24 Hour Volume, per Channel	
#485 TEDFORD RD	
Interval Start	
11:00 AM	42
12:00 PM	25
1:00 PM	42
2:00 PM	44
3:00 PM	52
4:00 PM	47
5:00 PM	49
6:00 PM	55
7:00 PM	21
8:00 PM	30
9:00 PM	16
10:00 PM	4
11:00 PM	2
4/30/2015 12:00 AM	1
1:00 AM	0
2:00 AM	1
3:00 AM	2
4:00 AM	2
5:00 AM	4
6:00 AM	8
7:00 AM	40
8:00 AM	46
9:00 AM	40
10:00 AM	12
Total	585

Peak Hours

<u> 12:00 AM -</u>	· 12:00 PM	<u> 12:00 PM -</u>	12:00 AM
Started	8:00 AM	Started	6:00 PM
Peak Volume	46	Peak Volume	55
Factor	-	Factor	-

Greater Traffic Company

BADGETT RD W OF WRIGHTS FERRY RD

M263

Start	10/17/2016	EB		Hour Totals	6	WB		Hour Total	s	
Time	Mon	AM	PM	AM	PM	AM	PM	AM	PM	
12:00		0	4			1	2			
12:15		0	4			0	0			
12:30		0	4			0	3			
12:45		0	2	0	14	0	4	1	9	
01:00		0	3			0	2			
01:15		0	3			0	4			
01:30		0	1			0	2			
01:45		0	2	0	9	0	4	0	12	
02:00		0	4			0	5			
02:15		0	2		İ	0	0		İ	
02:30		0	6			0	4			
02:45		0	2	0	14	0	4	0	13	
03:00		0	5	-		0	2	-		
03.15		0	2			0	4			
02:20		0	-			0	7			
03.30		0	4			U	4			
03:45		0	7	0	18	0	0	0	19	
04:00		0	7			0	3			
04.15		0	3			0	9			
04:30		0	8			0	7			
04:00		1	5	1	23	0	1	0	23	
05:00		0	5		20	1	5	0	25	
05.00		0	8			1				
05:15		1	10			2	1			
05:30		0	18			2	7			
05:45		0	9	1	40	0	5	5	24	
06:00		1	14			0	2	Ū		
00.00		1	2			0	2			
00.15		2	3			0	3			
06:30		2	3	C	20	2	4	F	10	
06:45		2	8	0	28	3	3	5	12	
07:00		2	1			6	3			
07:15		3	4			6	3			
07:30		6	2			4	3			
07.45		4	1	15	8	8	2	24	11	
07.40		3	-	10	0	5	2	27		
08:00		3	5			5	0			
08:15		3	1			3	2			
08:30		2	1			9	0			
08:45		3	0	11	7	5	1	22	3	
00.00		3	0			4	0			
09.00		5	0				U			
09:15		4	0			0	1			
09:30		2	1			4	0			
09:45		1	1	10	2	1	1	17	2	
10:00		3	0			6	0			
10:15		1	0			1	1			
10:30		3	1			1	0			
10:45		5	0	12	1	7	0	15	1	
11:00		5	0			5	1			
11:15		2	1			2	0			
11:30		2	0			4	0			
11:45		3	0	12	1	5	0	16	1	
Peak	-	07:15	05:15	-	-	08:30	03:30	-	-	-
Vol.	-	16	49	-	-	26	25	-	-	-
<u> </u>		0.667	0.681			0.722	0.694			
Lane		222				73E				
Total		200				200				

Page 1

Trip Generation

Single-Family Detached Housing (210)

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Number of Studies:355Avg. Number of Dwelling Units:198Directional Distribution:50% entering, 50% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.52	4.31 - 21.85	3.70

Single-Family Detached Housing

(210)

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies:	292
Ava. Number of Dwelling Units:	194
Directional Distribution:	25% entering, 75% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.75	0.33 - 2.27	0.90

Single-Family Detached Housing (210) Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies:	321
Avg. Number of Dwelling Units:	207
Directional Distribution:	63% entering, 37% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
1.00	0.42 - 2.98	1.05

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Number of Studies:	56
Avg. Number of Dwelling Units:	179
Directional Distribution:	50% entering, 50% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
5.81	1.53 - 11.79	3.11

Data Plot and Equation

Residential Condominium/Townhouse

(230)

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 59 Avg. Number of Dwelling Units: 213 Directional Distribution: 17% entering, 83% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	0.15 - 1.61	0.69

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Number of Studies:	62
Avg. Number of Dwelling Units:	205
Directional Distribution:	67% entering, 33% exiting

Trip Generation per Dwelling Unit

Average Bate	Range of Rates	Standard Deviation
0.52	0.18 - 1.24	0.75

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday

Number of Studies:13Average Number of Dwelling Units:193Directional Distribution:50% entering, 50% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
9.03	6.59 - 17.41	2.47

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Number of Studies:	13
Average Number of Dwelling Units:	193
Directional Distribution:	22% entering, 78% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
0.55	0.14 - 0.78	0.18

Local Apartment Trip Generation Study

Average Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Number of Studies:	13
Average Number of Dwelling Units:	193
Directional Distribution:	55% entering, 45% exiting

Trip Generation Per Dwelling Unit

Average Rate	Ranges of Rates	Standard Deviation
0.72	0.32 - 1.66	0.25

Synchro Analysis

	1	۴	L.	Ŧ	£	•	
Movement	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	ţ,			្ឋ	W.		
Traffic Volume (veh/h)	605	22	19	524	31	23	
Future Volume (Veh/h)	605	22	19	524	31	23	
Sign Control	Free			Free	Stop	•	
Grade	0%			0%	0%		
Peak Hour Factor	0.86	0.86	0.88	0.88	0.61	0.61	
Hourly flow rate (yph)	703	26	22	595	51	38	
Pedestrians	100	20		000	01	00	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	1 10110			110110			
Unstream signal (ft)							
nX platoon unblocked							
vC conflicting volume			729		1355	716	
vC1_stage 1 conf vol			125		1000	710	
vC2_stage 2 conf vol							
vCu_unblocked vol			729		1355	716	
tC. single (s)			4 1		64	62	
tC, 2 stage (s)					0.1	0.2	
tF (s)			22		35	33	
n0 queue free %			97		68	91	
cM canacity (veh/h)			875		161	430	
			010		101	400	
Direction, Lane #	NB 1	SB 1	NW 1				
Volume Total	729	617	89				
Volume Left	0	22	51				
Volume Right	26	0	38				
cSH	1700	875	219				
Volume to Capacity	0.43	0.03	0.41				
Queue Length 95th (ft)	0	2	46				
Control Delay (s)	0.0	0.7	32.2				
Lane LOS		А	D				
Approach Delay (s)	0.0	0.7	32.2				
Approach LOS			D				
Intersection Summary							
Average Delay			2.3				
Intersection Capacity Utiliza	ation		52.9%	IC	Ulevelo	of Service	
Analysis Period (min)			15				

	✓	•	†	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĥ		-	ភ
Traffic Volume (veh/h)	0	23	40	4	13	21
Future Volume (Veh/h)	0	23	40	4	13	21
Sign Control	Stop		Free	-		Free
Grade	0%		0%			0%
Peak Hour Factor	0.72	0.72	0.38	0.38	0.85	0.85
Hourly flow rate (vph)	0	32	105	11	15	25
Pedestrians	Ū	02	100	••	10	20
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NOTIC			None
Unstream signal (ft)						
nX platoon unblocked						
vC. conflicting volume	166	110			116	
vC1_stage 1 conf vol	100	110			110	
vC2_stage 2 conf vol						
	166	110			116	
tC. single (s)	64	62			<u>4</u> 1	
tC. 2 stage (s)	0.4	0.2			т. (
tF (s)	3 5	2 2			2.2	
n) queue free %	100	9.5 97			2.2 QQ	
cM canacity (yeh/h)	817	0/3			1473	
	017	343			1475	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	32	116	40			
Volume Left	0	0	15			
Volume Right	32	11	0			
cSH	943	1700	1473			
Volume to Capacity	0.03	0.07	0.01			
Queue Length 95th (ft)	3	0	1			
Control Delay (s)	9.0	0.0	2.8			
Lane LOS	А		А			
Approach Delay (s)	9.0	0.0	2.8			
Approach LOS	А					
Intersection Summary						
			0.1			
Average Delay	zation		2.1 10 50/			of Convice
Analysis Deried (min)	zalion		10.3%	iC	O Level (
Analysis Period (min)			15			

	٦	$\mathbf{\hat{v}}$	٠	t	ŧ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	eî.		
Traffic Volume (veh/h)	2	6	28	25	5	0	
Future Volume (Veh/h)	2	6	28	25	5	0	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.67	0.67	0.63	0.63	0.42	0.42	
Hourly flow rate (vph)	3	9	44	40	12	0	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	140	12	12				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	140	12	12				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	99	97				
cM capacity (veh/h)	830	1069	1607				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	12	84	12				
Volume Left	3	44	0				
Volume Right	9	0	0				
cSH	997	1607	1700				
Volume to Capacity	0.01	0.03	0.01				
Queue Length 95th (ft)	1	2	0				
Control Delay (s)	8.7	3.9	0.0				
Lane LOS	А	А					
Approach Delay (s)	8.7	3.9	0.0				
Approach LOS	А						
Intersection Summarv							
Average Delay			4.0				
Intersection Capacity Utiliza	ation		19.5%	IC	CULevelo	of Service	
Analysis Period (min)			15				

	1	۴	L.	↓	F	*	
Movement	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	t.			4	W		
Traffic Volume (veh/h)	675	76	32	516	30	22	
Future Volume (Veh/h)	675	76	32	516	30	22	
Sign Control	Free		•-	Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.89	0.89	0 94	0.94	0.68	0.68	
Hourly flow rate (yph)	758	85	34	549	44	32	
Pedestrians	100	00	01	010		02	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	None			NULLE			
Linstream signal (ft)							
nX nlatoon unblocked							
vC conflicting volume			8/3		1/18	800	
vC1 stage 1 confive			045		1410	000	
vC1, stage 1 confivel							
vCz, stage z com vol			Q/12		1/10	800	
			043		1410	6.0	
tC, Single (S)			4.1		0.4	0.2	
(C, Z stage (S))			0.0		2 5	2.2	
IF (S)			2.2		3.5	ა.ა იე	
pu queue free %			90		10	92	
civi capacity (ven/n)			793		144	300	
Direction, Lane #	NB 1	SB 1	NW 1				
Volume Total	843	583	76				
Volume Left	0	34	44				
Volume Right	85	0	32				
cSH	1700	793	196				
Volume to Capacity	0.50	0.04	0.39				
Queue Length 95th (ft)	0	3	43				
Control Delay (s)	0.0	1.1	34.5				
Lane LOS		А	D				
Approach Delay (s)	0.0	1.1	34.5				
Approach LOS			D				
Intersection Summary							
Average Delav			2.2				
Intersection Capacity Utilizati	on		63.4%	IC	U Level o	of Service	
Analysis Period (min)			15				

	✓	•	†	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1.		-	ភ
Traffic Volume (veh/h)	0	22	24	3	29	16
Future Volume (Veh/h)	0	22	24	3	29	16
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.50	0.50	0.84	0.84	0.80	0.80
Hourly flow rate (vph)	0	44	29	4	36	20
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	123	31			33	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	123	31			33	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	96			98	
cM capacity (veh/h)	852	1043			1579	
Direction Lane #	WB 1	NR 1	SB 1			
Volume Total	44	33	56			
Volume Left	0	0	36			
Volume Right	44	0 Д	0			
cSH	1043	1700	1579			
Volume to Canacity	0.04	0.02	0.02			
Queue Length 95th (ft)	3	0.02	2			
Control Delay (s)	86	0.0	4.8			
	Δ	0.0	0 Δ			
Annroach Delay (s)	86	0.0	4.8			
Approach LOS	Δ	0.0	ч. 0			
	A					
Intersection Summary						
Average Delay			4.9			
Intersection Capacity Util	ization		19.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	$\mathbf{\hat{v}}$	•	t	ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۲			र्भ	4Î	
Traffic Volume (veh/h)	2	30	12	17	9	2
Future Volume (Veh/h)	2	30	12	17	9	2
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.80	0.80	0.66	0.66	0.46	0.46
Hourly flow rate (vph)	3	38	18	26	20	4
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)					-	
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	84	22	24			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	84	22	24			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	96	99			
cM capacity (veh/h)	907	1055	1591			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	41	44	24			
Volume Left	3	18	0			
Volume Right	38	0	4			
cSH	1043	1591	1700			
Volume to Canacity	0.04	0.01	0.01			
Queue Length 95th (ft)	3	1	0.01			
Control Delay (s)	86	3.0	0.0			
Lane LOS	Δ	Δ	0.0			
Approach Delay (s)	86	3.0	0.0			
Approach LOS	0.0 A	0.0	0.0			
	, (
Intersection Summary			4 5			
Average Delay	- C		4.5			(0
Intersection Capacity Utiliz	zation		18.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	1	۴	L.	Ļ	Ł	*	
Movement	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	4Î			र्स	Y		
Traffic Volume (veh/h)	726	26	23	629	37	28	
Future Volume (Veh/h)	726	26	23	629	37	28	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	789	28	25	684	40	30	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			817		1537	803	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			817		1537	803	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		68	92	
cM capacity (veh/h)			811		124	383	
Direction, Lane #	NB 1	SB 1	NW 1				
Volume Total	817	709	70				1
Volume Left	0	25	40				
Volume Right	28	0	30				
cSH	1700	811	174				
Volume to Capacity	0.48	0.03	0.40				
Queue Length 95th (ft)	0	2	44				
Control Delay (s)	0.0	0.8	38.9				
Lane LOS		A	E				
Approach Delay (s)	0.0	0.8	38.9				
Approach LOS			Е				
Intersection Summary							
			2.1				
Intersection Canacity Litili	zation		2.1 62.1%	IC		of Service	
Analysis Period (min)	Lation		15	IC.			
Analysis Penou (min)			15				

	-	•	†	1	1	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			đ
Traffic Volume (veh/h)	0	28	48	5	16	25
Future Volume (Veh/h)	0	28	48	5	16	25
Sign Control	Stop	•	Free	Ū		Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0 92	0.92	0.92	0 92	0.92
Hourly flow rate (yph)	0.02	30	52	5	17	27
Pedestrians	Ŭ	00	02	Ű		
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						110110
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	116	54			57	
vC1, stage 1 conf vol					01	
vC2_stage 2 conf vol						
vCu_unblocked vol	116	54			57	
tC, single (s)	64	62			4 1	
tC, 2 stage (s)	0.1	0.2				
tF (s)	35	33			22	
p0 queue free %	100	.97			99	
cM capacity (veh/h)	871	1012			1547	
			/		1011	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	30	57	44			
Volume Left	0	0	17			
Volume Right	30	5	0			
cSH	1012	1700	1547			
Volume to Capacity	0.03	0.03	0.01			
Queue Length 95th (ft)	2	0	1			
Control Delay (s)	8.7	0.0	2.9			
Lane LOS	А		Α			
Approach Delay (s)	8.7	0.0	2.9			
Approach LOS	А					
Intersection Summary						
Average Delay			3.0			
Intersection Canacity Utilizati	ion		18.9%	IC	Ulevelo	of Service
Analysis Period (min)			15	10		

	٦	$\mathbf{\hat{v}}$	•	t	Ļ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			र्भ	4Î			
Traffic Volume (veh/h)	2	7	34	30	6	0		
Future Volume (Veh/h)	2	7	34	30	6	0		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	2	8	37	33	7	0		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	114	7	7					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	114	7	7					
tC, single (s)	6.4	6.2	4.1					
tC. 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	99	98					
cM capacity (veh/h)	862	1075	1614					
Direction Lane #		NR 1	CR 1					
Volume Total	10	70	7					
	2	37	0					
Volume Right	2 Q	0	0					
	1025	1614	1700					
Volume to Canacity	0.01	0.02	0.00					
Oueue Length 95th (ff)	0.01	0.02	0.00					
Control Delay (c)	85	30	0.0					
	0.0	ی.ع ۸	0.0					
Lane LUS Approach Dolay (c)	8 E	3 O H	0.0					
Approach LOS	C.0	3.9	0.0					
	A							
Intersection Summary								
Average Delay			4.1			(A		
Intersection Capacity Util	ization		20.1%	IC	CU Level c	of Service	A	
Analysis Period (min)			15					

	1	۴	L.	Ļ	Ł	*
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	4			र्स	- Y	
Traffic Volume (veh/h)	810	91	38	619	36	26
Future Volume (Veh/h)	810	91	38	619	36	26
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	880	99	41	673	39	28
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			979		1684	930
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			979		1684	930
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			94		60	91
cM capacity (veh/h)			705		97	324
Direction Lane #	NR 1	SR 1	NW/ 1			
Volume Total	070	71/	67			
	919	/ 14	20			
Volume Leit	0	41	29			
	1700	705	120			
Volume to Capacity	0.58	0.06	0.40			
Oucus Longth 05th (ft)	0.50	0.00	0.49			
Queue Lengin 95in (ii)	0	15	57 52 7			
	0.0	1.5	55.7 E			
Lane LUS	0.0	A 1 E	F 5 7			
Approach LOS	0.0	1.5	55.7 F			
Approach LOS			F			
Intersection Summary						
Average Delay			2.7			
Intersection Capacity Util	lization		73.9%	IC	CU Level o	of Service
Analysis Period (min)			15			

	<	•	†	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	¥		1.			4		
Traffic Volume (veh/h)	0	26	29	4	35	19		
Future Volume (Veh/h)	0	26	29	4	35	19		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (yph)	0.02	28	32	4	38	21		
Pedestrians	Ū	20	02	•	00			
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)			110110					
Upstream signal (ft)								
pX. platoon unblocked								
vC, conflicting volume	131	34			36			
vC1. stage 1 conf vol		• .						
vC2, stage 2 conf vol								
vCu, unblocked vol	131	34			36			
tC, single (s)	6.4	6.2			4.1			
tC. 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	97			98			
cM capacity (veh/h)	842	1039			1575			
Direction Lane #	WB 1	NR 1	SB 1					
Volume Total	28	36	50				-	
Volume Left	20	0	38					
Volume Right	28	1	0					
cSH	1039	1700	1575					
Volume to Canacity	0.03	0.02	0.02					
Oueue Length 95th (ft)	0.00	0.02	2					
Control Delay (s)	86	0.0	4.8					
	Δ	0.0	Δ.τ-					
Annroach Delay (s)	86	0.0	4 8					
Approach LOS	Δ	0.0	ч. 0					
	Λ							
Intersection Summary								
Average Delay			4.2					
Intersection Capacity Util	lization		19.6%	IC	U Level o	of Service		
Analysis Period (min)			15					
	٦	$\mathbf{\hat{v}}$	•	1	Ļ	∢		
------------------------------	-------	--------------------	-------	------	------------	-----------	---	--
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			र्च	et 🗧			
Traffic Volume (veh/h)	2	36	14	20	11	2		
Future Volume (Veh/h)	2	36	14	20	11	2		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	2	39	15	22	12	2		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (ft)								
pX. platoon unblocked								
vC. conflicting volume	65	13	14					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	65	13	14					
tC. sinale (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	96	99					
cM capacity (veh/h)	932	1067	1604					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	41	37	14					
Volume Left	2	15	0					
Volume Right	39	0	2					
cSH	1060	1604	1700					
Volume to Capacity	0.04	0.01	0.01					
Queue Length 95th (ft)	3	1	0					
Control Delay (s)	8.5	3.0	0.0					
Lane LOS	A	A	0.0					
Approach Delay (s)	8.5	3.0	0.0					
Approach LOS	A		0.0					
Intersection Summary								
Average Delav			5.0					
Intersection Capacity Utiliz	ation		18.5%	IC	CU Level o	f Service	А	
Analysis Period (min)			15					

	1	۴	L.	Ŧ	Ŧ	•
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	ţ,			र्स	¥	
Traffic Volume (veh/h)	726	79	56	629	214	141
Future Volume (Veh/h)	726	79	56	629	214	141
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	789	86	61	684	233	153
Pedestrians			• •			
Lane Width (ft)						
Walking Speed (ff/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	Nono			Tiono		
Upstream signal (ft)						
nX platoon unblocked						
vC. conflicting volume			875		1638	832
vC1_stage 1 conf vol			010		1000	002
vC2 stage 2 conf vol						
			875		1638	832
tC single (s)			4 1		6.4	6.2
tC_2 stage (s)			7.1		0.4	0.2
tE (s)			22		35	33
n) queue free %			92		0.0	59
cM canacity (yeh/h)			771		102	369
					102	000
Direction, Lane #	NB 1	SB 1	NW 1			
Volume Total	875	745	386			
Volume Left	0	61	233			
Volume Right	86	0	153			
cSH	1700	771	143			
Volume to Capacity	0.51	0.08	2.70			
Queue Length 95th (ft)	0	6	865			
Control Delay (s)	0.0	2.0	834.8			
Lane LOS		А	F			
Approach Delay (s)	0.0	2.0	834.8			
Approach LOS			F			
Intersection Summary						
Average Delay			161 4			
Intersection Canacity Utilization	on		106.6%	IC	Ulevelo	of Service
Analysis Period (min)			15			

	4	*	Ť	۲	5	ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	- ¥		4			र्स	
Traffic Volume (veh/h)	5	28	338	21	16	111	
Future Volume (Veh/h)	5	28	338	21	16	111	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	5	30	367	23	17	121	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	534	378			390		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	534	378			390		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	96			99		
cM capacity (veh/h)	500	668			1169		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	35	390	138				
Volume Left	5	0	17				
Volume Right	30	23	0				
cSH	638	1700	1169				
Volume to Capacity	0.05	0.23	0.01				
Queue Length 95th (ft)	4	0	1				
Control Delay (s)	11.0	0.0	1.1				
Lane LOS	В		А				
Approach Delay (s)	11.0	0.0	1.1				
Approach LOS	В						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utilizatio	n		29.3%	IC	U Level o	of Service	
Analysis Period (min)			15				

	≯	$\mathbf{\hat{z}}$	1	t	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	¢Î,		
Traffic Volume (veh/h)	3	11	46	242	69	3	
Future Volume (Veh/h)	3	11	46	242	69	3	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	3	12	50	263	75	3	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	440	76	78				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	440	76	78				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	99	99	97				
cM capacity (veh/h)	556	985	1520				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	15	313	78				
Volume Left	3	50	0				
Volume Right	12	0	3				
cSH	853	1520	1700				
Volume to Capacity	0.02	0.03	0.05				
Queue Length 95th (ft)	1	3	0				
Control Delay (s)	9.3	1.4	0.0				
Lane LOS	А	А					
Approach Delay (s)	9.3	1.4	0.0				
Approach LOS	А						
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utilizatio	n		31.9%	IC	CU Level c	f Service	А
Analysis Period (min)			15				

	✓	•	†	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		î,		-	្ព
Traffic Volume (veh/h)	4	94	244	1	29	68
Future Volume (Veh/h)	4	94	244	1	29	68
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	4	102	265	1	32	74
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	404	266			266	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	404	266			266	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	99	87			98	
cM capacity (veh/h)	588	773			1298	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	106	266	106			
Volume Left	4	0	32			
Volume Right	102	1	0			
cSH	764	1700	1298			
Volume to Capacity	0.14	0.16	0.02			
Queue Length 95th (ft)	12	0	2			
Control Delay (s)	10.5	0.0	2.5			
Lane LOS	В		А			
Approach Delay (s)	10.5	0.0	2.5			
Approach LOS	В					
Intersection Summary						
Average Delay			2.9			
Intersection Capacity Utili	zation		34.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	<	•	†	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1.		-	្ឋ
Traffic Volume (veh/h)	0	33	255	0	11	69
Future Volume (Veh/h)	0	33	255	0	11	69
Sian Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	36	277	0	12	75
Pedestrians	-			-		
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX. platoon unblocked						
vC. conflicting volume	376	277			277	
vC1. stage 1 conf vol	0.0					
vC2, stage 2 conf vol						
vCu, unblocked vol	376	277			277	
tC. single (s)	6.4	6.2			4.1	
tC. 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	95			99	
cM capacity (veh/h)	620	762			1286	
Direction Lane #	\//D 1	ND 1	CD 1			
Valuma Tatal			07			
	30	211	٥/			
	0	0	12			
	30	1700	1000			
CSH	762	1700	1286			
Volume to Capacity	0.05	0.16	0.01			
Queue Length 95th (ft)	4	0	1			
Control Delay (s)	10.0	0.0	1.1			
Lane LOS	A		A			
Approach Delay (s)	10.0	0.0	1.1			
Approach LOS	A					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utiliz	ation		23.4%	IC	U Level o	of Service
Analysis Period (min)			15			

	<	•	†	1	×	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		î,		-	ភ
Traffic Volume (veh/h)	0	191	64	0	56	13
Future Volume (Veh/h)	0	191	64	0	56	13
Sign Control	Stop		Free	-		Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	208	70	0	61	14
Pedestrians	-			-		
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	206	70			70	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	206	70			70	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	79			96	
cM capacity (veh/h)	751	993			1531	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	208	70	75			
Volume Left	0	0	61			
Volume Right	208	0	0			
cSH	993	1700	1531			
Volume to Capacity	0.21	0.04	0.04			
Queue Length 95th (ft)	20	0	3			
Control Delay (s)	9.6	0.0	6.1			
Lane LOS	A	0.0	A			
Approach Delay (s)	9.6	0.0	6.1			
Approach LOS	A					
Intersection Summary						
Average Delay			6.9			
Intersection Capacity Utiliza	ation		28.9%	IC	Ulevelo	of Service
Analysis Period (min)			15	.0	5 201010	

	Ť	۴	L.	Ļ	Ł	*	
Movement	NBT	NBR	SBL	SBT	NWL	NWR	
Lane Configurations	ĥ			र्स	۲		
Traffic Volume (veh/h)	810	274	155	619	153	101	
Future Volume (Veh/h)	810	274	155	619	153	101	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	880	298	168	673	166	110	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			1178		2038	1029	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			1178		2038	1029	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			72		0	61	
cM capacity (veh/h)			593		45	284	
Direction. Lane #	NB 1	SB 1	NW 1				
Volume Total	1178	841	276				
Volume Left	0	168	166				
Volume Right	298	0	110				
cSH	1700	593	67				
Volume to Canacity	0.69	0.28	4 11				
Queue Length 95th (ft)	0.00	29	Frr				
Control Delay (s)	0.0	77	Err				
Lane LOS	0.0	Α	F				
Approach Delay (s)	0.0	77	Frr				
Approach LOS	0.0	1.1	F				
Interpretion Cummon							
Average Delev			1005.0				
Average Delay			1205.3				
Intersection Capacity Utiliz	zation		125.1%	IC	U Level o	of Service	
Analysis Period (min)			15				

	≯	$\mathbf{\hat{z}}$	•	t	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	- M			र्स	4Î		
Traffic Volume (veh/h)	6	49	21	168	229	5	
Future Volume (Veh/h)	6	49	21	168	229	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	7	53	23	183	249	5	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	480	252	254				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	480	252	254				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	99	93	98				
cM capacity (veh/h)	535	787	1311				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	60	206	254				
Volume Left	7	23	0				
Volume Right	53	0	5				
cSH	746	1311	1700				
Volume to Capacity	0.08	0.02	0.15				
Queue Length 95th (ft)	7	1	0				
Control Delay (s)	10.2	1.0	0.0				
Lane LOS	В	А					
Approach Delay (s)	10.2	1.0	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Utilization	n		35.7%	IC	CU Level c	of Service	А
Analysis Period (min)			15				

	4	•	Ť	1	5	Ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		ţ,			स्		
Traffic Volume (veh/h)	3	55	170	4	99	231		
Future Volume (Veh/h)	3	55	170	4	99	231		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	3	60	185	4	108	251		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	654	187			189			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	654	187			189			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	99	93			92			
cM capacity (veh/h)	398	855			1385			
Direction Lane #	WB 1	NB 1	SB 1					
Volume Total	63	189	350					
	3	03	108					
Volume Dight	60	1	001					
	811	1700	1385					
Volume to Canacity	0.08	0.11	0.08					
Oueue Length 95th (ft)	6.00	0.11	6					
Control Delay (s)	98	0.0	29					
	5.0 Δ	0.0	Δ					
Approach Delay (s)	0.8	0.0	20					
Approach LOS	Δ	0.0	2.5					
	~							
Intersection Summary								
Average Delay			2.7					
Intersection Capacity Utiliz	ation		40.4%	IC	U Level o	of Service		
Analysis Period (min)			15					

	∢	•	Ť	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		î,			र्स	1
Traffic Volume (veh/h)	0	135	34	0	197	47	
Future Volume (Veh/h)	0	135	34	0	197	47	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	147	37	0	214	51	
Pedestrians	-					•••	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
nX platoon unblocked							
vC conflicting volume	516	37			37		
vC1_stage 1 conf vol	010	01			01		
vC2 stage 2 conf vol							
vCu, unblocked vol	516	37			37		
tC, single (s)	6.4	6.2			4.1		
tC 2 stage (s)	••••	•					
tF (s)	35	33			22		
n) queue free %	100	86			86		
cM capacity (veh/h)	449	1035			1574		
		1000			1071		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	147	37	265				
Volume Left	0	0	214				
Volume Right	147	0	0				
cSH	1035	1700	1574				
Volume to Capacity	0.14	0.02	0.14				
Queue Length 95th (ft)	12	0	12				
Control Delay (s)	9.1	0.0	6.4				
Lane LOS	А		А				
Approach Delay (s)	9.1	0.0	6.4				
Approach LOS	А						
Intersection Summary							
Average Delay			67				
Intersection Canacity Litilization	n		35.1%	IC		of Service	
Analysis Period (min)			15				

	Ť	۴۱	L.	Ŧ	F	•
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	*	1	5	*	5	1
Traffic Volume (veh/h)	726	79	56	629	214	141
Future Volume (Veh/h)	726	79	56	629	214	141
Sian Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	789	86	61	684	233	153
Pedestrians			• .			
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)				110110		
Upstream signal (ft)						
pX, platoon unblocked						
vC. conflicting volume			875		1595	789
vC1, stage 1 conf vol			0.0		1000	100
vC2_stage 2 conf vol						
vCu, unblocked vol			875		1595	789
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					0.1	5.2
tF (s)			22		35	33
p0 queue free %			92		0	61
cM capacity (veh/h)			771		108	391
Direction Lane #	NR 1	NR 2	SR 1	SR 2	NI// 1	NIW/ 2
Volume Total	790	86	61	69/	033	152
	109	00	61	004	∠ ఎ ఎ ఎ ఎ ఎ	100
Volume Dight	0	0	01	0	233	152
	1700	1700	774	1700	100	100
COFI Volume to Conneitu	1700	0.05	1/1	0.40	108	391
Volume to Capacity	0.46	0.05	80.0	0.40	2.15	0.39
Queue Length 95th (tt)	0	0	6	0	499	40
Control Delay (s)	0.0	0.0	10.1	0.0	613.3	20.0
Lane LOS	0.0		В			С
Approach Delay (s)	0.0		0.8		378.1	
Approach LOS					F	
Intersection Summary						
Average Delay			73.1			
Intersection Capacity Utiliz	zation		63.4%	IC	CU Level of	of Service
Analysis Period (min)			15			

	†	۴	L.	Ŧ	F	•
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	•	1	5	•	5	1
Traffic Volume (veh/h)	810	274	155	619	153	101
Future Volume (Veh/h)	810	274	155	619	153	101
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	880	298	168	673	166	110
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC. conflicting volume			1178		1889	880
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			1178		1889	880
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					••••	
tF (s)			2.2		3.5	3.3
p0 queue free %			72		0	68
cM capacity (veh/h)			593		55	346
Direction Lane #	NR 1	NR 2	SB 1	SB 2	NW 1	NW 2
Volume Total	880	208	168	673	166	110
Volume Left	000	230	168	075	166	0
Volume Dight	0	208	001	0	001	110
	1700	1700	503	1700	55	346
Volumo to Consoitu	0.52	0.19	0.00	0.40	2 00	0.22
Oucus Longth 05th (ft)	0.52	0.10	0.20	0.40	3.00	0.52
Control Doloy (a)	0	0	12 5	0.0	400	20.2
Long LOS	0.0	0.0	13.5	0.0	1000.4	20.2
Lane LOS Approach Doloy (a)	0.0		D 07		Г 6// 6	U
Approach LOS	0.0		Z.1		044.0	
Apploach LOS					Г	
Intersection Summary						
Average Delay			78.5			
Intersection Capacity Utili	zation		69.7%		CU Level	of Service
Analysis Period (min)			15			

Lane Group NBT NBR SBL SBT NWL NWR Lane Configurations 7 7 56 629 214 141 Future Volume (vph) 726 79 56 629 214 141 Tum Type NA Perm pm+pt NA Perm Perm Protected Phases 2 1 6 8 Permitted Phases 2 1 6 8 Detector Phase 2 2 1 6 8 8 Switch Phase 2 1 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 <th></th> <th>Ť</th> <th>۴</th> <th>L.</th> <th>Ļ</th> <th>£</th> <th>*</th> <th></th>		Ť	۴	L.	Ļ	£	*	
Lane Configurations Image: Configuration in the image: Configurating in the image: Configuration in the image: Configuration in th	Lane Group	NBT	NBR	SBL	SBT	NWL	NWR	
Traffic Volume (vph) 726 79 56 629 214 141 Future Volume (vph) 726 79 56 629 214 141 Turn Type NA Perm pm+pt NA Prot Perm Protected Phases 2 1 6 8 8 Permitted Phases 2 2 1 6 8 8 Switch Phase 2 2 1 6 8 8 Minimum Split (s) 15.0 15.0 5.0 15.0 6.0 6.0 Minimum Split (s) 40.0 40.0 11.0 24.0 24.0 24.0 Total Split (%) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yelow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 Lead Fild (%) 50.0 0.0 0.0 0.0 0.0 0.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 14.1 14.1 Actead Lag Optimize?	Lane Configurations	1	1	۲	†	۲	1	
Future Volume (vph) 726 79 56 629 214 141 Turn Type NA Perm pm+pt NA Prot Perm Protected Phases 2 1 6 8 Bermitted Phases 2 6 8 Bermitted Phases 2 1 6 8 Bermitted Phases 2 2 1 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 1 6 8 8 2 0 0 0 0 0 0 0 0 0 0	Traffic Volume (vph)	726	79	56	629	214	141	
Turn Type NA Perm pm+pt NA Prot Perm Protected Phases 2 1 6 8 8 Permitted Phases 2 2 1 6 8 8 Switch Phase 2 1 6 8 8 8 Minimum Initial (s) 15.0 15.0 5.0 15.0 6.0 6.0 Minimum Split (s) 24.0 24.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 41.0 4.0 <	Future Volume (vph)	726	79	56	629	214	141	
Protected Phases 2 1 6 8 Permitted Phases 2 2 1 6 8 Detector Phase 2 2 1 6 8 Switch Phase 15.0 5.0 15.0 6.0 6.0 Minimum Initial (s) 15.0 24.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 4.0 4.0 4.0 4.0 24.0 24.0 Total Split (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 <	Turn Type	NA	Perm	pm+pt	NA	Prot	Perm	
Permitted Phases 2 6 8 Detector Phase 2 1 6 8 8 Switch Phase 50 15.0 50.0 15.0 6.0 6.0 Minimum Initial (s) 15.0 15.0 50.0 15.0 24.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.	Protected Phases	2		1	6	8		
Detector Phase 2 2 1 6 8 8 Minimum Initial (s) 15.0 15.0 5.0 15.0 6.0 6.0 Minimum Split (s) 24.0 24.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (%) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.4.1 Lead-Lag Optimize? Yes Yes Yes Yes Yes Sec Act Effct Green (s) 39.4 45.9 45.9 14.1 14.1 14.1 Actuated g/C R	Permitted Phases		2	6			8	
Switch Phase Minimum Initial (s) 15.0 15.0 5.0 15.0 6.0 6.0 Minimum Split (s) 24.0 24.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (%) 53.3% 53.3% 14.7% 68.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.	Detector Phase	2	2	1	6	8	8	
Minimum Initial (s) 15.0 15.0 5.0 15.0 6.0 6.0 Minimum Split (s) 24.0 24.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (s) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lag Lead Lead-Lag One Act Effc Green (s) 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.56 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control	Switch Phase							
Minimum Split (s) 24.0 24.0 11.0 24.0 24.0 24.0 Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (s) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lead Lead Lead Lead Lead Lag Lag<	Minimum Initial (s)	15.0	15.0	5.0	15.0	6.0	6.0	
Total Split (s) 40.0 40.0 11.0 51.0 24.0 24.0 Total Split (%) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lead Lead/Lag Lag Lead Lead/Lag Optimize? Yes Yes Yes Yes Yes Recall Mode Max Max None Max None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay	Minimum Split (s)	24.0	24.0	11.0	24.0	24.0	24.0	
Total Split (%) 53.3% 53.3% 14.7% 68.0% 32.0% 32.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode Max Max None Max None None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A B D A Approach LOS	Total Split (s)	40.0	40.0	11.0	51.0	24.0	24.0	
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode Max Max None None None Act Effct Green (s) 39.4 39.4 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 1.0 LOS C A B D A <	Total Split (%)	53.3%	53.3%	14.7%	68.0%	32.0%	32.0%	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Recall Mode Max Max None Max None None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A B D A A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio:	Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode Max Max None None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS	All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	
Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 Lead/Lag Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode Max Max None Max None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cotal Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Intersection Capacity Utilization 68.4% Intersection LOS: B <t< td=""><td>Lost Time Adjust (s)</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td></t<>	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Recall Mode Max Max None Max None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary C C B C Vicycle Length: 75 C	Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	
Lead-Lag Optimize? Yes Yes Yes Recall Mode Max Max None Max None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 A Approach LOS C B C Intersection Signal Delay: 172 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection LOS: B Intersection LOS: B Int	Lead/Lag	Lag	Lag	Lead				
Recall Mode Max Max None Max None None None None None None Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Le	Lead-Lag Optimize?	Yes	Yes	Yes				
Act Effct Green (s) 39.4 39.4 45.9 45.9 14.1 14.1 Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 75 Control Type: Semi Act-Uncoord Aximum v/c Ratio: 0.77 Intersection LOS: B Intersecti	Recall Mode	Max	Max	None	Max	None	None	
Actuated g/C Ratio 0.55 0.55 0.64 0.64 0.20 0.20 v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary	Act Effct Green (s)	39.4	39.4	45.9	45.9	14.1	14.1	
v/c Ratio 0.77 0.10 0.22 0.58 0.67 0.35 Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 75 Actuated Cycle Length: 75 75 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection LOS: B Intersection Signal Delay: 18.0 Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Actuated g/C Ratio	0.55	0.55	0.64	0.64	0.20	0.20	
Control Delay 23.2 4.9 7.7 10.6 36.8 7.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 Actuated Cycle Length: 75 Actuated Cycle Length: 75 Control Type: Semi Act-Uncoord Haximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	v/c Ratio	0.77	0.10	0.22	0.58	0.67	0.35	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 23.2 4.9 7.7 10.6 36.8 7.0 LOS C A A B D A Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary C B C C Intersection Summary C Cycle Length: 75 Actuated Cycle Length: 75 Actuated Cycle Length: 72 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection LOS: B Intersec	Control Delay	23.2	4.9	7.7	10.6	36.8	7.0	
Total Delay23.24.97.710.636.87.0LOSCAABDAApproach Delay21.410.425.0Approach LOSCBCIntersection SummaryCycle Length: 75Actuated Cycle Length: 72Natural Cycle: 75Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.77Intersection Signal Delay: 18.0Intersection Capacity Utilization 68.4%Intersection Capacity Utilization 68.4%Splits and Phases:101: Northshore Dr & Tooles Bend Rd	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
LOSCAABDAApproach Delay21.410.425.0Approach LOSCBCIntersection SummaryCycle Length: 75Actuated Cycle Length: 72Natural Cycle: 75Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.77Intersection Signal Delay: 18.0Intersection Capacity Utilization 68.4%Intersection Capacity Utilization 68.4%Splits and Phases:101: Northshore Dr & Tooles Bend Rd	Total Delay	23.2	4.9	7.7	10.6	36.8	7.0	
Approach Delay 21.4 10.4 25.0 Approach LOS C B C Intersection Summary Cycle Length: 75 Cycle Length: 72 Cycle Length: 75 Control Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection LOS: B Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	LOS	С	A	A	В	D	А	
Approach LOS C B C Intersection Summary	Approach Delay	21.4			10.4	25.0		
Intersection Summary Cycle Length: 75 Actuated Cycle Length: 72 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Approach LOS	С			В	С		
Cycle Length: 75 Actuated Cycle Length: 72 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Intersection Summary							
Actuated Cycle Length: 72 Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Cycle Length: 75							
Natural Cycle: 75 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Actuated Cycle Length:	72						
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Natural Cycle: 75							
Maximum v/c Ratio: 0.77 Intersection Signal Delay: 18.0 Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Control Type: Semi Act-	Uncoord						
Intersection Signal Delay: 18.0 Intersection LOS: B Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Maximum v/c Ratio: 0.7	7						
Intersection Capacity Utilization 68.4% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Intersection Signal Dela	y: 18.0			lr	ntersectio	n LOS: B	
Analysis Period (min) 15 Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Intersection Capacity Ut	ilization 68.4%			IC	CU Level	of Service	С
Splits and Phases: 101: Northshore Dr & Tooles Bend Rd	Analysis Period (min) 15	5						
	Splits and Phases: 10	1. Northshore	Dr & Too'	les Rend	Rd			
				les Della	i tu			

4 Ø1	NØ2	
11 s	40 s	
₩. Ø6		€ 08
51 s		24 s

M:\Ooten Chris Riverside Venture\TETP\Analysis\revised 071718\Projected 2028 AM Peak MIT.syn ANF CDM Smith

Queues 101: South Northshore Dr & Tooles Bend Rd

	†	۴	L.	Ŧ	F	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Group Flow (vph)	789	86	61	684	233	153
v/c Ratio	0.77	0.10	0.22	0.58	0.67	0.35
Control Delay	23.2	4.9	7.7	10.6	36.8	7.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.2	4.9	7.7	10.6	36.8	7.0
Queue Length 50th (ft)	300	4	9	154	95	0
Queue Length 95th (ft)	#568	28	24	280	164	43
Internal Link Dist (ft)	928			822	337	
Turn Bay Length (ft)		150	150		150	
Base Capacity (vph)	1020	897	277	1187	442	511
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.77	0.10	0.22	0.58	0.53	0.30
Interportion Cummon						

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	†	۴	L.	Ŧ	₽	< ₹			
Movement	NBT	NBR	SBL	SBT	NWL	NWR			
Lane Configurations	*	1	5	•	5	1			
Traffic Volume (vph)	726	79	56	629	214	141			
Future Volume (vph)	726	79	56	629	214	141			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00			
Satd. Flow (prot)	1863	1583	1770	1863	1770	1583			
Flt Permitted	1.00	1.00	0.15	1.00	0.95	1.00			
Satd. Flow (perm)	1863	1583	272	1863	1770	1583			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92			
Adj. Flow (vph)	789	86	61	684	233	153			
RTOR Reduction (vph)	0	32	0	0	0	124			
Lane Group Flow (vph)	789	54	61	684	233	29			
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases		2	6			8			
Actuated Green, G (s)	39.4	39.4	48.3	48.3	14.1	14.1			
Effective Green, g (s)	39.4	39.4	48.3	48.3	14.1	14.1			
Actuated g/C Ratio	0.53	0.53	0.65	0.65	0.19	0.19			
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	986	838	234	1209	335	300			
v/s Ratio Prot	c0.42		0.01	c0.37	c0.13				
v/s Ratio Perm		0.03	0.16			0.02			
v/c Ratio	0.80	0.07	0.26	0.57	0.70	0.10			
Uniform Delay, d1	14.3	8.5	10.2	7.2	28.1	24.9			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	6.8	0.1	0.6	1.9	6.2	0.1			
Delay (s)	21.1	8.7	10.8	9.2	34.3	25.0			
Level of Service	С	А	В	А	С	С			
Approach Delay (s)	19.9			9.3	30.6				
Approach LOS	В			А	С				
Intersection Summary									
HCM 2000 Control Delay			18.0	Н	CM 2000	Level of Servic	е	В	
HCM 2000 Volume to Capac	city ratio		0.80						
Actuated Cycle Length (s)			74.4	S	um of lost	t time (s)		18.0	
Intersection Capacity Utiliza	tion		68.4%	IC	CU Level o	of Service		С	
Analysis Period (min)			15						

c Critical Lane Group

	1	۴	L,	ŧ	£	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	†	1	۲	†	۲	1
Traffic Volume (vph)	810	274	155	619	153	101
Future Volume (vph)	810	274	155	619	153	101
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm
Protected Phases	2		1	6	8	
Permitted Phases		2	6			8
Detector Phase	2	2	1	6	8	8
Switch Phase						
Minimum Initial (s)	15.0	15.0	5.0	15.0	6.0	6.0
Minimum Split (s)	24.0	24.0	11.0	24.0	24.0	24.0
Total Split (s)	45.0	45.0	11.0	56.0	24.0	24.0
Total Split (%)	56.3%	56.3%	13.8%	70.0%	30.0%	30.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Recall Mode	Max	Max	None	Max	None	None
Act Effct Green (s)	39.1	39.1	50.1	50.1	12.2	12.2
Actuated g/C Ratio	0.53	0.53	0.67	0.67	0.16	0.16
v/c Ratio	0.90	0.34	0.76	0.54	0.57	0.31
Control Delay	31.3	7.6	35.3	8.7	36.7	8.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.3	7.6	35.3	8.7	36.7	8.5
LOS	С	А	D	А	D	А
Approach Delay	25.3			14.0	25.4	
Approach LOS	С			В	С	
Intersection Summary						
Cycle Length: 80						
Actuated Cycle Length: 74.3						
Natural Cycle: 80						
Control Type: Actuated-Uncod	ordinated					
Maximum v/c Ratio: 0.90						
Intersection Signal Delay: 21.	2			lr	ntersectio	n LOS: C
Intersection Capacity Utilization	on 74.7%			10	CU Level	of Service
Analysis Period (min) 15						
Splits and Phases: 101: No	rthshore	Dr & Tool	es Bend	Rd		
4 01 002						

Ø1	NØ2		
11 s	45 s		
Ø6		€ 08	
56 s		24 s	

M:\Ooten Chris Riverside Venture\TETP\Analysis\revised 071718\Projected 2028 PM Peak MIT.syn ANF CDM Smith

Queues 101: South Northshore Dr & Tooles Bend Rd

	†	۴	L.	Ŧ	₽	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Lane Group Flow (vph)	880	298	168	673	166	110
v/c Ratio	0.90	0.34	0.76	0.54	0.57	0.31
Control Delay	31.3	7.6	35.3	8.7	36.7	8.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.3	7.6	35.3	8.7	36.7	8.5
Queue Length 50th (ft)	338	41	24	133	71	0
Queue Length 95th (ft)	#661	99	#137	262	128	38
Internal Link Dist (ft)	928			822	337	
Turn Bay Length (ft)		75	75		75	
Base Capacity (vph)	980	889	220	1256	429	467
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.90	0.34	0.76	0.54	0.39	0.24
Intersection Summary						

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	†	۴	L.	Ŧ	₽	•		
Movement	NBT	NBR	SBL	SBT	NWL	NWR		
Lane Configurations	•	1	5	•	5	1		
Traffic Volume (vph)	810	274	155	619	153	101		
Future Volume (vph)	810	274	155	619	153	101		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1863	1583	1770	1863	1770	1583		
Flt Permitted	1.00	1.00	0.09	1.00	0.95	1.00		
Satd. Flow (perm)	1863	1583	165	1863	1770	1583		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	880	298	168	673	166	110		
RTOR Reduction (vph)	0	56	0	0	0	92		
Lane Group Flow (vph)	880	242	168	673	166	18		
Turn Type	NA	Perm	pm+pt	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases		2	6			8		
Actuated Green, G (s)	39.1	39.1	50.1	50.1	12.2	12.2		
Effective Green, g (s)	39.1	39.1	50.1	50.1	12.2	12.2		
Actuated g/C Ratio	0.53	0.53	0.67	0.67	0.16	0.16		
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	980	833	219	1256	290	259		
v/s Ratio Prot	c0.47		0.05	c0.36	c0.09			
v/s Ratio Perm		0.15	0.46			0.01		
v/c Ratio	0.90	0.29	0.77	0.54	0.57	0.07		
Uniform Delay, d1	15.8	9.8	14.9	6.2	28.6	26.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	12.7	0.9	14.8	1.6	2.7	0.1		
Delay (s)	28.5	10.7	29.7	7.8	31.4	26.4		
Level of Service	С	В	С	А	С	С		
Approach Delay (s)	24.0			12.2	29.4			
Approach LOS	С			В	С			
Intersection Summary								
HCM 2000 Control Delay			20.3	Н	CM 2000	Level of Service	e	С
HCM 2000 Volume to Capaci	HCM 2000 Volume to Capacity ratio		0.83					
Actuated Cycle Length (s)			74.3	S	um of lost	t time (s)	18	.0
Intersection Capacity Utilizati	on		74.7%	IC	CU Level o	of Service		D
Analysis Period (min)			15					

c Critical Lane Group

Roundabout Analysis

W Site: 101 [AM Peak Hr 2028 HCM 2010]

New Site Roundabout

Lane Use	Lane Use and Performance													
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lane	Cap.	Prob.	
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.	
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%	
South: S. N	orthshore I	Dr.												
Lane 1 ^d	875	3.0	1257	0.696	100	12.6	LOS B	7.7	196.7	Full	1600	0.0	0.0	
Approach	875	3.0		0.696		12.6	LOS B	7.7	196.7					
East: Tooles	s Bend Rd													
Lane 1 ^d	386	3.0	585	0.660	100	20.6	LOS C	5.2	132.8	Full	1600	0.0	0.0	
Approach	386	3.0		0.660		20.6	LOS C	5.2	132.8					
North: S. N	orthshore D	Dr.												
Lane 1 ^d	745	3.0	1049	0.710	100	14.9	LOS B	11.6	297.1	Full	1600	0.0	0.0	
Approach	745	3.0		0.710		14.9	LOS B	11.6	297.1					
Intersection	2005	3.0		0.710		15.0	LOS B	11.6	297.1					

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Tuesday, July 24, 2018 11:12:44 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

SITE LAYOUT

W Site: 101 [AM Peak Hr 2028 HCM 2010]

New Site Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Created: Tuesday, July 24, 2018 11:14:42 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

W Site: 101 [PM Peak Hr 2028 HCM 2010]

New Site Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows		Deg.	Lane	Average	Level of	95% Back o	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: S. N	orthshore I	Dr.											
Lane 1 ^d	1178	3.0	922	1.278	100	149.7	LOS F	134.0	3431.6	Full	1600	0.0	<mark>36.8</mark>
Approach	1178	3.0		1.278		149.7	LOS F	134.0	3431.6				
East: Toole	s Bend Rd												
Lane 1 ^d	276	3.0	539	0.512	100	16.0	LOS C	2.8	72.5	Full	1600	0.0	0.0
Approach	276	3.0		0.512		16.0	LOS C	2.8	72.5				
North: S. N	orthshore [Dr.											
Lane 1 ^d	841	3.0	924	0.910	100	33.0	LOS D	36.8	941.2	Full	1600	0.0	0.0
Approach	841	3.0		0.910		33.0	LOS D	36.8	941.2				
Intersection	2296	3.0		1.278		90.9	LOS F	134.0	3431.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Tuesday, July 24, 2018 11:13:07 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

SITE LAYOUT

W Site: 101 [PM Peak Hr 2028 HCM 2010]

New Site Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Created: Tuesday, July 24, 2018 11:14:07 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

V Site: 101 [AM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: S. No	orthshore I	Dr.											
Lane 1 ^d	789	3.0	1030	0.766	100	17.7	LOS C	8.3	211.8	Full	1600	0.0	0.0
Lane 2	86	3.0	1626	0.053	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	875	3.0		0.766		16.0	LOS C	8.3	211.8				
East: Tooles	Bend Rd												
Lane 1 ^d	386	3.0	487	0.793	100	34.1	LOS D	7.3	186.3	Full	1600	0.0	0.0
Approach	386	3.0		0.793		34.1	LOS D	7.3	186.3				
North: S. No	orthshore D	Dr.											
Lane 1 ^d	745	3.0	863	0.862	100	28.3	LOS D	24.3	623.0	Full	1600	0.0	0.0
Approach	745	3.0		0.862		28.3	LOS D	24.3	623.0				
Intersection	2005	3.0		0.862		24.0	LOS C	24.3	623.0				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Tuesday, July 24, 2018 11:13:14 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

SITE LAYOUT V Site: 101 [AM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Created: Tuesday, July 24, 2018 11:14:27 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

V Site: 101 [PM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

Lane Use a	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: S. No	orthshore [Dr.											
Lane 1 ^d	880	3.0	922	0.955	100	40.7	LOS E	46.5	1189.9	Full	1600	0.0	0.0
Lane 2	298	3.0	1626	0.183	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	1178	3.0		0.955		30.4	LOS D	46.5	1189.9				
East: Tooles	Bend Rd												
Lane 1 ^d	276	3.0	443	0.623	100	23.8	LOS C	3.7	94.1	Full	1600	0.0	0.0
Approach	276	3.0		0.623		23.8	LOS C	3.7	94.1				
North: S. No	rthshore D	Dr.											
Lane 1 ^d	841	3.0	924	0.910	100	33.0	LOS D	36.8	941.2	Full	1600	0.0	0.0
Approach	841	3.0		0.910		33.0	LOS D	36.8	941.2				
Intersection	2296	3.0		0.955		30.5	LOS D	46.5	1189.9				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Tuesday, July 24, 2018 11:13:21 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

SITE LAYOUT

W Site: 101 [PM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Created: Tuesday, July 24, 2018 11:14:57 PM Project: C:\Users\COLEKA\Documents\Ooten Riverside Ventures\Roundabout Landuse Plan 5.sip7

Roundabout Analysis (from June 2018 study)

UMME PartnerVis	SB L T 143 619 32.9 15.0 14.5 30.1 30.1 29.8 16.6
Name La La <thla< th=""> <thla< th=""> <thla< th=""> La<!--</th--><th>L T 143 619 32.9 15.0 14.5 30.1 30.1 29.8 16.6</th></thla<></thla<></thla<>	L T 143 619 32.9 15.0 14.5 30.1 30.1 29.8 16.6
Channel First D/D D/D <thd d<="" th=""> D/D D/D <thd d<="" th=""><th>143 619 32.9 15.0 14.5 30.1 30.1 29.8 16.6</th></thd></thd>	143 619 32.9 15.0 14.5 30.1 30.1 29.8 16.6
State Strepholic HOX M State State Strepholic Market State Profile 20 HOX Market State 177 178 127 120 46.0 128 0.0 223 20.4 43.84 129 34.7 12.2 12.0	32.9 15.0 14.5 30.1 30.1 29.8 16.6
Press Press <th< th=""><th>32.9 15.0 14.5 30.1 30.1 29.8 16.6</th></th<>	32.9 15.0 14.5 30.1 30.1 29.8 16.6
BODA HOLM 177 177 14.0 44.3 15.8 0.0 7.03 7.0 44.6 7.0 7.0 5.0 15.5 5.0 15.5 5.0 15.5 5.0 15.5 5.0 15.5 <th15.5< th=""> <th15.5< th=""> <th15.5< th="" th<=""><th>32.9 15.0 14.5 30.1 30.1 29.8 16.6</th></th15.5<></th15.5<></th15.5<>	32.9 15.0 14.5 30.1 30.1 29.8 16.6
mers 73 served 1173 1127 1123 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133 1133	30.1 30.1 30.1 29.8 16.6
ome CAR 2010Circle <th>14.5 30.1 30.1 29.8 16.6</br></th>	14.5 30.1 30.1
Note with the set of the se	30.1 30.1 29.8 16.6
SIDA H C2 200 17.8 12.7 17.8 0.0 27.4 27.8 27.9 7.8 0.0 27.9 27.4 37.9 0.0 Sender 10 HC3 200 22.5 22.6 22.6 22.8 22.8 22.9 22.8 22.8 22.9 22.8 22.9 22.8 <th23.8< th=""> 22.8 22.8<th>30.1 30.1 29.8 16.6</th></th23.8<>	30.1 30.1 29.8 16.6
Had 20027.517.84.227.07.84.227.07.84.27.07.00<	30.1 29.8 16.6
synchro 1010/200126.227.20.028.410.110.510.710	29.8
Signal Antonazio Sit.4 1.00 1.64 1.55 8.7 0.0 1.00 0.61 0.0	16.6
SP0A XYMADAD 1.8 1.9 1.15 8.1 0 1.50 2.07 5.41 1.58 1.74 1.12 0 HCM 05 Image Image <thimage< th=""> <thimage< th=""> Image</thimage<></thimage<>	16.6
Line LOSJornal ACMJornal ACM <th< th=""><th></th></th<>	
Heff 6 Image Image <t< th=""><th></th></t<>	
SIMA MAN C B B C C A D C P D D D D D D D D D D D D D C P B C C P B C C P B C C P B C C P B C C P B C C P B C C P D C P D C P D C P D D C P D D C P D D C P D D C P D D C P D D C P D D C P D D D D D D D D D D D D D D D D D<	
HCX /s MM C B C B A B C P B C C C C<	D
NEM 2010 C B D C B D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C C C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F D C F	В
Name C B D C A D C F D C E A Synchro 10 K2 2010 D C D C A D C F D C E A Signa StraMand C B B C A C C F D C E A Signa StraMand C B B C A C C F C <thc< th=""><th>D</th></thc<>	D
mite D C D C A D C F D C E A SUDA STANDARD -	D
Synchro D C D C A A C C F D C F D C F D C F C C C F C C C F C C C C C C F C C C C F C C C C <th>D</th>	D
SIDDA STANDARD C B C A A C C F C C C C C S P 95% Queus (ft) ICM 6 106 198 258 225 210 0 700 94 3,416 962 1331 1,011	D
SIDRA STANDARD C B B C A C C C C <t< th=""><th></th></t<>	
DSX-Queue, (n) HCM 6 SURA HCM 6 100 198 265 2725 710 0 94 3.416 962 1.31 1.01.1 HCM 5.7.5 HCM 98 1.35 1.48 98 1.25 0 700 94 3.416 962 2.55 1.33 1.01.1 1.01 1.02 0 1.05 1.05 1.05 1.05 75 5.25 1.75 7.05 2.00 1.26 2.03 0 1.76 3.05 1.16.31 2.05 8.05 1.06 3.07 8.05 9.09 3.07 8.05 8.14 7.05 2.00 3.07 8.05 9.01 9.03 0.00 3.07 3.78 3.00 2.02 1.00 2.02 0.00 9.00 0.00 3.05 3.16.33 2.99 1.22 1.95 8 3.05 1.16.33 2.90 1.22 1.21 5.58 Signet Archit & K 2010 1.45 2.49 2.87 1.34 1.45 0 <t< th=""><th>C</th></t<>	C
Note with the set of the se	
SIDRA HCM61061982632430700943.4169621.311.011SUPA 73 LMC610015015016012501601757552517575200HCM 201100150150120120160125017630511.3205121205HCM 2011061982651382200538693.273852121558HCM 10 M5 201011327525514312582559597833095378SIDRA HC3 0101132752551431258255163100375378300953300100375SIDRA TMADAD11324924924924114503241491491491493681103170<	
HCS 35 HCM69815516898118514868555173758200Sintraffic 113230020216023017630511,613255175757200SIDR HCS 20113230020213821205536693,273830653378SIDR HCS 201010619827525514319582559559783100950300100375SIDRA FIA DRA125275255143195825515659783100950300100375SIDRA FIA DRA12527525012112520002501163259121375SIDRA FIA DRA125200202160216301163259121375SIDRA FIA DRA12720020216031830131031	963
Synchri D HCM 6 100 150 125 0 150 75 5.55 175 75 200 HCM 200 Image 10 11.61 22 00 150 75 5.55 175 75 200 HCM 200 Image 10 132 300 202 140 125 0 58 669 3.273 652 1.43 255 HCS 2010 143 275 250 143 195 8 255 95 978 310 95 378 Signs frambelly (5/en) 132 300 202 100 203 0 161 124 300 375 378 Signs frambelly (5/en) 145 249 287 134 145 0 314 149 1,94 308 122 121 131 Signs frambelly (5/en) 175 530 300 14.00 15.00 314 150 15.00 15.00 15.00 15.00	.5 173
Similaritic 10 132 300 202 203 0 176 305 11,613 295 121 558 Sink MCS 2010 106 198 265 1133 212 0 559 679 3,273 852 865 1,49 Sink MCS 2010 125 275 255 143 195 8 255 95 977 850 900 9	.5 175
HCM 2010 U<	.5 20:
Sink NG 2010 100 133 213 122 0 333 03 5,2,3 332 103 1,4,3 Synchro 10 HG 2010 125 275 250 1125 275 250 125 200 0 250 100 950 300 100 375 Sink Taffield 132 300 223 0 0 250 100 950 300 100 375 SIDRA STANDARD 143 249 287 134 145 0 314 149 1,944 308 122 91 Approach Delay (s/veh) 145 249 287 134 145 0 314 149 1,944 308 122 91 Approach Delay (s/veh) 17.0 14.00 14.70 14.00 14.20 29.30 20.40 143.60 32.90 34.70 24.70 SiDRA HCM 6 17.70 12.00 14.00 17.70 <th10.00< th=""> 14.00 15.20<</th10.00<>	QE
MC 2010 MC 3 2/3 2/3 2/3 1/	2 21
Infinite of single state Ins Ins <thins< th=""> Ins <thins< th=""></thins<></thins<>	5 30 [,]
SIGRA STANDARD Idd Odd	5 300
SIDRA STANDARD 145 249 287 134 145 0 314 149 1,94 308 122 191 Approach Delay (s/veh) HCM 6	
Approach Delay (s/veh) HCM 6 Image: Side of the second secon	0 35
HCM 6UUUUUUUUUSIDRA HCM 617.8017.8014.0014.0014.0015.8032.9034.7024.7014.10HCS 75 HCM 617.7012.7014.0017.7010.0014.0015.8050.7015.0015.0015.0015.00Synchro 10 HCM 617.1012.4013.6017.1010.5013.6015.2047.2014.5015.2015.0016.00HCM 2010TT14.0027.4016.0025.9726.00133.8030.1022.4028.80SIDRA HCS 201027.4623.9625.9727.4616.4625.9722.40133.9430.1422.4030.48SIDRA HCS 201027.4615.57.315.320.754.115.817.48.5SIDRA HCS 201016.41314.615.57.315.320.754.115.817.48.5Approach LOSHCS 7.5 HCM 6CBBCBBCFDDCBHCM 2010TTTTTTTT15.57.315.320.754.115.817.48.5SIDRA HCM 2010TSSSSSSSSSSSSSSSSSSSSSSSSSS	
SIDRA HCM 617.8012.7014.0045.0014.2029.3020.40143.6032.9034.7024.70HCS 7.5 HCM 617.7012.7014.0017.7010.0014.0015.8050.7015.0015.0015.2015.30Synchro 10 HCM 617.1012.4013.6017.7010.0014.0015.2050.7014.5015.2025.9016.0013.30.930.1022.4028.8026.9017.2024.8021.50127.8025.9024.8026.9024.8026.9024.8025.90127.8025.9024.9024.9026.9024.9026.9024.9026.9024.9026.9024.9026.9024.9026.9026.9025.9013.8030.1022.4028.8026.9026.9024.9026.90 <th></th>	
HCS 7.5 HCM 6 17.70 12.70 14.00 17.70 10.00 14.00 15.80 50.70 15.00	32.90
Synchro 10 HCM 6 17.10 12.40 13.60 17.10 10.50 13.60 15.20 47.20 14.50 15.20 16.30 HCM 2010 <td< th=""><th>15.00</th></td<>	15.00
HCW 2010 IT.80 12.70 14.00 27.40 16.00 133.80 30.10 22.40 28.80 HCS 2010 27.46 23.96 25.97 27.46 16.46 25.97 22.40 133.94 30.14 22.40 30.48 Synchro 10 HCS 2010 26.20 22.90 24.80 26.20 17.20 24.80 21.50 127.80 28.50 22.50 29.40 30.44 22.40 30.45 SIDRA STANDARD 26.20 27.46 16.46 25.97 22.40 133.94 30.14 22.40 30.48 SIDRA STANDARD 26.20 27.30 24.80 21.50 127.80 28.50 22.50 29.40 Approach LOS Item Side Standard 16.4 15.5 7.3 15.3 20.7 54.1 15.8 17.4 8.50 HCM 6 C B B C B D C F D D C B SIDRA HCM 6 C <	14.50
Instruction 17.80 12.70 14.00 27.40 16.00 25.90 16.00 153.80 50.10 22.40 26.20 26.20 27.40 23.90 16.00 153.80 50.10 22.40 28.00 26.20 28.00	20.10
Synchro 10 HCS 2010 27.40 23.50 <th>30.10</th>	30.10
SIDRA STANDARD SIDRA STANDARD International production of the large of the lar	29.80
SIDRA STANDARD16.41314.615.57.315.320.754.115.817.48.5Approach LOS HCM 6CCCCCCCCCCCSIDRA HCM 6CBBEBDCFDDCCHCS 7.5 HCM 6CBBCBBCBCBCBSIDRA HCM 6CBBCBBCFDDCHCS 7.5 HCM 6CBBCBBCBCBCBSiDRA HCS 2010CBBDCDCDCDCHCS 2010CBBDCDCFDCDHCS 2010DCDDCDCDCDHCS 2010DCDCDCDCDDHCS 2010DCDCDCDCDDHCS 2010DCDCDCDCDDDHCS 2010DCDDCDCDDDDHCS 2010DCDDCDCDDDDHCS 2010DCDD <t< th=""><th>25100</th></t<>	25100
Approach LOS HCM 6CBCFDDCSIDRA HCM 6CBBEBDCFDDCHCS 7.5 HCM 6CBBCBBCFBDCBSynchro 10 HCM 6CBBCBBCEBCBBCBBCBBCBBCCFDCCFDCFDCDDDDDDDCDDCDDD <th>16.6</th>	16.6
HCM 6 Image: Constraint of the synthetic of the synthet synthet synthet synthet synthet synthet synthet synthet synthet	
SIDRA HCM6 C B B E B D C F D D C HCS 7.5 HCM6 C B B C B B C F D D C Synchro 10 HCM6 C B B C B B C B C B C B C B C B C B C B C B C C B C C B C C B C C D C C C D C D C D C D C D C D C D C D	
HCS 7.5 HCM6 C B B C F B C B Synchro 10 HCM6 C B B C B C B C B HCM 2010 C B B C B C B C B C B SIDRA HCS 2010 C B B D C D C F B C B HCM 2010 C B B D C D C D C D C D	D
Synchro 10 HCM 6 C B B C E B C D C D C D	В
Normalize Normalize <thnormalize< th=""> <thnormalize< th=""> <thn< th=""><th>В</th></thn<></thnormalize<></thnormalize<>	В
Sidka HCS 2010 C B B D C D C F D C D HCS 2010 D C D C D C F D C D	D
	D
	D
	U
SIDE STANDARD C B B C A C C F C C A	С
Intersection Delay (s/yeh LOS)	
нсм 6	
SIDRA HCM 6 14.10 B 25.40 D 88.40 F 28.90	D
HCS 7.5 HCM 6 14.10 B 12.90 B 33.40 D 14.60	В
Synchro 10 HCM 6 13.70 B 13.00 B 31.40 D 15.40	С
HCM 2010	
SIDRA HCS 2010 14.10 B 21.80 C 81.80 F 28.50	D
HCS 2010 25.34 D 22.01 C 82.68 F 29.41	
Synchro 10 HCS 2010 24.20 C 21.90 C 78.80 F 28.70	D
SIDRA STANDARD	D D
SIDKA STANDARD 14.20 B 11.80 B 36.10 E 12.50	D

	†	r*	L.	↓ I	F	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Traffic Volume (vph)	726	80	57	629	193	127
Future Volume (vph)	726	80	57	629	193	127
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	789	87	62	684	210	138
Shared Lane Traffic (%)						
Lane Group Flow (vph)	876	0	0	746	348	0
Intersection Summary						

Intersection				
Intersection Delay, s/veh	24.2			
Intersection LOS	С			
Approach	NB	SB	NW	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	876	746	348	
Demand Flow Rate, veh/h	894	761	355	
Vehicles Circulating, veh/h	63	214	805	
Vehicles Exiting, veh/h	912	946	152	
Follow-Up Headway, s	3.186	3.186	3.186	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	22.9	24.8	26.2	
Approach LOS	С	С	D	
Lane	Left	Left	Left	
Designated Moves	TR	LT	LR	
Assumed Moves	TR	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Critical Headway, s	5.193	5.193	5.193	
Entry Flow, veh/h	894	761	355	
Cap Entry Lane, veh/h	1061	912	505	
Entry HV Adj Factor	0.980	0.981	0.980	
Flow Entry, veh/h	876	746	348	
Cap Entry, veh/h	1040	895	495	
V/C Ratio	0.843	0.834	0.703	
Control Delay, s/veh	22.9	24.8	26.2	
LOS	С	С	D	
95th %tile Queue, veh	11	10	5	
Intersection				
-----------------------------	-------	-------	-------	--
Intersection Delay, s/veh	13.7			
Intersection LOS	В			
Approach	NB	SB	NW	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	876	746	348	
Demand Flow Rate, veh/h	894	761	355	
Vehicles Circulating, veh/h	63	214	805	
Vehicles Exiting, veh/h	912	946	152	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	12.4	13.6	17.1	
Approach LOS	В	В	С	
Lane	Left	Left	Left	
Designated Moves	TR	LT	LR	
Assumed Moves	TR	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	894	761	355	
Cap Entry Lane, veh/h	1294	1109	607	
Entry HV Adj Factor	0.980	0.981	0.980	
Flow Entry, veh/h	876	746	348	
Cap Entry, veh/h	1268	1088	595	
V/C Ratio	0.691	0.686	0.585	
Control Delay, s/veh	12.4	13.6	17.1	
LOS	В	В	С	
95th %tile Queue, veh	6	6	4	

Intersection: 101: Northshore Dr & Tooles Bend Rd

Movement	NB	SB	NW
Directions Served	TR	LT	LR
Maximum Queue (ft)	376	269	166
Average Queue (ft)	114	82	77
95th Queue (ft)	300	202	132
Link Distance (ft)	15244	9338	305
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 102: Tooles Bend Rd & Badgett Rd

Movement	WB	SB
Directions Served		1 T
Directions Served	LR	LI
Maximum Queue (ft)	62	45
Average Queue (ft)	20	6
95th Queue (ft)	46	30
Link Distance (ft)	903	855
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 103: Tooles Bend Rd & Tedford Ln

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	29	44
Average Queue (ft)	10	3
95th Queue (ft)	32	21
Link Distance (ft)	669	234
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 104: Tooles Bend Rd & North Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	52	66
Average Queue (ft)	25	6
95th Queue (ft)	43	32
Link Distance (ft)	1214	1845
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 105: Tooles Bend Rd & Apt Access

	14/5	
Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	44	29
Average Queue (ft)	22	2
95th Queue (ft)	46	14
Link Distance (ft)	68	234
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 106: Tooles Bend Rd & South Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	74	41
Average Queue (ft)	42	4
95th Queue (ft)	65	24
Link Distance (ft)	381	2775
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		
5 1 1 1 1 1		

Network Summary

Network wide Queuing Penalty: 0

	†	۴	L.	Ļ	F	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Traffic Volume (vph)	726	0	57	629	193	127
Future Volume (vph)	726	0	57	629	193	127
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	789	0	62	684	210	138
Shared Lane Traffic (%)						
Lane Group Flow (vph)	789	0	0	746	348	0
Intersection Summary						

Intersection				
Intersection Delay, s/veh	21.9			
Intersection LOS	С			
Annroach	NB	SB	NW/	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adi Approach Flow, yeh/h	780	7/6	3/18	
Demand Flow Rate veh/h	805	740	355	
Vehicles Circulating veh/h	63	214	805	
Vehicles Exiting veh/h	912	946	63	
Follow-Up Headway	3 186	3 186	3 186	
Ped Vol Crossing Leg #/h	0.100	0.100	0	
Ped Cap Adi	1 000	1 000	1 000	
Approach Delay, s/veh	17.2	24.8	26.2	
Approach LOS	C	C	D	
hh ere ere				
1	1.0	1.0	1.0	
Lane	Left	Left	Left	
Lane Designated Moves	Left T	Left LT	Left LR	
Lane Designated Moves Assumed Moves	Left T T	Left LT LT	Left LR LR	
Lane Designated Moves Assumed Moves RT Channelized	Left T T	Left LT LT	Left LR LR	
Lane Designated Moves Assumed Moves RT Channelized Lane Util	Left T T 1.000	Left LT LT 1.000	Left LR LR 1.000	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s	Left T T 1.000 5.193	Left LT LT 1.000 5.193	Left LR LR 1.000 5.193	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h	Left T T 1.000 5.193 805	Left LT LT 1.000 5.193 761	Left LR LR 1.000 5.193 355	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	Left T T 1.000 5.193 805 1061	Left LT LT 1.000 5.193 761 912	Left LR LR 1.000 5.193 355 505 505	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	Left T T 1.000 5.193 805 1061 0.980	Left LT LT 1.000 5.193 761 912 0.981	Left LR LR 1.000 5.193 355 505 0.980	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	Left T T 1.000 5.193 805 1061 0.980 789	Left LT LT 1.000 5.193 761 912 0.981 746	Left LR LR 1.000 5.193 355 505 0.980 348	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	Left T T 1.000 5.193 805 1061 0.980 789 1040	Left LT LT 1.000 5.193 761 912 0.981 746 895	Left LR LR 1.000 5.193 355 505 0.980 348 495	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h Cap Entry, veh/h	Left T T 1.000 5.193 805 1061 0.980 789 1040 0.759	Left LT LT 1.000 5.193 761 912 0.981 746 895 0.834 0.834	Left LR LR 1.000 5.193 355 505 0.980 348 495 0.703	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	Left T T 1.000 5.193 805 1061 0.980 789 1040 0.759 17.2	Left LT LT 1.000 5.193 761 912 0.981 746 895 0.834 24.8	Left LR LR 1.000 5.193 355 505 0.980 348 495 0.703 26.2	
Lane Designated Moves Assumed Moves RT Channelized Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh LOS	Left T T 1.000 5.193 805 1061 0.980 789 1040 0.759 17.2 C	Left LT LT 1.000 5.193 761 912 0.981 746 895 0.834 24.8 C	Left LR LR 1.000 5.193 355 505 0.980 348 495 0.703 26.2 D	

Intersection				
Intersection Delay, s/veh	13.0			
Intersection LOS	В			
Approach	NB	SB	NW	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	789	746	348	
Demand Flow Rate, veh/h	805	761	355	
Vehicles Circulating, veh/h	63	214	805	
Vehicles Exiting, veh/h	912	946	63	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	10.5	13.6	17.1	
Approach LOS	В	В	С	
Lane	Left	Left	Left	
Designated Moves	Т	LT	LR	
Assumed Moves	Т	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	805	761	355	
Cap Entry Lane, veh/h	1294	1109	607	
Entry HV Adj Factor	0.980	0.981	0.980	
Flow Entry, veh/h	789	746	348	
Cap Entry, veh/h	1269	1088	595	
V/C Ratio	0.622	0.686	0.585	
Control Delay, s/veh	10.5	13.6	17.1	
LOS	В	В	С	
95th %tile Queue, veh	5	6	4	

Intersection: 101: Northshore Dr & Tooles Bend Rd

Movement	NB	SB	NW
Directions Served	Т	LT	LR
Maximum Queue (ft)	247	232	208
Average Queue (ft)	74	76	87
95th Queue (ft)	203	176	160
Link Distance (ft)	15244	9338	305
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 102: Tooles Bend Rd & Badgett Rd

Movement	W/R	SB
WOVEINEIN	VVD	30
Directions Served	LR	LT
Maximum Queue (ft)	50	40
Average Queue (ft)	19	3
95th Queue (ft)	43	20
Link Distance (ft)	903	855
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 103: Tooles Bend Rd & Tedford Ln

Maxamant	FD	ND
wovement	EB	INB
Directions Served	LR	LT
Maximum Queue (ft)	29	57
Average Queue (ft)	10	4
95th Queue (ft)	32	25
Link Distance (ft)	669	234
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 104: Tooles Bend Rd & North Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	57	58
Average Queue (ft)	25	6
95th Queue (ft)	47	30
Link Distance (ft)	1214	1845
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 105: Tooles Bend Rd & Apt Access

••		
Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	53	19
Average Queue (ft)	20	1
95th Queue (ft)	47	9
Link Distance (ft)	68	234
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 106: Tooles Bend Rd & South Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	79	54
Average Queue (ft)	42	5
95th Queue (ft)	66	27
Link Distance (ft)	381	2775
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0

	†	r*	L.	. ↓	F	•
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Traffic Volume (vph)	810	256	143	619	147	96
Future Volume (vph)	810	256	143	619	147	96
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	880	278	155	673	160	104
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1158	0	0	828	264	0
Intersection Summary						

Intersection				
Intersection Delay, s/veh	78.8			
Intersection LOS	F			
Approach	NB	S	В	NW
Entry Lanes	1		1	1
Conflicting Circle Lanes	1		1	1
Adj Approach Flow, veh/h	1158	82	.8	264
Demand Flow Rate, veh/h	1182	84	4	269
Vehicles Circulating, veh/h	158	16	3	898
Vehicles Exiting, veh/h	849	100	4	442
Follow-Up Headway, s	3.186	3.18	6	3.186
Ped Vol Crossing Leg, #/h	0		0	0
Ped Cap Adj	1.000	1.00	0	1.000
Approach Delay, s/veh	127.8	28	.5	21.5
Approach LOS	F		D	С
Lane	Left	Left	Left	
Designated Moves	TR	LT	LR	
Assumed Moves	TR	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Critical Headway, s	5.193	5.193	5.193	
Entry Flow, veh/h	1182	844	269	
Cap Entry Lane, veh/h	965	960	460	
Entry HV Adj Factor	0.980	0.981	0.981	
Flow Entry, veh/h	1158	828	264	
Cap Entry, veh/h	946	941	452	
V/C Ratio	1.225	0.879	0.584	
Control Delay, s/veh	127.8	28.5	21.5	
LOS	F	D	С	
95th %tile Queue, veh	38	12	4	

Intersection			
Intersection Delay, s/veh	31.4		
Intersection LOS	D		
Approach	NB	SB	NW
Entry Lanes	1	1	1
Conflicting Circle Lanes	1	1	1
Adj Approach Flow, veh/h	1158	828	264
Demand Flow Rate, veh/h	1182	844	269
Vehicles Circulating, veh/h	158	163	898
Vehicles Exiting, veh/h	849	1004	442
Ped Vol Crossing Leg, #/h	0	0	C
Ped Cap Adj	1.000	1.000	1.000
Approach Delay, s/veh	47.2	14.5	15.2
Approach LOS	E	В	C
Lane	Left	Left	Left
Designated Moves	TR	LT	LR
Assumed Moves	TR	LT	LR
RT Channelized			
Lane Util	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976
Entry Flow, veh/h	1182	844	269
Cap Entry Lane, veh/h	1174	1169	552
Entry HV Adj Factor	0.980	0.981	0.981
Flow Entry, veh/h	1158	828	264
Cap Entry, veh/h	1151	1146	542
V/C Ratio	1.006	0.722	0.487
Control Delay, s/veh	47.2	14.5	15.2
LOS	F	В	С
95th %tile Queue, veh	21	7	3

Intersection: 101: Northshore Dr & Tooles Bend Rd

Movement	NB	SB	NW
Directions Served	TR	LT	LR
Maximum Queue (ft)	9885	314	165
Average Queue (ft)	7407	106	61
95th Queue (ft)	11613	259	119
Link Distance (ft)	13574	11876	305
Upstream Blk Time (%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 102: Tooles Bend Rd & Badgett Rd

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	49	53
Average Queue (ft)	21	8
95th Queue (ft)	46	35
Link Distance (ft)	903	855
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 103: Tooles Bend Rd & Tedford Ln

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	48	49
Average Queue (ft)	25	3
95th Queue (ft)	46	23
Link Distance (ft)	669	234
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 104: Tooles Bend Rd & North Access

N 4		00
Movement	VVB	5B
Directions Served	LR	LT
Maximum Queue (ft)	51	67
Average Queue (ft)	18	12
95th Queue (ft)	40	46
Link Distance (ft)	1214	1845
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 105: Tooles Bend Rd & Apt Access

Movement		CD
wovement	VVB	9R
Directions Served	LR	LT
Maximum Queue (ft)	35	35
Average Queue (ft)	14	4
95th Queue (ft)	38	21
Link Distance (ft)	68	234
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 106: Tooles Bend Rd & South Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	66	79
Average Queue (ft)	37	11
95th Queue (ft)	57	47
Link Distance (ft)	381	2775
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0

Volume 101: Northshore Dr & Tooles Bend Rd

	1	۴	L.	ŧ	F	*
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Traffic Volume (vph)	810	0	143	619	147	96
Future Volume (vph)	810	0	143	619	147	96
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)	0%			0%	0%	
Adj. Flow (vph)	880	0	155	673	160	104
Shared Lane Traffic (%)						
Lane Group Flow (vph)	880	0	0	828	264	0
Intersection Summary						

Intersection				
Intersection Delay, s/veh	30.8			
Intersection LOS	D			
Approach	NB	SB	NW	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adi Approach Flow, veh/h	880	828	264	
Demand Flow Rate, veh/h	898	844	269	
Vehicles Circulating, veh/h	158	163	898	
Vehicles Exiting, veh/h	849	1004	158	
Follow-Up Headway, s	3.186	3.186	3.186	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	35.7	28.5	21.5	
Approach LOS	E	D	С	
Lane	Left	Left	Left	
Designated Moves	Т	LT	LR	
Assumed Moves	Т	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Critical Headway, s	5.193	5.193	5.193	
Entry Flow, veh/h	898	844	269	
Cap Entry Lane, veh/h	965	960	460	
Entry HV Adj Factor	0.980	0.981	0.981	
Flow Entry, veh/h	880	828	264	
Cap Entry, veh/h	946	941	452	
V/C Ratio	0.931	0.879	0.584	
Control Delay, s/veh	35.7	28.5	21.5	
LOS	E	D	С	
95th %tile Queue, veh	15	12	4	

Intersection				
Intersection Delay, s/veh	15.4			
Intersection LOS	С			
Approach	NB	SB	NW	
Entry Lanes	1	1	1	
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	880	828	264	
Demand Flow Rate, veh/h	898	844	269	
Vehicles Circulating, veh/h	158	163	898	
Vehicles Exiting, veh/h	849	1004	158	
Ped Vol Crossing Leg, #/h	0	0	0	
Ped Cap Adj	1.000	1.000	1.000	
Approach Delay, s/veh	16.3	14.5	15.2	
Approach LOS	С	В	C	
Lane	Left	Left	Left	
Designated Moves	Т	LT	LR	
Assumed Moves	Т	LT	LR	
RT Channelized				
Lane Util	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	
Entry Flow, veh/h	898	844	269	
Cap Entry Lane, veh/h	1174	1169	552	
Entry HV Adj Factor	0.980	0.981	0.981	
Flow Entry, veh/h	880	828	264	
Cap Entry, veh/h	1151	1146	542	
V/C Ratio	0.765	0.722	0.487	
Control Delay, s/veh	16.3	14.5	15.2	
LOS	С	В	С	
95th %tile Queue, veh	8	7	3	

Intersection: 101: Northshore Dr & Tooles Bend Rd

Movement	NB	SB	NW
Directions Served	Т	LT	LR
Maximum Queue (ft)	688	250	150
Average Queue (ft)	245	86	67
95th Queue (ft)	558	201	121
Link Distance (ft)	13574	11876	305
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 102: Tooles Bend Rd & Badgett Rd

		0.0
Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	55	57
Average Queue (ft)	23	7
95th Queue (ft)	48	34
Link Distance (ft)	903	855
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 103: Tooles Bend Rd & Tedford Ln

Movement	EB	NB
Directions Served	LR	LT
Maximum Queue (ft)	51	34
Average Queue (ft)	25	4
95th Queue (ft)	47	22
Link Distance (ft)	669	234
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 104: Tooles Bend Rd & North Access

Movement	WR	SB
Movement	110	00
Directions Served	LR	LT
Maximum Queue (ft)	46	76
Average Queue (ft)	19	11
95th Queue (ft)	38	47
Link Distance (ft)	1214	1845
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 105: Tooles Bend Rd & Apt Access

		0.0
Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	35	52
Average Queue (ft)	16	5
95th Queue (ft)	40	29
Link Distance (ft)	68	234
Upstream Blk Time (%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 106: Tooles Bend Rd & South Access

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	75	45
Average Queue (ft)	39	6
95th Queue (ft)	62	30
Link Distance (ft)	381	2775
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 0

V Site: 101 [AM Peak Hr 2028 HCM 6]

New Site Roundabout

Lane Use and Performance													
	Demand F	lows		Deg.	Lane	Average	Level of	95% Back of	f Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Northshore Dr													
Lane 1 ^d	876	3.0	1255	0.698	100	12.7	LOS B	7.7	197.5	Full	1600	0.0	0.0
Approach	876	3.0		0.698		12.7	LOS B	7.7	197.5				
East: Toole	s Bend Rd												
Lane 1 ^d	348	3.0	585	0.595	100	17.8	LOS C	4.1	105.8	Full	1600	0.0	0.0
Approach	348	3.0		0.595		17.8	LOS C	4.1	105.8				
North: Nort	hshore Dr												
Lane 1 ^d	746	3.0	1075	0.694	100	14.0	LOS B	10.3	264.6	Full	1600	0.0	0.0
Approach	746	3.0		0.694		14.0	LOS B	10.3	264.6				
Intersection	า 1970	3.0		0.698		14.1	LOS B	10.3	264.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:25 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [AM Peak Hr 2028 HCM 2010]

New Site Roundabout

Lane Use and Performance													
	Demand Flows		-	Deg. Lane		Average	Level of	95% Back o	95% Back of Queue		Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Northshore Dr													
Lane 1 ^d	876	3.0	1255	0.698	100	12.7	LOS B	7.7	197.5	Full	1600	0.0	0.0
Approach	876	3.0		0.698		12.7	LOS B	7.7	197.5				
East: Tooles Bend Rd													
Lane 1 ^d	348	3.0	585	0.595	100	17.8	LOS C	4.1	105.8	Full	1600	0.0	0.0
Approach	348	3.0		0.595		17.8	LOS C	4.1	105.8				
North: Nort	hshore Dr												
Lane 1 ^d	746	3.0	1075	0.694	100	14.0	LOS B	10.3	264.6	Full	1600	0.0	0.0
Approach	746	3.0		0.694		14.0	LOS B	10.3	264.6				
Intersection	n 1970	3.0		0.698		14.1	LOS B	10.3	264.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:25 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [AM Peak Hr 2028 Sidra Std]

New Site Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	of Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	V/C	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	876	3.0	1244	0.704	100	13.0	LOS B	9.7	249.3	Full	1600	0.0	0.0
Approach	876	3.0		0.704		13.0	LOS B	9.7	249.3				
East: Toole	s Bend Rd												
Lane 1 ^d	348	3.0	609	0.572	100	16.4	LOS C	5.7	145.0	Full	1600	0.0	0.0
Approach	348	3.0		0.572		16.4	LOS C	5.7	145.0				
North: Nort	hshore Dr												
Lane 1 ^d	746	3.0	1057	0.705	100	14.6	LOS B	11.2	287.1	Full	1600	0.0	0.0
Approach	746	3.0		0.705		14.6	LOS B	11.2	287.1				
Intersection	1970	3.0		0.705		14.2	LOS B	11.2	287.1				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:26 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

W Site: 101 [AM Peak Hr 2028 - MIT HCM 6]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	789	3.0	1072	0.736	100	15.8	LOS C	8.2	210.1	Full	1600	0.0	0.0
Lane 2	87	3.0	1626	0.053	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	876	3.0		0.736		14.2	LOS B	8.2	210.1				
East: Tooles	s Bend Rd												
Lane 1 ^d	348	3.0	413	0.842	100	45.0	LOS E	8.8	225.0	Full	1600	0.0	0.0
Approach	348	3.0		0.842		45.0	LOS E	8.8	225.0				
North: North	hshore Dr												
Lane 1 ^d	746	3.0	857	0.870	100	29.3	LOS D	27.4	700.3	Full	1600	0.0	0.0
Approach	746	3.0		0.870		29.3	LOS D	27.4	700.3				
Intersection	1970	3.0		0.870		25.4	LOS D	27.4	700.3				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:28 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [AM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	789	3.0	1029	0.767	100	17.8	LOS C	8.3	212.1	Full	1600	0.0	0.0
Lane 2	87	3.0	1626	0.053	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	876	3.0		0.767		16.0	LOS C	8.3	212.1				
East: Toole:	s Bend Rd												
Lane 1 ^d	348	3.0	487	0.715	100	27.4	LOS D	5.4	138.7	Full	1600	0.0	0.0
Approach	348	3.0		0.715		27.4	LOS D	5.4	138.7				
North: North	hshore Dr												
Lane 1 ^d	746	3.0	884	0.844	100	25.9	LOS D	23.1	592.5	Full	1600	0.0	0.0
Approach	746	3.0		0.844		25.9	LOS D	23.1	592.5				
Intersection	1970	3.0		0.844		21.8	LOS C	23.1	592.5				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:29 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [AM Peak Hr 2028 - MIT Sidra Std]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Сар.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	789	3.0	1450	0.544	100	8.1	LOS A	5.7	145.4	Full	1600	0.0	0.0
Lane 2	87	3.0	1626	0.053	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	876	3.0		0.544		7.3	LOS A	5.7	145.4				
East: Tooles	s Bend Rd												
Lane 1 ^d	348	3.0	625	0.556	100	15.5	LOS C	5.2	134.0	Full	1600	0.0	0.0
Approach	348	3.0		0.556		15.5	LOS C	5.2	134.0				
North: North	nshore Dr												
Lane 1 ^d	746	3.0	1039	0.718	100	15.3	LOS C	12.3	313.6	Full	1600	0.0	0.0
Approach	746	3.0		0.718		15.3	LOS C	12.3	313.6				
Intersection	1970	3.0		0.718		11.8	LOS B	12.3	313.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:29 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [PM Peak Hr 2028 HCS 6]

New Site Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	-	Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	1159	3.0	918	1.262	100	143.6	LOS F	133.4	3415.6	Full	1600	0.0	<mark>36.5</mark>
Approach	1159	3.0		1.262		143.6	LOS F	133.4	3415.6				
East: Toole	s Bend Rd												
Lane 1 ^d	264	3.0	463	0.570	100	20.4	LOS C	3.7	93.8	Full	1600	0.0	0.0
Approach	264	3.0		0.570		20.4	LOS C	3.7	93.8				
North: North	hshore Dr												
Lane 1 ^d	828	3.0	913	0.907	100	32.9	LOS D	37.6	962.2	Full	1600	0.0	0.0
Approach	828	3.0		0.907		32.9	LOS D	37.6	962.2				
Intersection	n 2251	3.0		1.262		88.4	LOS F	133.4	3415.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:26 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

W Site: 101 [PM Peak Hr 2028 HCM 2010]

New Site Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	-	Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nor	thshore Dr												
Lane 1 ^d	1159	3.0	935	1.240	100	133.8	LOS F	127.8	3272.6	Full	1600	0.0	<mark>33.7</mark>
Approach	1159	3.0		1.240		133.8	LOS F	127.8	3272.6				
East: Toole	s Bend Rd												
Lane 1 ^d	264	3.0	528	0.500	100	16.0	LOS C	2.7	68.6	Full	1600	0.0	0.0
Approach	264	3.0		0.500		16.0	LOS C	2.7	68.6				
North: Nort	hshore Dr												
Lane 1 ^d	828	3.0	931	0.890	100	30.1	LOS D	33.3	851.6	Full	1600	0.0	0.0
Approach	828	3.0		0.890		30.1	LOS D	33.3	851.6				
Intersection	า 2251	3.0		1.240		81.8	LOS F	127.8	3272.6				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:27 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

W Site: 101 [PM Peak Hr 2028 Sidra Std]

New Site Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	-	Deg.	Lane	Average	Level of	95% Back of	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nor	thshore Dr												
Lane 1 ^d	1159	3.0	1125	1.030	100	54.1	LOS F	75.9	1943.9	Full	1600	0.0	<mark>11.1</mark>
Approach	1159	3.0		1.030		54.1	LOS F	75.9	1943.9				
East: Toole	s Bend Rd												
Lane 1 ^d	264	3.0	460	0.574	100	20.7	LOS C	5.8	148.7	Full	1600	0.0	0.0
Approach	264	3.0		0.574		20.7	LOS C	5.8	148.7				
North: Nort	hshore Dr												
Lane 1 ^d	828	3.0	1111	0.746	100	15.8	LOS C	12.0	308.2	Full	1600	0.0	0.0
Approach	828	3.0		0.746		15.8	LOS C	12.0	308.2				
Intersection	า 2251	3.0		1.030		36.1	LOS E	75.9	1943.9				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:27 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

W Site: 101 [PM Peak Hr 2028 - MIT HCM 6]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	880	3.0	965	0.913	100	32.5	LOS D	39.5	1011.0	Full	1600	0.0	0.0
Lane 2	278	3.0	1626	0.171	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	1159	3.0		0.913		24.7	LOS C	39.5	1011.0				
East: Tooles	s Bend Rd												
Lane 1 ^d	264	3.0	368	0.718	100	34.7	LOS D	5.1	130.6	Full	1600	0.0	0.0
Approach	264	3.0		0.718		34.7	LOS D	5.1	130.6				
North: North	nshore Dr												
Lane 1 ^d	828	3.0	913	0.907	100	32.9	LOS D	37.6	962.2	Full	1600	0.0	0.0
Approach	828	3.0		0.907		32.9	LOS D	37.6	962.2				
Intersection	2251	3.0		0.913		28.9	LOS D	39.5	1011.0				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:30 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [PM Peak Hr 2028 - MIT Sidra Std]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows		Deg.	Lane	Average	Level of	95% Back o	of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	880	3.0	1328	0.663	100	11.2	LOS B	7.5	191.0	Full	1600	0.0	0.0
Lane 2	278	3.0	1626	0.171	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	1159	3.0		0.663		8.5	LOS A	7.5	191.0				
East: Toole:	s Bend Rd												
Lane 1 ^d	264	3.0	503	0.525	100	17.4	LOS C	4.8	122.1	Full	1600	0.0	0.0
Approach	264	3.0		0.525		17.4	LOS C	4.8	122.1				
North: North	nshore Dr												
Lane 1 ^d	828	3.0	1091	0.759	100	16.6	LOS C	13.7	351.5	Full	1600	0.0	0.0
Approach	828	3.0		0.759		16.6	LOS C	13.7	351.5				
Intersection	2251	3.0		0.759		12.5	LOS B	13.7	351.5				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:31 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

V Site: 101 [PM Peak Hr 2028 - MIT HCM 2010]

add separate rt lane on Northshore Dr Roundabout

Lane Use	and Perfo	ormai	nce										
	Demand F	lows	~	Deg.	Lane	Average	Level of	95% Back (of Queue	Lane	Lane	Cap.	Prob.
	Total	ΗV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	sec			ft		ft	%	%
South: Nort	hshore Dr												
Lane 1 ^d	880	3.0	935	0.942	100	37.9	LOS E	44.9	1149.0	Full	1600	0.0	0.0
Lane 2	278	3.0	1626	0.171	100	0.0	LOS A	0.0	0.0	Short	200	0.0	NA
Approach	1159	3.0		0.942		28.8	LOS D	44.9	1149.0				
East: Tooles	s Bend Rd												
Lane 1 ^d	264	3.0	443	0.596	100	22.4	LOS C	3.4	86.1	Full	1600	0.0	0.0
Approach	264	3.0		0.596		22.4	LOS C	3.4	86.1				
North: North	nshore Dr												
Lane 1 ^d	828	3.0	931	0.890	100	30.1	LOS D	33.3	851.6	Full	1600	0.0	0.0
Approach	828	3.0		0.890		30.1	LOS D	33.3	851.6				
Intersection	2251	3.0		0.942		28.5	LOS D	44.9	1149.0				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 2010.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CDM SMITH INC (CAMP DRESSER MCKEE) | Processed: Thursday, June 21, 2018 1:59:30 PM Project: M:\Ooten Chris Riverside Venture\TETP\Analysis\Roundabout Landuse Plan 4.sip7

				HCS	7 Roi	unda	abo	outs R	еро	ť						
General Information							Site	e Infor	matio	on						
Analyst	KCole	•					Inte	ersection			Norths	hore Dr.	./Toole	es Bend	Rd.	
Agency or Co.	TDOT	/Knox (County				E/W	V Street N	lame		Tooles	Bend R	d.			
Date Performed	6/20/	2018					N/S	5 Street N	lame		Norths	hore Dr.				
Analysis Year	2028						Ana	alysis Tim	e Period	(hrs)	0.25					
Time Analyzed	AM P	eak Ho	ur MIT				Pea	ak Hour F	actor		0.92					
Project Description	Rivers	ide Ver	nture Resi	dential D	evelopm	ent	Juri	isdiction			Knox C	ounty				
Volume Adjustments	s and	Site (Charac	teristio	s											
Approach			EB			W	/B		Τ	1	NB				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment								LR			Т					LT
Volume (V), veh/h					0	193		127	0		726	80	0	57	629	
Percent Heavy Vehicles, %					3	3		3	3		3	3	3	3	3	
Flow Rate (VPCE), pc/h					0	216		142	0		813	90	0	64	704	
Right-Turn Bypass		N	lone			No	ne			Yie	ding			1	None	
Conflicting Lanes						1	L				1				1	
Pedestrians Crossing, p/h						C)				0				0	
Critical and Follow-U	Јр Неа	adwa	y Adju	stmen	t											
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	s Le	ft	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass
Critical Headway (s)								4.9763			4.9763	4.976	53		4.9763	
Follow-Up Headway (s)								2.6087			2.6087	2.608	37		2.6087	
Flow Computations,	Capad	city a	nd v/c	Ratio	5											
Approach				EB				WB			NB		Т		SB	
Lane			Left	Right	Bypass	s Le	ft	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass
Entry Flow (ve), pc/h								358			813	90			768	
Entry Volume veh/h								348			789	87			746	
Circulating Flow (v _c), pc/h				984				813			64				216	
Exiting Flow (v _{ex}), pc/h				64				0			955		Τ		920	
Capacity (c _{pce}), pc/h								602			1293	129	3		1107	
Capacity (c), veh/h								585			1255	125	5		1075	
v/c Ratio (x)								0.59			0.63	0.07	7		0.69	
Delay and Level of S	ervice															
Approach				EB				WB			NB		Τ		SB	
Lane			Left	Right	Bypass	s Le	ft	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass
Lane Control Delay (d), s/veh								17.7			10.7	3.4			14.0	
Lane LOS								С			В	А			В	
95% Queue, veh								3.9			4.7	0.2			5.9	
Approach Delay, s/veh								17.7			10.0				14.0	
Approach LOS								С			В				В	
Intersection Delay, s/veh LO	S					12.9							В			

HCS[™] Roundabouts Version 7.5 2028 AM MIT roundabout.xro Generated: 6/21/2018 3:47:36 PM

				HCS	7 Ro	unda	abo	outs F	Re	port							
General Information							Site	e Info	rm	atior	ו			_			
Analyst	KCole	•					Inte	ersectior	1			Northsh	nore Dr.	/Toole	es Bend I	Rd.	
Agency or Co.	TDOT	/Knox (County				E/V	V Street	Nam	ne		Tooles	Bend Ro	I.			
Date Performed	6/20/	2018					N/5	S Street	Nam	ne		Northsł	nore Dr.				
Analysis Year	2028						Ana	alysis Tin	ne P	Period (I	hrs)	0.25					
Time Analyzed	AM P	eak Hou	ur				Pea	ak Hour	Facto	or		0.92					
Project Description	Rivers	ide Ver	nture Resi	dential D	evelopm	ent	Juri	isdiction				Knox Co	ounty				
Volume Adjustments	s and	Site (Charact	teristic	s												
Approach			EB			W	/B		Т		N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	╈	U	L	т	R	U	L	Т	R
Number of Lanes (N)	0	0	0	0	0	0	1	0	T	0	0	1	0	0	0	1	0
Lane Assignment								LR			·	TR					LT
Volume (V), veh/h					0	193		127	,	0		726	80	0	57	629	
Percent Heavy Vehicles, %					3	3		3	T	3		3	3	3	3	3	
Flow Rate (VPCE), pc/h					0	216		142	2	0		813	90	0	64	704	
Right-Turn Bypass		N	one			No	one		Τ		No	ne			N	lone	
Conflicting Lanes						1	1		Τ		1					1	
Pedestrians Crossing, p/h						C	0				C)				0	
Critical and Follow-U	Јр Неа	adwa	y Adju	stmen	t												
Approach				EB				WB				NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Ву	ypass	Left	Right	Вура	s	Left	Right	Bypass
Critical Headway (s)								4.9763				4.9763				4.9763	
Follow-Up Headway (s)								2.6087				2.6087				2.6087	
Flow Computations,	Сара	city a	nd v/c	Ratio	5												
Approach				EB		Τ		WB				NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Ву	ypass	Left	Right	Вура	s	Left	Right	Bypass
Entry Flow (ve), pc/h								358				903				768	
Entry Volume veh/h								348				877				746	
Circulating Flow (v _c), pc/h				984				813				64				216	
Exiting Flow (v _{ex}), pc/h				154				0				955				920	
Capacity (c _{pce}), pc/h								602				1293				1107	
Capacity (c), veh/h								585				1255				1075	
v/c Ratio (x)								0.59				0.70				0.69	
Delay and Level of S	ervice																
Approach				EB				WB				NB				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Ву	ypass	Left	Right	Вура	s	Left	Right	Bypass
Lane Control Delay (d), s/veh								17.7				12.7				14.0	
Lane LOS								С				В				В	
95% Queue, veh								3.9				6.2				5.9	
Approach Delay, s/veh								17.7				12.7				14.0	
Approach LOS								С				В				В	
Intersection Delay, s/veh LO	S					14.1								В			

	HCS7 Roundabouts Report																		
General Information	Site Information																		
Analyst	KCole	•					Inte	ersection				Northshore Dr./Tooles Bend Rd.							
Agency or Co.	TDOT	/Knox (County				E/V	V Street	Name	e		Tooles Bend Rd.							
Date Performed	6/20/	2018					N/S	S Street N	lame	e		Norths	nore Dr.						
Analysis Year	2028						Ana	alysis Tin	ne Pe	eriod (hrs)	0.25							
Time Analyzed	PM P	eak Hou	ır				Pea	ak Hour F	acto	or		0.92							
Project Description	otion Riverside Venture Residential Development											Knox County							
Volume Adjustments	s and	Site (Charact	teristio															
Approach			EB			W	/B		Т		N	В			SB				
Movement	U	L	Т	R	U	L	TR			U	L	т	R	U	L	Т	R		
Number of Lanes (N)	0	0	0	0	0	0	1 0		T	0	0	1 0		0	0	1	0		
Lane Assignment								LR				TR				LT			
Volume (V), veh/h					0	147		96	Τ	0		810	256	0	143	619			
Percent Heavy Vehicles, %					3	3		3		3		3	3	3	3	3			
Flow Rate (VPCE), pc/h					0	165		107		0		907	287	0	160	693			
Right-Turn Bypass		N	one			No	ne				No	ne		None					
Conflicting Lanes					1						1	-		1					
Pedestrians Crossing, p/h					0						()		0					
Critical and Follow-Up Headway Adjustment																			
Approach		EB				WB				NB				SB					
Lane			Left	Right	Bypass Le		ft	Right	Bypass		Left	Right	Вура	s I	Left	Right	Bypass		
Critical Headway (s)								4.9763				4.9763				4.9763			
Follow-Up Headway (s)						2.6087				2.6087				2.6087					
Flow Computations,	Сарас	ity a	nd v/c	Ratio	5														
Approach			EB					WB				NB				SB			
Lane			Left	Right	Bypas	s Le	ft	Right	Вур	pass	Left	Right	Вура	s I	Left	Right	Bypass		
Entry Flow (v _e), pc/h								272				1194				853			
Entry Volume veh/h								264				1159				828			
Circulating Flow (v _c), pc/h				1018				907				160	-	165					
Exiting Flow (v _{ex}), pc/h					0				1014		858								
Capacity (c _{pce}), pc/h								547				1172				1166			
Capacity (c), veh/h								531				1138				1132			
v/c Ratio (x)								0.50				1.02				0.73			
Delay and Level of S	ervice																		
Approach		EB		Τ		WB				NB				SB					
Lane			Left	Right	Bypas	s Le	ft	Right	Вур	pass	Left	Right	Bypas	s I	Left	Right	Bypass		
Lane Control Delay (d), s/veh								15.8				50.7				15.0			
Lane LOS								С				F				В			
95% Queue, veh								2.7				22.2				6.9			
Approach Delay, s/veh								15.8				50.7			15.0				
Approach LOS				С							F B								
Intersection Delay, s/veh LO				33.4					D										

HCS7 Roundabouts Report																		
General Information	Site Information																	
Analyst	KCole	•					Inte	ersection			Northshore Dr./Tooles Bend Rd.							
Agency or Co.	TDOT	/Knox (County				E/W	V Street N	lame		Tooles	Bend Ro	ł.					
Date Performed	6/20/	2018					N/S	Street N	lame		Norths	nore Dr.						
Analysis Year	2028						Ana	alysis Tim	e Period	(hrs)	0.25							
Time Analyzed	PM P	eak Hou	ır				Pea	k Hour F	actor		0.92							
Project Description	Jurisdiction Knox County																	
Volume Adjustments	s and	Site (Charac	teristi	s													
Approach			EB			W	/B			N	IB			SB				
Movement	U	L	Т	R	U	UL		T R		L	Т	R	UL		Т	R		
Number of Lanes (N)	0	0	0	0	0	0	1 0		0	0	1 0		0 0		1	0		
Lane Assignment					<u> </u>			LR			Т				LT			
Volume (V), veh/h					0	147		96	0		810	256	0	143	619			
Percent Heavy Vehicles, %					3	3		3	3		3	3	3	3	3			
Flow Rate (VPCE), pc/h					0	165		107	0		907	287	0	160	693			
Right-Turn Bypass		N	lone			No	ne			Yiel	ding	None						
Conflicting Lanes						1	L			-	1		1					
Pedestrians Crossing, p/h			С)			()		0								
Critical and Follow-Up Headway Adjustment																		
Approach				EB				WB			NB		SB					
Lane			Left	Right	Bypass Le		ft	Right	Bypass	Left	Right	Вура	ss l	_eft	eft Right B			
Critical Headway (s)								4.9763			4.9763	4.976	3		4.9763			
Follow-Up Headway (s)							2.6087			2.6087	2.608	7		2.6087				
Flow Computations,	Capad	city a	nd v/c	Ratio	5													
Approach			EB					WB			NB		Τ		SB			
Lane			Left	Right	Bypas	s Le	ft	Right	Bypass	Left	Right	Вурая	s l	eft	Right	Bypass		
Entry Flow (v _e), pc/h								272			907	287			853			
Entry Volume veh/h								264			881	279			828			
Circulating Flow (v _c), pc/h				1018				907			160		165					
Exiting Flow (v _{ex}), pc/h				160				0			1014		858					
Capacity (c _{pce}), pc/h								547			1172	1172	2		1166			
Capacity (c), veh/h								531			1138	1138	3		1132			
v/c Ratio (x)								0.50			0.77	0.24			0.73			
Delay and Level of S	ervice																	
Approach		EB		Τ		WB			NB				SB					
Lane			Left	Right	Bypas	s Le	ft	Right	Bypass	Left	Right	Вурая	s l	eft	Right	Bypass		
Lane Control Delay (d), s/veh								15.8			16.9	5.4			15.0			
Lane LOS								С			С	Α			В			
95% Queue, veh								2.7			8.2	1.0			6.9			
Approach Delay, s/veh								15.8			14.1			15.0				
Approach LOS								С			В				В			
Intersection Delay, s/veh LO				14.6				В										

HCS[™] Roundabouts Version 7.5 2028 PM MIT roundabout.xro Generated: 6/21/2018 3:50:03 PM

						ROU	NDABO	UT RE	PORT	•									
General Information	1						Site Information												
Analyst Agency or Co. Date Performed Time Period	Interse E/W St N/S Str Analys Project	ction reet N reet N s Yea ID	lam ame ar	Nort e Tool e Nort 2028 Rive	Northshore Dr./Tooles Bend Rd. Tooles Bend Rd. Northshore Dr. 2028 Riverside Venture Residential Development														
Project Description:																			
Volume Adjustment	and Si	te Cha	racteris	stics															
			EB				N	/B				NB			SB				
		L	Т	R	U	L	Т	R	R U		. Т	R	RU		Т	R	U		
Number of Lanes(N)	0	0	0		0	0	0		0	1	0		0	1	0			
Volume (V), veh/h					0	193		127	0		726	80	0	57	629		0		
Heavy Veh. Adj. (f _H	_V), %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
Peak Hour Factor (F	PHF)	0.92	0.92	0.92	1.0	0 0.92	0.92	0.92	1.00	0.9	0.92	2 0.92	1.00	0.92	0.92	0.92	2 1.00		
No. of Pedestrians Crossing Entry			0				(D				0			0				
Critical and Follow-	Up Hea	ndway	Adjust	ment									<u> </u>						
				El	3			WB				NB				SB			
			Left	Left Right By		Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft F	Right	Bypass		
Critical Headway (se	ec)		5.1929	9 5.19	29	5.1929	5.1929	5.1929	5.19	29	5.1929	5.1929	5.1929	9 5.19	29 5.	1929	5.1929		
Follow-Up Headway	/ (sec)		3.1858	3 3.18	58	3.1858	3.1858	3.1858	3.18	858	3.1858	3.1858	3.1858	3 3.18	358 3.	1858	3.1858		
Flow Computations																			
		E	3			WB				NB	-			SB					
			Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft F	Right	Bypass		
Circulating Flow (V _c), pc/h		984					813				64				216			
Exiting Flow (V _{ex}), p	oc/h		154				0	0			955				920				
Entry Flow (V _e), pc/l	h			74	6			358				903				768			
Entry Volume veh/h								348				877				746			
Capacity and v/c Rat	tios		1											-					
				E	3 T			WB	1_			NB	-	+.		SB			
Capacity (a) pay	/b		Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	nt F	Right	Bypass		
Capacity (C _{PCE}), pc/	/11			42	2			501				1060				910			
Capacity (C), ven/n					_			400				1029							
								0.72				0.65				.04			
Delay and Level of S	1													00					
				Ric	5 iht	Rynaes	Loft	Right	Byn	266	l oft	Right	Bynas		ft F	SD Pight	Bynass		
Lane Control Delay	(d) s/	/eh	Leit		, n	Буразз	Len	27.5	Бур	455	Len	24.0	Бураз	3 10		26.0	Буразз		
Lane LOS	(4), 3/1							 				C		+	+	D			
							5.7				11.0			<u> </u>	10.2				
Approach Delav. s/v	/eh			-				27.46	1			23.96	I	+	2	5.97			
Approach LOS, s/ve	eh							D				С			D				
Intersection Delay, s	s/veh						1			25.	34								
Intersection LOS								D)										

Copyright © 2010 University of Florida, All Rights Reserved HCS 2010TM 6.2 Roundabouts Generated: 6/21/2018 4:15 PM

						ROU	NDABO	UT RE	PORT										
General Information	l						Site Information												
Analyst A Agency or Co. Date Performed A Time Period	Interse E/W St N/S St Analys Project	ction reet N reet N is Yea ID	Vam Iame ar	Non le Too e Non 202 Rive	lorthshore Dr./Tooles Bend Rd. `ooles Bend Rd. lorthshore Dr. 028 Riverside Venture Residential Development														
Project Description:																			
Volume Adjustment	and Si	te Cha	racteris	stics															
			EB				WB					NB			SB				
	L		Т	R	U	L	Т	R U		L	. Т	R	R U		Т	R	U		
Number of Lanes(N))	0	0	0		0	0	0		0) 1	0		0	1	0			
Volume (V), veh/h					0	193		127	0		726	6	0	57	629		0		
Heavy Veh. Adj. (f _{H\}	_V), %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
Peak Hour Factor (F	PHF)	0.92	0.92	0.92	1.0	0 0.92	0.92	0.92	1.00	0.9	92 0.9	2 0.92	1.00	0.92	0.92	0.92	2 1.00		
No. of Pedestrians Crossing Entry			0				()				0			0				
Critical and Follow-U	Up Hea	adway	Adjust	ment		•													
			EB					WB				NB	NB			SB			
			Left	Left Right By		Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft I	Right	Bypass		
Critical Headway (se	ec)		5.1929	9 5.19	29	5.1929	5.1929	5.1929	5.19	929	5.1929	5.1929	5.1929	5.19	29 5.	1929	5.1929		
Follow-Up Headway	(sec)		3.1858	3 3.18	858	3.1858	3.1858	3.1858	3.18	358	3.1858	3.1858	3.1858	3.18	358 3.	1858	3.1858		
Flow Computations																			
		E	В			WB	1			NB				SB					
			Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	s Le	ft I	Right	Bypass		
Circulating Flow (V _c), pc/h		984					813				64				216			
Exiting Flow (V _{ex}), p	oc/h		64				0	-			955				920				
Entry Flow (V _e), pc/ł	h			74	6			358				813	90			768			
Entry Volume veh/h								348				789	87			746			
Capacity and v/c Rat	tios		1				· · · · ·							-					
				E	В Т			WB	1_			NB	1_	+		SB			
Capacity (a) pa/	/h		Left	Rig	int	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	itt i	Right	Bypass		
Capacity (c _{PCE}), pc/	11			42	2			501				1060	1060		+	910			
Capacity (c), ven/n				0				480				0.77	1029			003			
	.							0.72				0.77	0.00			J.04			
Delay and Level of So											00								
				Ric	5 iht	Bynass	Loft	Right	Byn	200	l oft	Right	Bynas		fi li	SB Pight	Bynass		
Lane Control Delay	(d) s/\	/eh	Leit		, n	Буразз	Len	27.5	Бур	a33	Len	17.8	4 2			26.0	Буразз		
Lane LOS	(u), 3/1							<u>ביי</u> ב ת				с. С	7.2			 D			
				_			5.7				7.8	0.3		+	10.2				
Approach Delav. s/v	/eh			-				27.46	1			16.46			2	5.97			
Approach LOS, s/ve	eh							D				C		D					
Intersection Delay, s	s/veh						1			22.	01			1					
Intersection LOS								C)										

Copyright © 2010 University of Florida, All Rights Reserved HCS 2010TM 6.2 Roundabouts Generated: 6/21/2018 4:22 PM
						ROU	NDABC	UT REI	PORT								
General Informatio	n							Site Inf	ormat	tion							
Analyst Agency or Co. Date Performed Time Period	KCOL TDOT, 6/20/2 PM	E /Knox 018	Co					Intersection Northshore Dr./Tooles Bend Rd. E/W Street Name Tooles Bend Rd. N/S Street Name Northshore Dr. Analysis Year 2028 Project ID Project ID									
Project Description	:																
Volume Adjustmen	t and Si	ite Cha	racteris	stics													
			E	В			N	/B				NB				SB	
		L	Т	R	U	L	Т	R	U	L	. Т	R	U	L	Т	R	U
Number of Lanes(N	۷)	0	0	0		0	0	0		0	1	0		0	1	0	
Volume (V), veh/h					0	147	'	96	0		810	256	0	143	619		0
Heavy Veh. Adj. (f _h	⊣∨ ^{), %}	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Peak Hour Factor ((PHF)	0.92	0.92	0.92	1.0	0 0.92	0.92	0.92	1.00	0.9	0.92	2 0.92	1.00	0.92	0.92	0.92	2 1.00
Crossing Entry			0				(C				0				0	
Critical and Follow-	-Up He	adway	Adjust	ment													
				E	В			WB				NB				SB	
			Left	Rig	ht I	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft I	Right	Bypass
Critical Headway (s	sec)		5.1929	9 5.19	29	5.1929	5.1929	5.1929	5.19	929	5.1929	5.1929	5.1929	5.19	29 5.	1929	5.1929
Follow-Up Headway (sec)			3.1858	3 3.18	358	3.1858	3.1858	3.1858	3.18	358	3.1858	3.1858	3.1858	3.18	358 3.	1858	3.1858
Flow Computations	1						1										
				E	В			WB				NB	r			SB	
			Left	Rig	ht I	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	s Le	ft I	Right	Bypass
Circulating Flow (V	, pc/h			10	18			907				160				165	
Exiting Flow (V_{ex}) ,	pc/n		447							1014				858			
Entry Flow (V _e), pc	;/n			83	3			272	<u> </u>			1194			_	853	
Entry Volume veh/h	n 							264				1159				828	
Capacity and v/c Ra	atios															00	
			1.0#		3 	Dunana	L off	VVB Diaht	Dun		l oft	NB Diabt	Dunaa		<u>а</u> 1	5B Diabt	Dunana
Capacity (c) pr	c/h		Leit			Бурабб	Leit	456	Бура	a55	Leit		Бураз	s Le			Буразэ
Capacity (c) veh/h	0/11			40	0			400				903			-	930 930	
v/c Ratio (X)				+				0.60	-			1 24				0.89	
Delay and Level of	Service							0.00				1.27				0.00	
				F	3			WB				NB				SB	
			Left	Ric	iht II	Bypass	Left	Right	Bypa	ass	Left	Right	Bypas	s Le	ft	Riaht	Bypass
Lane Control Delay	/ (d), s/v	veh				-)		22.4	- 7 -			133.9	- ,			30.1	
Lane LOS				1	\uparrow			С	1			F			+	D	
Lane 95% Queue								3.8				39.1				12.4	
Approach Delay, s/	/veh							22.40	•			133.94			3	80.14	
Approach LOS, s/veh			C F D			D											
Intersection Delay,	s/veh									82.	68						
Intersection LOS F																	

Copyright © 2010 University of Florida, All Rights Reserved HCS 2010TM 6.2 Roundabouts Generated: 6/21/2018 4:41 PM

						ROU	NDABC	UT REP	PORT	•							
General Information	n							Site Info	ormat	ion							
Analyst Agency or Co. Date Performed Time Period	KCOLI TDOT/ 6/20/2 PM W/	E /Knox 018 / NB B	Co YPASS	S LANI	Ξ			Interseo E/W Str N/S Str Analysi Project	ction reet N eet N s Yea ID	lame ame ar	Nort e Tool e 2028 Rive	hshore I es Bena 3 rside Ve	Dr./Tool I Rd. enture F	les Be Reside	nd R ntial	d. Develo	opment
Project Description:																	
Volume Adjustment	and Si	te Cha	racteri	stics													
			E	В			N	/B				NB			SB		
		L	Т	R	U	L	Т	R	U	L	. Т	R	U	L	Т	R	U
Number of Lanes(N	l)	0	0	0		0	0	0		0	1	0		0	1	0	
Volume (V), veh/h					0	147	,	96	0		810	256	0	143	619		0
Heavy Veh. Adj. (f _H	_V), %	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Peak Hour Factor (I	PHF)	0.92	0.92	0.92	1.0	0 0.92	0.92	0.92	1.00	0.9	0.92	2 0.92	1.00	0.92	0.92	2 0.92	2 1.00
No. of Pedestrians Crossing Entry			0)			(C				0				0	
Critical and Follow-	Up Hea	adway	Adjust	ment									<u> </u>				
				El	3			WB				NB				SB	
			Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft	Right	Bypass
Critical Headway (s	ec)		5.192	9 5.19	29	5.1929	5.1929	5.1929	5.19	29	5.1929	5.1929	5.1929	9 5.19	29 5	.1929	5.1929
Follow-Up Headway (sec)			3.1858	3.18	58	3.1858	3.1858	3.1858	3.18	58	3.1858	3.1858	3.1858	3 3.18	58 3	.1858	3.1858
Flow Computations														_			
	EB				WB				NB	-			SB				
			Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft	Right	Bypass
Circulating Flow (V	_c), pc/h			101	18			907				160				165	
Exiting Flow (V _{ex}), p	pc/h			16	0			0	-			1014				858	
Entry Flow (V _e), pc/	'n			83	3			272				907	287			853	
Entry Volume veh/h	1							264				881	279			828	
Capacity and v/c Ra	tios		1											_			
				E	3 T			WB	1_			NB	-	.		SB	
	/h		Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypas	s Le	ft	Right	Bypass
Capacity (c _{PCE}), pc	711			40	8			456				963	963			958	
Capacity (c), ven/n				0				443				935	935			930	
	••_							0.60				0.94	0.30			0.89	
Delay and Level of 8	service		1		<u> </u>											00	
			Loft	EI Dic	3 Int	Bynass	Loft	VVB Dight	Bun	200	Loft	NB Dight	Bypas		ft	SB Dight	Bypass
Lane Control Delay	(d) s/	veh	Len		n n	Буразз	Len	22.4		233	Len	37.9	7.0	5 10		30.1	Буразз
Lane LOS	(4), 3/							<u>с.</u> ,,				F	, .o			D	
Lane 95% Queue								3.8				15.1	1.3			12.4	
Approach Delay. s/v	veh							22.40	I			30.48	<u> </u>		;	30.14	L
Approach LOS, s/veh			С				D				D						
Intersection Delay,	s/veh						1	29.41									
Intersection LOS										D)						

Copyright © 2010 University of Florida, All Rights Reserved HCS 2010TM 6.2 Roundabouts Generated: 6/21/2018 4:43 PM

Turn Lane Warrant Analysis

Northshore Drive at Tooles Bend - 2028 Projected

.

. . . .

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THRO	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	100 - 149	150 ~ 199	200 - 249	250 - 299	300 - 349	350 - 399				
100 - 149	250	180	140	110	80	70				
150 - 199	200	140	105	90	70	60				
200 - 249	160	i 115	85	75	65	55				
250 - 299	130	100	75	65	60	50				
300 - 349	110	90	70	60	55	45				
350 - 399	100	80	65	55	50	40				
400 - 449	90	70	60	50	45	35				
450 - 499	80	65	55	45	40	30				
500 - 549	70	60	45	35	35	25				
550 - 599	65	55	40	35	30	25				
600 - 649	60	45	35	30	25	25				
650 - 699	55	35	35	30	25	20				
700 - 749	50	35	30	25	20	20				
750 or More	45	35	25	25	20	20				

AM (PM)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME * 629 (619)								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ >600			
100 - 149	70	60	50	45	40	35			
150 - 199	60	55	45	40	35	30			
200 - 249	<i>55</i>	50	40	35	30	30			
250 - 299	50	45	35	30	30	30			
300 - 349	45	40	35	30	25	25			
350 - 399	40	35	30	25	25	20			
400 - 449	35	30	30	25	20	20			
450 - 499	30	25	25	20	20	20			
500 - 549 550 - 599	25 25	25 20	20	20 20	20 20	15 15			
600 - 649	25	20	20	20	20	15			
650 - 699	20	20	20	20	20	15			
805 700 - 749	20	20	20	15	15	15			
834 750 or More	20	20	20	15	15	15			

* Or through volume only if a right-turn lane exists

. .

56 (155)

Northshore Drive at Tooles Bend - 2028 Projected

TABLE 5B

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

RIGHT-TURN	THRO	UGH VOLUM	E PLUS LEÀ	T-TURN	VOLUME	;*'
VOLUME	. <100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399
Fewer Than 25 25 - 49 50 - 99			· · · · · ·			
100 - 149 150 - 199						
200 - 249 250 - 299					Yes	Yes Yes
300 - 349 350 - 399			Yes	Yes Yes	Yes Yes	Yes Yes
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN	THR	OUGH VOLU	EFT-TURN	TURN VOLUME *			
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600	(810
Fewer Than 25					Ver	Ver	
80 <u>50 - 99</u>				Yes	Yes	Yes	AM
100 - 149		· ·	Yes	Yes	Yes	Yes	
150 - 199		Yes	Yes	Yes	Yes	Yes	
200 - 249	Yes	Yes	Yes	Yes	Yes	Yes	
(256) 250 - 299	Yes	Yes	Yes	Yes	Yes	Yes	(PM
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes (Yes	
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	:

* Or through volume only if a left-turn lane exists.

Tooles Bend Road at Badgett Road - 2028 Projected

ĸс

M

<u>男</u>

AM

(PM)

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	100 - 149111	150 - 199	200 - 249	250 - 299	300 - 349 (319)	350 - 399			
100 - 149	300	235	185	145	120	100			
150 - 199	245	200	160	130	110	90			
236) 200 - 249	205	170	140	115	100 <mark>(35</mark>	80			
250 - 299	175	150	125	105	90	70			
359 300 - 349	155	135	110	95	80	65			
350 - 399	135 <u>16</u>	120	100	85	70	60			
400 - 449	120	105	90	75	65	55			
450 - 499	105	90	80	70	69	50			
500 - 549	95	80	70	65	55	50			
550 - 599	85	70	65	60	50	45			
600 - 649	' 75	65	60	55	45	40			
650 - 699	70	60	55	50	40	35			
700 - 749	65	55	50	45	35	30			
750 or More	69	50	45	40	35	30			

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	⇒ / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50_	50	45	40			
350 - 399	60	55	50 [_]	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	∠.40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

* Or through volume only if a right-turn lane exists.

TABLE 48

Constant Con

10.1

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *									
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399				
Fewer Than 25		(166)	229							
25 - 49 50 - 99										
100 - 149										
150 - 199										
200 - 249 250 - 299						Yes				
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes				
400 - 449 450 - 499 e			Yes Yes	Yes Yes	Yes Yes	Yes Yes				
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes				
660 or More	Yes	Yes	Yes	Yes	Yes	Yes				

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600			
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes			
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes			
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes			
600 or More	Yes	Yes	Yes	Yes	Yes	Yes			

* Or through volume only if a left-turn lane exists.

1 (4)

ï١

ĸс

M

1

<u>男</u>

AM

(PM)

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME ₆₉	100 - 149	150 - 199	200 - 249 ²³¹	250 - 299	300 - 349	350 - 399			
100 - 149	300	235	185	145	120	100			
1 <u>69) 150 - 199 29</u>	245	200	160	130	110	90			
241 200 - 249	205	170	140 (99)	115	100	80			
250 - 299	175	150	125	105	90	70			
300 - 349	155	135	110	95	80	65			
350 - 399	135	120	100	85	70	60			
400 - 449	120	105	90	75	65	55			
450 - 499	105	90	80	70	60	50			
500 - 549	95	80	70	65	55	50			
550 - 599	85	70	65	60	50	45			
600 - 649	75	65	60	55	45	40			
650 - 699	70	60	55	50	40	35			
700 - 749	65	55	50	45	35	30			
750 or More	60	50	45	40	35	30			

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	⇒ / > 600			
100 - 149	100	80	70	60	55	50			
150 - 199	90	75	65	55	50	45			
200 - 249	80	72	460	55	50	45			
250 - 299	70	65	55	50	45	40			
300 - 349	65	60	50_	50	45	40			
350 - 399	60	55	50 [_]	45	40	40			
400 - 449	55	50	45	45	40	35			
450 - 499	50	45	45	40	35	35			
500 - 549	50	45	2,40	40	35	35			
550 - 599	45	40	40	35	35	35			
600 - 649	40	35	35	35	35	30			
650 - 699	35	35	35	30	30	30			
700 - 749	30	30	30	30	30	30			
750 or More	30	30	30	30	30	30			

* Or through volume only if a right-turn lane exists.

TABLE 48

Constant Con

10.1

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *												
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399							
Fewer Than 25		(166)	229										
25 - 49 50 - 99													
100 - 149													
150 - 199													
200 - 249 250 - 299						Yes							
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes							
400 - 449 450 - 499 e			Yes Yes	Yes Yes	Yes Yes	Yes Yes							
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes							
660 or More	Yes	Yes	Yes	Yes	Yes	Yes							

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *													
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600								
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes								
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes								
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
600 or More	Yes	Yes	Yes	Yes	Yes	Yes								

* Or through volume only if a left-turn lane exists.

1 (4)

ï١

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

AM (PM)

s,

a a sub

1

<u>男</u>

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING13	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *												
(34) VOLUME ₄₇	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399							
100 - 149 56	300	₂₃₅ (196)	185	145	120	100							
150 - 199	245	200	160	130	110	90							
200 - 249	205	170	140	115	100	80							
250 - 299	175	150	125	105	90	70							
300 - 349	155	135	110	95	80	65							
350 - 399	135	120	100	85	70	60							
400 - 449	120	105	90	75	65	55							
450 - 499	105	90	80	70	60	50							
500 - 549	95	80	70	65	55	50							
550 - 599	85	70	65	60	50	45							
600 - 649	75	65	60	55	45	40							
650 - 699	70	60	55	50	40	35							
700 - 749	65	55	50	45	35	30							
750 or More	60	50	45	40	35	30							

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *												
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	⇒ / > 600							
100 - 149	100	80	70	60	55	50							
150 - 199	90	75	65	55	50	45							
200 - 249	80	72	460	55	50	45							
250 - 299	70	65	55	50	45	40							
300 - 349	65	60	50_	50	45	40							
350 - 399	60	55	50 [_]	45	40	40							
400 - 449	55	50	45	45	40	35							
450 - 499	50	45	45	40	35	35							
500 - 549	50	45	∠.40	40	35	35							
550 - 599	45	40	40	35	35	35							
600 - 649	00 - 649 40		35	35	35	30							
650 - 699	50 - 699 35		35	30	30	30							
700 - 749	30	30	30	30	30	30							
750 or More	30	30	30	30	30	30							

* Or through volume only if a right-turn lane exists.

Tooles Bend Road at Tedford Lane - 2028 Projected

ĸс

M

<u>男</u>

AM

(PM)

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *													
VOLUME	100 - 149	150 - 199 <mark>(168)</mark>	200 - 249 <mark>242</mark>	250 - 299	300 - 349	350 - 399								
72 100 - 149 150 - 199	300 245	235 200	185 46 160	145 130	120 110	100 90								
234 200 - 249	205	170 (21)	140	115	100	80								
250 - 299	175	150	125	105	90	70								
300 - 349	155	135	110	95	80	65								
350 - 399	135	120	100	85	70	60								
400 - 449	120	105	90	75	65	55								
450 - 499	105	90	80	70	69	50								
500 - 549	95	80	70	65	55	50								
550 - 599	85	70	65	60	50	45								
600 - 649	75	65	60	55	45	40								
650 - 699	70	60	55	50	40	35								
700 - 749	65	55	50	45	35	30								
750 or More	69	50	45	40	35	30								

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *													
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	⇒ / > 600								
100 - 149	100	80	70	60	55	50								
150 - 199	90	75	65	55	50	45								
200 - 249	80	72	460	55	50	45								
250 - 299	70	65	55	50	45	40								
300 - 349	65	60	50_	50	45	40								
350 - 399	60	55	50 [_]	45	40	40								
400 - 449	55	50	45	45	40	35								
450 - 499	50	45	45	40	35	35								
500 - 549	50	45	2.40	40	35	35								
550 - 599	45	40	40	35	35	35								
600 - 649	600 - 649 40		35	35	35	30								
650 - 699	650 - 699 35		35	30	30	30								
700 - 749	30	30	30	30	30	30								
750 or More	30	30	30	30	30	30								

* Or through volume only if a right-turn lane exists.

TABLE 48

Constant Con

10.1

RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *												
VOLUME	<100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399							
Fewer Than 25		(166)	229										
25 - 49 50 - 99													
100 - 149													
150 - 199													
200 - 249 250 - 299						Yes							
300 - 349 350 - 399				Yes	Yes Yes	Yes Yes							
400 - 449 450 - 499 e			Yes Yes	Yes Yes	Yes Yes	Yes Yes							
500 - 549 550 - 599		Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes							
660 or More	Yes	Yes	Yes	Yes	Yes	Yes							

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *													
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600								
Fewer Than 25 25 - 49 50 - 99					Yes	Yes Yes								
100 - 149 150 - 199			Yes	Yes Yes	Yes Yes	Yes Yes								
200 - 249 250 - 299	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes								
600 or More	Yes	Yes	Yes	Yes	Yes	Yes								

* Or through volume only if a left-turn lane exists.

1 (4)

ï١

Tooles Bend Road at Off-Site Access - 2028 Projected

s,

a a sub

1

<u>男</u>

AM

(PM)

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *												
VOLUME ₆₉	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399							
100 - 149	300	235	185	145	120	100							
169) 150 - 199	245	200	160 (34)	130	110	90							
200 - 249	205	170	140	115	100	80							
255 250 - 299 11	175	150	125	105	90	70							
300 - 349	155	135	110	95	80	65							
350 - 399	135	120	100	85	70	60							
400 - 449	120	105	90	75	65	55							
450 - 499	105	90	80	70	60	50							
500 - 549	95	80	70	65	55	50							
550 - 599	85	70	65	60	50	45							
600 - 649	* 75	65	60	55	45	40							
650 - 699	70	60	55	50	40	35							
700 - 749	65	55	50	45	35	30							
750 or More	60	50	45	40	35	30							

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *												
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	⇒ / > 600							
100 - 149	100	80	70	60	55	59							
150 - 199	90	75	65	55	50	45							
200 - 249	80	72	460	55	50	45							
250 - 299	70	65	55	50	45	40							
300 - 349	65	60	50_	50	45	40							
350 - 399	60	55	50 [_]	45	40	40							
400 - 449	55	50	45	45	40	35							
450 - 499	50	45	45	40	35	35							
500 - 549	50	45	∠.40	40	35	35							
550 - 599	45	40	40	35	35	35							
600 - 649	600 - 649 40		35 35		35	30							
650 - 699	650 - 699 35		35 35		30	30							
700 - 749	30	30	30	30	30	30							
750 or More	30	30	30	30	30	30							

* Or through volume only if a right-turn lane exists.

2016 Knox County Strategic Safety Plan Excerpts

						TOTAL			NON	J		TOTAL	EXPOSURE	CRASH	CRITICAL CRASH		SEVERITY		MINIMUM		FINAL
ID CAS	SE STREET NAME	BEGIN LIMIT	END LIMIT	RD TYPE	LENGTH	WIDTH	ADT	PDO	INJ	INJ	FATAL	CRASHES	RATE	RATE	RATE	A/C RATIO	INDEX	SCORE 1	STANDARD	SCORE 2	RANK
492 1	THOMPSON RD	HARDIN VALLEY RD	LOVELL RD	2L	0.5	16	556	5	0	0	0	5	0.406	12.310	9.616	1.280	1.000	1.280	ABOVE	1.280	65
493 1				2L 21	2.2	20	3035	9	2	0	1	12	9.755	1.230	3.0/1	0.401	1.417	0.568	BELOW	0.568	332
495 1	THORN GROVE PIKE	MIDWAY RD	WAYLAND RD	21	5.42	20	943	18	3	2	1	24	7 467	3 214	2 731	1.310	1.300	1 716	BELOW	1 716	23
496 1	THORN GROVE PIKE	WAYLAND RD	ASBURY RD	2L	2.55	20	2410	7	1	2	0	10	8.979	1.114	2.625	0.424	1.600	0.679	BELOW	0.679	317
497 1	THORN GROVE PIKE	ASBURY RD	ASBURY RD	2L	2.07	18	2195	8	4	1	0	13	6.638	1.958	4.070	0.481	1.231	0.592	ABOVE	0.592	327
498 1	THORN GROVE PIKE	ASBURY RD	STRAWBERRY PLAINS PIKE	2L	0.25	20	1691	4	0	0	0	4	0.618	6.476	6.942	0.933	1.000	0.933	BELOW	0.933	104
499 1	TILLERY DR	BELL CAMPGROUND RD	COUNTY LINE	2L	0.05	14	181	0	0	0	0	0	0.013	0.000	0.000	0.000	0.000	0.000	BELOW	0.000	503
500 1	TIPTON STATION RD	MARYVILLE PIKE	W MARTIN MILL PIKE	2L	2.12	18	1600	13	3	0	0	16	4.956	3.229	3.542	0.911	1.000	0.911	BELOW	0.911	278
501 1	TIPTON STATION RD	OWENS RD	MARTIN MILL PIKE	2L	1.71	19	4003	15	3	0	0	18	10.001	1.800	3.057	0.589	1.000	0.589	ABOVE	0.589	154
502 1				2L	4.89	20	2260	34	4	1	1	40	16.146	2.4//	2.817	0.879	1.200	1.055	BELOW	1.055	91
504 1		MARYVILLE PIKE		21	1.20	18	680	/ 	0	0	1	5	1 232	4 059	6 307	0.673	2.000	1 287	BELOW	1 287	253
505 1	TWIN CREEK RD	OWENS RD	W GOV JOHN SEVIER HWY	2L	0.76	10	132	0	0	0	0	0	0.147	0.000	0.000	0.000	0.000	0.000	BELOW	0.000	552
506 1	TWIN CREEK RD	W GOV JOHN SEVIER HWY	TIPTON STATION RD	2L	0.7	16	289	2	0	0	0	2	0.296	6.767	11.081	0.611	1.000	0.611	BELOW	0.611	323
507 1	W BEAVER CREEK DR	CENTRAL AVENUE PIKE	CLINTON HWY	2L	4.97	20	5596	69	7	2	1	79	40.634	1.944	2.498	0.778	1.139	0.887	ABOVE	0.887	109
508 1	W BEAVER CREEK DR	CLINTON HWY	OLD CLINTON PIKE	2L	0.03	18	7430	0	0	0	0	0	0.326	0.000	0.000	0.000	0.000	0.000	ABOVE	0.000	504
509 1	W BEAVER CREEK DR	CLINTON HWY	HARRELL RD	2L	2.44	16	6029	27	6	7	3	43	21.492	2.001	2.701	0.741	1.837	1.361	ABOVE	1.361	60
510 1	W BRUSHY VALLEY DR	HEISKELL RD	EAST OF BELL CAMPGROUND RD	2L	0.81	20	589	2	0	0	0	2	0.697	2.869	6.605	0.434	1.000	0.434	BELOW	0.434	372
511 1	W BRUSHY VALLEY DR	EAST OF BELL CAMPGROUND RD	BELL CAMPGROUND RD	2L	0.92	18	589	3	0	0	0	3	0.792	3.789	6.278	0.604	1.000	0.604	BELOW	0.604	325
512 1		NAFE RD	HEISKELL RD	2L	2.23	20	295	1	0	0	0	1	0.258	3.883	6 864	0.375	4.000	0.152	BELOW	0.152	245 450
514 1	W COPELAND DR	HEISKELL RD	BRICKYARD RD	21	1.56	18	1408	7	4	0	0	11	3 209	3 428	3 953	0.152	1.000	0.152	BELOW	0.867	291
515 1	W COPELAND DR	BRICKYARD RD	BELL CAMPGROUND RD	2L	0.45	18	1408	1	1	0	0	2	0.926	2.161	5.910	0.366	1.000	0.366	BELOW	0.366	399
516 1	W EMORY RD	KARNS VALLEY DR	HENDERSON RD	2L	0.37	20	923	2	1	0	0	3	0.499	6.013	8.817	0.682	1.000	0.682	BELOW	0.682	133
517 1	W EMORY RD	HENDERSON RD	OAK RIDGE HWY	2L	2.58	18	923	6	1	0	0	7	3.479	2.012	4.689	0.429	1.000	0.429	BELOW	0.429	373
518 1	W HENDRON CHAPEL RI	TIPTON STATION RD	CHAPMAN HWY	2L	0.28	20	4060	2	0	1	0	3	1.661	1.806	4.810	0.376	2.000	0.751	ABOVE	0.751	128
519 1	W MARTIN MILL PIKE	NEUBERT SPRINGS RD	TWIN CREEK RD	2L	1.36	20	1830	13	2	1	0	16	3.636	4.400	4.336	1.015	1.188	1.205	BELOW	1.205	75
520 1	WALBROOK DR	BRIDGEWATER RD	WALKER SPRINGS RD	2L	0.22	38	13097	4	0	0	0	4	4.210	0.950	3.685	0.258	1.000	0.258	N/A	0.258	196
521 1	WALKER SPRINGS RD		N GALLAHER VIEW RD	5L	0.54	64	12595	4	2	0	0	6	9.937	0.604	4.590	0.132	1.000	0.132	N/A	0.132	202
522 1			S NORTHSHORE DR	2L	0.87	20	2574	5	4	0	0	6	3.272	2 302	4.760	0.706	1.273	0.899	BELOW	0.899	367
523 1	WALLACE ND WASHINGTON PIKE	MURPHY RD	ELLISTOWN RD	21	3.58	20	9166	50	8	3	0	61	47,942	1.272	2.858	0.445	1.148	0.511	BELOW	0.511	164
525 1	WASHINGTON PIKE	ELLISTOWN RD	ROBERTS RD	21	2.79	22	3729	19	4	0	0	23	15.200	1.513	2.376	0.637	1.000	0.637	BELOW	0.637	142
526 1	WASHINGTON PIKE	ROBERTS RD	E EMORY RD	2L	4.61	20	472	9	3	0	0	12	3.179	3.775	3.393	1.113	1.000	1.113	BELOW	1.113	259
527 1	WASHINGTON PIKE - SEE ST	ATE ROUTE DATABASE SEGMENT 9244																			
528 1	WAYLAND RD	STRAWBERRY PLAINS PIKE	THORN GROVE PIKE	2L	2.88	18	768	10	0	0	0	10	3.231	3.095	3.946	0.784	1.000	0.784	BELOW	0.784	305
529 1	WEAVER RD	W BEAVER CREEK DR	OAK RIDGE HWY	2L	0.84	16	1870	12	1	1	1	15	2.295	6.536	5.224	1.251	1.533	1.919	ABOVE	3.919	7
530 1	WELLS DR	BRICKYARD RD	EWING RD	2L	0.2	16	606	2	0	0	0	2	0.177	11.295	15.128	0.747	1.000	0.747	ABOVE	0.747	129
531 I 532 1	WESTCOTT BLVD	GREENWELL RD	BYINGTON SOLWAY RD	2-1WLIL 21	0.25	35	2923	1	2	0	0	/	0.464	6.557	6.618 9.087	0.991	1.000	0.991	N/A BELOW	0.991	97 310
533 1	WESTLAND DR	EAST OF DEVONSHIRE DR	EAST OF VICAR LN	2L	0.56	18	8267	7	2	0	0	9	6.764	1.331	3.775	0.352	1.000	0.352	ABOVE	0.352	188
534 1	WESTLAND DR	EAST OF VICAR LN	WEST OF S GALLAHER VIEW RD	2L	0.83	26	9390	14	6	0	0	20	11.387	1.756	3.431	0.512	1.000	0.512	N/A	0.512	162
535 1	WESTLAND DR	WEST OF S GALLAHER VIEW RD	EBENEZER RD	2L	1.09	18	9390	20	5	2	0	27	14.953	1.806	3.287	0.549	1.222	0.671	ABOVE	0.671	136
536 1	WESTLAND DR	EBENEZER DR	GLENSPRINGS DR	2-TWLTL	1.13	38	11070	10	2	1	0	13	18.276	0.711	2.966	0.240	1.231	0.295	N/A	0.295	192
537 1	WESTLAND DR	GLENSPRINGS DR	RAMP TO WB INTERSTATE 140	2L	0.71	30	11070	8	3	1	0	12	11.483	1.045	3.427	0.305	1.250	0.381	N/A	0.381	184
538 1	WESTLAND DR	RAMP TO EB INTERSTATE 140	GARRISON RIDGE BLVD	2L	0.26	26	11710	6	0	0	0	6	4.448	1.349	3.635	0.371	1.000	0.371	N/A	0.371	186
539 1	WESTLAND DR	GARRISON RIDGE BLVD	S NORTHSHORE DR	2L	1.28	20	8475	44	9	1	0	54	15.849	3.407	3.259	1.046	1.056	1.104	ABOVE	1.104	88
541 1	WILLIAWS BEIND RD	WILLIAMS REND RD		21	1.44	10	220	2	4	0	0	2	0.379	4 824	9.531	0.506	1.000	4.528	BELOW	4.528	354
542 1	WISE SPRINGS RD	RIDGEVIEW RD	MALONEYVILLE RD	2L	0.96	18	638	4	2	1	0	7	0.895	7.823	7.041	1.111	1.429	1.587	BELOW	1.587	242
543 1	WOOD RD	MAJORS RD	THOMPSON SCHOOL RD	2L	1.76	20	622	1	3	2	0	6	1.599	3.751	4.870	0.770	2.000	1.541	BELOW	1.541	244
544 1	WOOD RD	THOMPSON SCHOOL RD	WALTER RD	2L	0.32	16	371	0	0	0	0	0	0.173	0.000	0.000	0.000	0.000	0.000	BELOW	0.000	553
545 1	WOOD RD	WALTER RD	TAZEWELL PIKE	2L	3.03	18	478	1	0	1	0	2	2.116	0.945	5.344	0.177	2.500	0.442	BELOW	0.442	370
546 1	WOODDALE CHURCH RI	STRAWBERRY PLAINS PIKE	MCMILLAN RD	2L	0.96	22	1680	2	0	1	0	3	2.356	1.273	5.186	0.246	2.000	0.491	BELOW	0.491	357
547 1	WOODDALE CHURCH RI	MCMILLAN RD		2L	0.37	24	1680	1	0	0	0	1	0.908	1.101	7.003	0.157	1.000	0.157	BELOW	0.157	446
548 1				2L	0.41	18	1680	2	0	0	0	2	0.194	10.994	0.755	0.14/	1.000	0.147	ABOVE	0.147	453
550 1	WOODS-SMITH RD	BARNARD RD	JOHN MAY DR	21	0.39	20	1573	4	0	0	0	4	0.896	4.463	7.036	0.634	1.000	0.634	BELOW	0.634	144
551 1	WOODSON DR	HILLTOP RD	MARYVILLE PIKE	2L	0.85	20	1604	3	0	0	0	3	1.992	1.506	5.437	0.277	1.000	0.277	BELOW	0.277	416
552 1	WOODY DR	LOOP RD	CANTON HOLLOW RD	2L	0.94	18	3190	14	2	1	0	17	4.381	3.880	4.442	0.874	1.176	1.028	ABOVE	1.028	94
553 1	WRIGHTS FERRY RD	SOUTH OF NORTHSHORE DR	BADGETT RD	2L	0.9	20	1794	7	2	4	0	13	2.359	5.511	4.313	1.278	1.923	2.457	BELOW	2.457	24
554 1	YARNELL RD	EVERETT RD	LOVELL RD	2L	5.52	22	1720	22	5	1	1	29	13.871	2.091	2.887	0.724	1.276	0.924	BELOW	0.924	276
555 1	YORK RD	HILL RD	ANDERSONVILLE PIKE	2L	0.95	16	374	1	0	0	0	1	0.519	1.926	7.473	0.258	1.000	0.258	BELOW	0.258	427
556 1 557 1	YOUNT RD	W EMORY RD	CARPENTER RD	2L	1.08	18	798	4	2	0	0	6	1.259	4.765	6.262	0.761	1.000	0.761	ABOVE	0.761	308
558 1	E EMORY RD	NORRIS FWY	EAST OF NORRIS FWY	2L	0.10	37	14367	22	0	0	0	22	2.099	10.481	5.026	2.085	1.000	2.085	N/A	2.085	28
559 1	E EMORY RD	EAST OF NORRIS FWY	WEST OF ANDERSONVILLE PIKE	2L	0.13	22	14367	5	0	0	0	5	2.729	1.832	4.669	0.392	1.000	0.392	ABOVE	0.392	180
560 1	E EMORY RD	WEST OF ANDERSONVILLE PIKE	EAST OF ANDERSONVILLE PIKE	2L	0.17	37	14367	7	1	1	0	9	3.568	2.522	4.356	0.579	1.333	0.772	N/A	0.772	126
561 1	E EMORY RD		MALLS HIGH SCHOOL ACCESS MAYNARDVILLE PIKE	2L 2I	0.13	40	14367	29	1	0	0	30	2.729	28 585	4.669	4 551	1.000	4 551	ABOVE	0.392	211
563 1	KARNS VALLEY DR	WESTCOTT BLVD	SOUTH OF CHUCH JONES DR	2L	0.48	40	2792	0	0	0	0	0	1.958	0.000	0.000	0.000	0.000	0.000	N/A	0.000	554

															TOTAL			CRITICAL CRASH		SEVERITY		
ID	OLD ID	STREET NAME	BEGIN LIMIT	BEGIN MM	END LIMIT	END MM	RD TYPE	LENGTH	TOTAL WIDTH	ADT	PDO	NON INJ	INJ	FATAL	CRASHES	EXPOSURE RATE	CRASH RATE	RATE	A/C RATIO	INDEX	SCORE	FINAL RANI
9158		S NORTHSHORE DR	I-140 EB RAMP	6.52	KROGER PARK DR	6.67	4L-D	0.15	100	14465	0	0	0	0	0	3.170	0.000	0.000	0.000	0.000	0.000	195
9159		S NORTHSHORE DR	KROGER PARK DR	6.67	EAST OF EBENEZER RD	7.30	5L	0.63	64	14465	29	3	1	0	33	13.314	2.479	3.505	0.707	1.091	0.771	85
9160		S NORTHSHORE DR	EAST OF EBENEZER RD	7.30	EAST OF NORTHSHORE HILLS BLVD	7.47	3L	0.17	48	13133	3	0	0	0	3	3.262	0.920	4.456	0.206	1.000	0.206	159
9161		S NORTHSHORE DR	EAST OF NORTHSHORE HILLS BLVD	7.47	WEST OF WHITTINGTON CREEK BLVD	7.90	2L	0.43	24	13133	7	1	0	0	8	8.251	0.970	3.632	0.267	1.000	0.267	150
9162		S NORTHSHORE DR	WEST OF WHITTINGTON CREEK BLVD	7.90	EAST OF WHITTINGTON CREEK BLVD	8.08	2L	0.18	40	13133	1	1	0	0	2	3.454	0.579	4.392	0.132	1.000	0.132	175
9163		S NORTHSHORE DR	EAST OF WHITTINGTON CREEK BLVD	8.08	WEST OF LITTLE CREEK LN	8.22	2L	0.14	22	13133	3	1	0	0	4	2.686	1.489	4.689	0.318	1.000	0.318	142
9164		S NORTHSHORE DR	WEST OF LITTLE CREEK LN	8.22	EAST OF LITTLE CREEK LN	8.34	2L	0.12	35	13133	3	0	0	0	3	2.302	1.303	4.894	0.266	1.000	0.266	151
9165		S NORTHSHORE DR	EAST OF LITTLE CREEK LN	8.34	EAST OF TOOLES BEND RD	8.76	2L	0.42	22	13133	14	2	2	0	18	8.059	2.234	3.648	0.612	1.333	0.816	79
9166		S NORTHSHORE DR	EAST OF TOOLES BEND RD	8.76	EAST OF BICKERSTAFF BLVD	8.90	2L	0.14	37	13133	1	0	0	0	1	2.686	0.372	4.689	0.079	1.000	0.079	179
9167		S NORTHSHORE DR	EAST OF BICKERSTAFF BLVD	8.90	BRANTON BLVD	9.80	2L	0.90	22	13133	28	1	3	0	32	17.269	1.853	3.218	0.576	1.281	0.738	91
9168	482	TAZEWELL PK	COUNTY LINE	29.53	E EMORY RD	25.12	2L	4.41	20	4170	94	13	7	1	115	26.867	4.280	2.175	1.968	1.226	2.413	11
9169	483	TAZEWELL PK	E EMORY RD	8.31	SHANNONDALE RD	2.12	2L	6.19	24	14806	145	20	7	4	176	133.899	1.314	1.847	0.712	1.233	0.877	72
9170		W EMORY RD	BEAVER RIDGE RD	7.61	EAST OF BOYD WALTERS LN	7.99	2L	0.38	24	10074	15	2	0	0	17	5.593	3.040	3.927	0.774	1.000	0.774	84
9171		W EMORY RD	EAST OF BOYD WALTERS LN	7.99	CLINTON HWY	12.00	2L	4.01	26	10074	116	15	5	1	118	59.020	1.999	2.805	0.713	1.169	0.834	76
9172		W EMORY RD	POWELL DR	14.19	E EMORY RD	14.98	5L	0.79	64	16830	28	4	0	0	32	19.425	1.647	3.166	0.520	1.000	0.520	115
9173		W GOVERNOR JOHN SEVIER HWY	STRAWBERRY PLAINS PIKE	13.23	SOUTH OF STRAWBERRY PLAINS PIKE	13.13	2-TWLTL	0.10	68	10113	6	0	0	0	6	1.478	4.061	4.722	0.860	1.000	0.860	73
9174		W GOVERNOR JOHN SEVIER HWY	SOUTH OF STRAWBERRY PLAINS PIKE	13.13	SOUTH OF CINDER LN	11.53	2-TWLTL	1.60	46	10113	26	4	2	0	32	23.640	1.354	2.474	0.547	1.188	0.650	101
9175		W GOVERNOR JOHN SEVIER HWY	SOUTH OF CINDER LN	11.53	NORTH OF FRENCH BROAD RIVER BRIDG	11.00	2-TWLTL	0.53	47	10113	6	2	1	0	8	7.831	1.022	2.991	0.342	1.375	0.470	123
9176		W GOVERNOR JOHN SEVIER HWY	ORTH OF FRENCH BROAD RIVER BRIDG	5 11.00	OUTH OF FRENCH BROAD RIVER BRIDGE	10.85	2L	0.15	44	10113	0	0	0	0	0	2.216	0.000	0.000	0.000	0.000	0.000	196
9177		W GOVERNOR JOHN SEVIER HWY	OUTH OF FRENCH BROAD RIVER BRIDG	6 10.85	EAST TN VETERANS CEMETERY ACCESS	10.64	2-TWLTL	0.21	46	10113	3	0	0	0	3	3.103	0.967	3.747	0.258	1.000	0.258	152
9178		W GOVERNOR JOHN SEVIER HWY	EAST TN VETERANS CEMETERY ACCESS	5 10.64	SOUTH OF STONESILO WAY	9.82	2-TWLTL	0.82	43	10113	7	0	0	1	8	12.116	0.660	2.749	0.240	1.625	0.390	134
9179		W GOVERNOR JOHN SEVIER HWY	SOUTH OF STONESILO WAY	9.82	NORTH OF OLD FRENCH RD	9.21	2L	0.61	34	10113	2	2	1	1	6	9.013	0.666	2.623	0.254	2.333	0.592	107
9180		W GOVERNOR JOHN SEVIER HWY	NORTH OF OLD FRENCH RD	9.21	NORTH OF BURNETT CREEK RD	8.08	2-TWLTL	1.13	42	10113	8	1	0	1	10	16.696	0.599	2.605	0.230	1.500	0.345	138
9181		W GOVERNOR JOHN SEVIER HWY	NORTH OF BURNETT CREEK RD	8.08	SOUTH OF DEWEY BURNETT LN	7.85	2L	0.23	34	10113	1	0	0	0	1	3.398	0.294	4.410	0.067	1.000	0.067	181
9182		W GOVERNOR JOHN SEVIER HWY	SOUTH OF DEWEY BURNETT LN	7.85	SOUTH OF DENWOOD RD	7.49	2-TWLTL	0.36	45	10113	5	2	1	0	8	5.319	1.504	3.713	0.405	1.375	0.557	110
9183		W GOVERNOR JOHN SEVIER HWY	SOUTH OF DENWOOD RD	7.49	SOUTH OF SEVIERVILLE PIKE	7.35	2L	0.14	34	10113	5	0	2	0	7	2.069	3.384	5.048	0.670	1.857	1.245	47
9184		W GOVERNOR JOHN SEVIER HWY	SOUTH OF SEVIERVILLE PIKE	7.35	SOUTH OF KONDA DR	7.10	2-TWLTL	0.25	44	10113	2	0	0	0	2	3.694	0.541	4.049	0.134	1.000	0.134	174
9185		W GOVERNOR JOHN SEVIER HWY	SOUTH OF KONDA DR	7.10	CHAPMAN HWY ACCESS	6.95	2L	0.15	72	10113	3	0	0	0	3	2.216	1.354	4.948	0.274	1.000	0.274	149
9186		W GOVERNOR JOHN SEVIER HWY	CHAPMAN HWY ACCESS	6.95	NORTH OF CHAPMAN HWY	6.85	2L	0.10	60	10113	0	0	1	0	1	1.478	0.677	5.597	0.121	4.000	0.484	120
9187		W GOVERNOR JOHN SEVIER HWY	NORTH OF CHAPMAN HWY	6.85	SOUTH OF CHAPMAN HWY	6.72	2L	0.13	44	10113	0	0	0	0	0	1.921	0.000	0.000	0.000	0.000	0.000	197
9188		W GOVERNOR JOHN SEVIER HWY	SOUTH OF CHAPMAN HWY	6.72	SOUTH OF NORTON RD	6.58	2-TWLTL	0.14	61	14950	4	0	0	0	4	3.058	1.308	4.253	0.308	1.000	0.308	145
9189		W GOVERNOR JOHN SEVIER HWY	SOUTH OF NORTON RD	6.58	NEUBERT SPRINGS ACCESS	4.83	2-TWLTL	1.75	45	14950	18	3	1	0	22	38.223	0.576	2.706	0.213	1.136	0.242	154
9190		W GOVERNOR JOHN SEVIER HWY	NEUBERT SPRINGS ACCESS	4.83	NORTH OF LOFTWOOD DR	4.53	2L	0.30	44	14950	5	0	0	0	5	6.553	0.763	3.799	0.201	1.000	0.201	160
9191		W GOVERNOR JOHN SEVIER HWY	NORTH OF LOFTWOOD DR	4.53	SOUTH OF LOFTWOOD DR	4.23	2-TWLTL	0.30	40	14950	4	2	0	0	6	6.553	0.916	3.549	0.258	1.000	0.258	153
9192		W GOVERNOR JOHN SEVIER HWY	SOUTH OF LOFTWOOD DR	4.23	MARTIN MILL PIKE ACCESS	2.52	2-TWLTL	1.71	45	14950	40	4	2	1	47	37.350	1.258	2.713	0.464	1.234	0.572	108
9193		W GOVERNOR JOHN SEVIER HWY	MARTIN MILL PIKE ACCESS	2.52	SOUTH OF CRENSHAW RD	1.21	2-TWLTL	1.31	43	14950	38	5	4	0	47	28.613	1.643	2.796	0.587	1.255	0.737	92
9194		W GOVERNOR JOHN SEVIER HWY	SOUTH OF CRENSHAW RD	1.21	WEST OF MARYVILLE PIKE	0.99	2L	0.22	36	14950	9	2	0	0	11	4.805	2.289	4.060	0.564	1.000	0.564	109
9195		W GOVERNOR JOHN SEVIER HWY	WEST OF MARYVILLE PIKE	0.58	CITY LIMIT	0.44	2-TWLTL	0.14	42	14950	16	2	0	0	18	3.058	5.886	4.253	1.384	1.000	1.384	40
9196		W RACCOON VALLEY DR	COUNTY LINE	0.00	NAFF RD	0.11	2L	0.11	24	3514	0	0	0	0	0	0.565	0.000	0.000	0.000	0.000	0.000	198
9197		W RACCOON VALLEY DR	NAFF RD	0.11	HEISKELL RD	2.27	2L	2.16	22	3514	27	6	8	1	42	11.089	3.787	2.516	1.505	1.690	2.545	8
9198	527	WASHINGTON PK	E EMORY RD	15.32	E HIGHWAY 61	16.02	2L	0.70	22	571	2	0	0	0	2	0.584	3.425	6.286	0.545	1.000	0.545	112

Signal Warrant Analysis

INTERSECTION: SCENARIO: DATE:	NORTHSHORE DR AT TOOL EXISTING 2018 01/29/2018	ES BEND RD			
1			PEDESTRIAN GAPS/HOUR :	0	
			ESTABLISHED SCHOOL CROSSING, MINIMUM 20 Xing (YES/NO):	NO	
	85TH PERCENTILE SPEED:	45	NEAREST SIGNALIZED INTERSECTION:	0	
	POPULATION:	50,000	IMPROVE PROGRESSION-PLATOONING (YES/NO):	NO	
	NUMBER OF APPROACHES:	3	MAJOR ROUTES (YES/NO):	NO	
	LANES ON MAIN STREET:	2	WARRANTS IN 5 YRS (YES/NO):	NO	
	MINOR STREET APPROACH LANES:	2			
			ALTERNATIVES TO A SIGNAL EXPLORED:	YES	
	PEDESTRIANS:	N/A	NUMBER OF ACCIDENTS/YR:	6	
PEAK-HOUR VO	LUME (4-CONSECUTIVE 15MIN PERIODS)	NO	PEAK HOUR DELAY (VEH-HR):	0	
	MAJOR:	1223		0	
	1170 MINOR:	30	PROXIMITY OF RR ON MINOR APPROACH TO MAJOR STREET:	0	0
				0.0%	U
EXISTING O		NI/A		0.0%	0
EXISTING O	R PROPOSED SIGNAL SYSTEM (YES/NU):	IN/A	TRACTOR-TRAILER PERCENTAGE	0.0%	U

Т

	MAIN STREET					M	INOR STRE	ET						
HOUR	PEDESTRIAN VOLUME	MAIN STREET VOLUME	PERCENT OF WARRANT 1A 420	PERCENT OF WARRANT 1B 630	MINOR STREET VOLUME	MINIMUM WARR 14	I VOLUME ANT 1A 40	INTERR WARR 7	UPTION ANT 1B 0	COMBINATION WARRANT A&B	4-Hi WARF	OUR RANT 2	PEAK I WARRA	HOUR INT 3B
24-1	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
1-2 2-3	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
3-4	0 0	Ő	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
4-5	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
5-6	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
6-7	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
7-8	0	930	221%	148%	39	28%	NO	56%	NO	NO	49%	NO	24%	NO
8-9	0	1,093	260%	173%	18	13%	NO	26%	NO	NO	23%	NO	15%	NO
9-10	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
10-11	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
11-12	0	735	175%	117%	18	13%	NO	26%	NO	NO	15%	NO	7%	NO
12-13	0	901	215%	143%	20	14%	NO	29%	NO	NO	25%	NO	11%	NO
13-14	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
14-15	0	898	214%	143%	22	16%	NO	31%	NO	NO	28%	NO	12%	NO
15-16	0	1,018	242%	162%	21	15%	NO	30%	NO	NO	26%	NO	15%	NO
16-17	0	1,070	255%	170%	21	15%	NO	30%	NO	NO	26%	NO	17%	NO
17-18	0	1,223	291%	194%	30	21%	NO	43%	NO	NO	38%	NO	30%	NO
18-19	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
19-20	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
20-21	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
21-22	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
22-23	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
23-24	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO

		WARRANT	WARRANT		>=90%	PRIORITY
	WARRANT	DESCRIPTION	OBTAINED?	HOURS	HOURS	POINTS
	4.4		NO	0	0	0
	1 A		NO	U	U	0
	В	INTERUPTION:	NO	0	0	0
S	A & B	COMBINATION:	NO	0	N/A	0
U	2	FOUR-HOUR:	NO	0	0	0
М	3 A	PEAK HOUR DELAY:	N/A	N/A	N/A	0
М	В	PEAK HOUR VOLUME:	NO	0	0	0
Α	4 No data collected	MINIMUM PED. VOLUMES:	N/A	N/A	N/A	N/A
R	5	SCHOOL CROSSING:	NO	N/A	N/A	0
Υ	6	CORD. SIGNAL SYSTEM:	NO	N/A	N/A	0
	7	ACCIDENT EXPERIENCE:	NO	0	N/A	0
	8	ROADWAY NETWORK:	NO	4	N/A	0
	9	INTERSECTION NEAR A GRADE CROSS	N/A	0	0	0
				PRIORIT	Y VALUE	0

NTERSECTION: NORTHSHORE DR AT TOO SCENARIO: BACKGROUND 2028 DATE: 02/13/2018	DLES BEND RD			
		PEDESTRIAN GAPS/HOUR :	0	
		ESTABLISHED SCHOOL CROSSING, MINIMUM 20 Xing (YES/NO):	NO	
85TH PERCENTILE SPEED:	45	NEAREST SIGNALIZED INTERSECTION:	0	
POPULATION:	50,000	IMPROVE PROGRESSION-PLATOONING (YES/NO):	NO	
NUMBER OF APPROACHES:	3	MAJOR ROUTES (YES/NO):	NO	
LANES ON MAIN STREET:	2	WARRANTS IN 5 YRS (YES/NO):	NO	
MINOR STREET APPROACH LANES:	2			
		ALTERNATIVES TO A SIGNAL EXPLORED:	YES	
PEDESTRIANS:	N/A	NUMBER OF ACCIDENTS/YR:	6	
PEAK-HOUR VOLUME (4-CONSECUTIVE 15MIN PERIODS) MAJOR	NO 1467	PEAK HOUR DELAY (VEH-HR):	0	
18% MINOR:	36	PROXIMITY OF RR ON MINOR APPROACH TO MAJOR STREET:	0	
		RAIL TRAFFIC FREQUENCY:	0	0
		MINOR APPROACH HIGH-OCCUPANCY BUSES :	0.0%	0
EXISTING OR PROPOSED SIGNAL SYSTEM (YES/NO):	N/A	TRACTOR-TRAILER PERCENTAGE	0.0%	0

Τ

	MAIN STREET				MINOR STREET									
HOUR	PEDESTRIAN VOLUME	MAIN STREET VOLUME	PERCENT OF WARRANT 1A 420	PERCENT OF WARRANT 1B 630	MINOR STREET VOLUME	MINIMUM WARR 1 [,]	I VOLUME ANT 1A 40	INTERR WARR 7	UPTION ANT 1B	COMBINATION WARRANT A&B	4-Hi WARF	OUR RANT 2	PEAK WARR/	HOUR ANT 3B
24.1	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
24-1 1 2	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
23	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
2-5	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
1-5	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
6-7	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
7-8	0	1 1 1 1	265%	177%	47	3/1%	NO	67%	NO	NO	59%	NO	11%	NO
8-9	0	1 311	312%	208%	22	16%	NO	31%	NO	NO	28%	NO	22%	NO
9-10	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
10_11	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
11-12	0	883	210%	140%	22	16%	NO	31%	NO	NO	28%	NO	12%	NO
12-13	0 0	1 081	257%	172%	25	18%	NO	36%	NO	NO	31%	NO	20%	NO
13-14	0 0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
14-15	0	1 077	256%	171%	27	19%	NO	39%	NO	NO	34%	NO	22%	NO
15-16	0 0	1,011	290%	194%	26	19%	NO	37%	NO	NO	33%	NO	26%	NO
16-17	0	1 283	305%	204%	25	18%	NO	36%	NO	NO	31%	NO	25%	NO
17-18	0	1,467	349%	233%	36	26%	NO	51%	NO	NO	45%	NO	36%	NO
18-19	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
19-20	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
20-21	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
21-22	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
22-23	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
23-24	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
	-	-			-									

		WARRANT	WARRANT		>=90%	PRIORITY
	WARRANT	DESCRIPTION	OBTAINED?	HOURS	HOURS	POINTS
	1 A	MINIMUM VOLUME:	NO	0	0	0
	В	INTERUPTION:	NO	0	0	0
S	A & B	COMBINATION:	NO	0	N/A	0
U	2	FOUR-HOUR:	NO	0	0	0
М	3 A	PEAK HOUR DELAY:	N/A	N/A	N/A	0
М	В	PEAK HOUR VOLUME:	NO	0	0	0
Α	4 No data collected	MINIMUM PED. VOLUMES:	N/A	N/A	N/A	N/A
R	5	SCHOOL CROSSING:	NO	N/A	N/A	0
Υ	6	CORD. SIGNAL SYSTEM:	NO	N/A	N/A	0
	7	ACCIDENT EXPERIENCE:	NO	0	N/A	0
	8	ROADWAY NETWORK:	NO	7	N/A	0
	9	INTERSECTION NEAR A GRADE CROSS	N/A	0	0	0
				PRIORIT	Y VALUE	0

INTERSECTION: SCENARIO: DATE:	NORTHSHORE DR AT TOO PROJECTED 2028 07/24/2018	LES BEND RD			
1			PEDESTRIAN GAPS/HOUR :	0	
			ESTABLISHED SCHOOL CROSSING, MINIMUM 20 Xing (YES/NO):	NO	
	85TH PERCENTILE SPEED:	45	NEAREST SIGNALIZED INTERSECTION:	0	
	POPULATION:	50,000	IMPROVE PROGRESSION-PLATOONING (YES/NO):	NO	
	NUMBER OF APPROACHES:	3	MAJOR ROUTES (YES/NO):	NO	
	LANES ON MAIN STREET:	2	WARRANTS IN 5 YRS (YES/NO):	NO	
	MINOR STREET APPROACH LANES:	2			
			ALTERNATIVES TO A SIGNAL EXPLORED:	YES	
	PEDESTRIANS:	N/A	NUMBER OF ACCIDENTS/YR:	6	
PEAK-HOUR VC	DLUME (4-CONSECUTIVE 15MIN PERIODS) MAJOR:	YES 1802	PEAK HOUR DELAY (VEH-HR):	0	
	194% MINOR:	250	PROXIMITY OF RR ON MINOR APPROACH TO MAJOR STREET:	0	
			RAIL TRAFFIC FREQUENCY:	0	0
			MINOR APPROACH HIGH-OCCUPANCY BUSES :	0.0%	0
EXISTING C	OR PROPOSED SIGNAL SYSTEM (YES/NO):	N/A	TRACTOR-TRAILER PERCENTAGE	0.0%	0

	MAIN STREET				MINOR STREET									
HOUR	PEDESTRIAN VOLUME	MAIN STREET VOLUME	PERCENT OF WARRANT 1A 420	PERCENT OF WARRANT 1B 630	MINOR STREET VOLUME	MINIMUM WARR/ 14	VOLUME ANT 1A 40	INTERRI WARRA 7	UPTION ANT 1B 0	COMBINATION WARRANT A&B	4-HC WARR	DUR ANT 2	PEAK WARRA	HOUR INT 3B
24-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21		0 0 0 0 0 1,212 1,396 0 0 982 1,183 0 1,227 1,400 1,463 1,802 0 0	420 0% 0% 0% 0% 0% 289% 332% 0% 234% 282% 0% 292% 333% 348% 429% 0% 0% 0%	630 0% 0% 0% 0% 0% 192% 222% 0% 0% 156% 188% 0% 195% 222% 232% 232% 232% 286% 0% 0% 0%	0 0 0 0 0 369 301 0 0 354 363 0 175 204 250 0 0 0 0	14 0% 0% 0% 0% 0% 263% 215% 0% 253% 260% 0% 125% 146% 146% 179% 0% 0%	NO NO NO NO NO NO YES YES NO YES YES YES YES YES YES YES YES NO NO NO NO	7 0% 0% 0% 0% 0% 0% 527% 430% 0% 527% 430% 0% 505% 519% 0% 251% 291% 291% 357% 0% 0%	NO NO NO NO NO NO YES YES NO YES YES YES YES YES YES YES NO NO NO NO	NO NO NO NO NO YES YES NO YES YES YES YES YES YES NO NO NO	0% 0% 0% 0% 0% 461% 376% 0% 442% 454% 0% 219% 255% 255% 313% 0% 0% 0%	NO NO NO NO NO YES YES NO YES YES YES YES YES YES YES YES NO NO NO	0% 0% 0% 0% 0% 369% 301% 0% 237% 363% 0% 175% 204% 204% 250% 0% 0%	NO NO NO NO NO YES YES NO YES YES YES YES YES NO NO NO
21-22 22-23 23-24	0 0 0	0 0 0	0% 0% 0%	0% 0% 0%	0 0 0	0% 0% 0%	NO NO NO	0% 0% 0%	NO NO NO	NO NO NO	0% 0% 0%	NO NO NO	0% 0% 0%	NO NO NO

		WARRANT	WARRANT		>=90%	PRIORITY
	WARRANT	DESCRIPTION	OBTAINED?	HOURS	HOURS	POINTS
	1 A	MINIMUM VOLUME:	YES	8	0	88
	В	INTERUPTION:	YES	8	0	80
S	A & B	COMBINATION:	YES	8	N/A	72
U	2	FOUR-HOUR:	YES	8	0	128
М	3 A	PEAK HOUR DELAY:	N/A	N/A	N/A	0
М	В	PEAK HOUR VOLUME:	YES	8	0	448
Α	4 No data collected	MINIMUM PED. VOLUMES:	N/A	N/A	N/A	N/A
R	5	SCHOOL CROSSING:	NO	N/A	N/A	0
Υ	6	CORD. SIGNAL SYSTEM:	NO	N/A	N/A	0
	7	ACCIDENT EXPERIENCE:	YES	8	N/A	115
	8	ROADWAY NETWORK:	NO	8	N/A	0
	9	INTERSECTION NEAR A GRADE CROSS	N/A	0	0	0
				PRIORIT	Y VALUE	931.2

Signal W	Varrant	Dro	iactions	- Dro	iactad	2028
Signal V	variani	FIU	Jecuons	- FIU	Jecleu	2020

					Northbound			Northbound	Southbound			Northbound
	Westbound			Westbound	South			South	South			South
	Tooles		_	Tooles Bend	Northshore			Northshore	Northshore		D (Northshore
	Bend Road		Percent	Road	Drive	Northbound	Percent	Drive	Drive	Southbound	Percent	Drive
	Background	Westbound	Total Trips	Projected	Background	Trips In	Total Trips	Projected	Background	Trips In	Total Trips	Projected
	Traffic	Trips Out	(1)	Traffic	Traffic	(0.35)	(1)	Traffic	Traffic	(0.55)	(1)	Traffic
24-1	0	0	0%	0	0	0	0%	0	0	0	0%	0
1-2	0	0	0%	0	0	0	0%	0	0	0	0%	0
2-3	0	0	0%	0	0	0	0%	0	0	0	0%	0
3-4	0	0	0%	0	0	0	0%	0	0	0	0%	0
4-5	0	0	0%	0	0	0	0%	0	0	0	0%	0
5-6	0	0	0%	0	0	0	0%	0	0	0	0%	0
6-7	0	0	0%	0	0	0	0%	0	0	0	0%	0
7-8	47	322	11%	369	565	38	1%	603	551	58	2%	609
8-9	22	279	9%	301	612	28	1%	640	700	56	2%	756
9-10	0	0	0%	0	0	0	0%	0	0	0	0%	0
10-11	0	0	0%	0	0	0	0%	0	0	0	0%	0
11-12	22	332	11%	354	425	33	1%	458	457	66	2%	523
12-13	24	339	11%	363	563	34	1%	597	518	68	2%	586
13-14	0	0	0%	0	0	0	0%	0	0	0	0%	0
14-15	26	149	5%	175	550	60	2%	610	528	89	3%	617
15-16	25	179	6%	204	602	72	2%	674	619	107	4%	726
16-17	25	179	6%	204	580	72	2%	652	704	107	4%	811
17-18	36	214	7%	250	658	134	4%	792	810	200	7%	1010
18-19	0	0	0%	0	0	0	0%	0	0	0	0%	0
19-20	0	0	0%	0	0	0	0%	0	0	0	0%	0
20-21	0	0	0%	0	0	0	0%	0	0	0	0%	0
21-22	0	0	0%	0	0	0	0%	0	0	0	0%	0
22-23	0	0	0%	0	0	0	0%	0	0	0	0%	0
23-24	0	0	0%	0	0	0	0%	0	0	0	0%	0

Distributed peak hour trips from Table 2: Trip Generation Distributed trips have been synthesized in order to maintain peak periods and applied at similar rate to existing traffic distributions

(1)

Percent of Total Trips shown to validate peak period assumptions. Percent of Total Trips = Trips / Daily Trips (at projected development)

INTERSECTION: SCENARIO: DATE:	NORTHSHORE DR AT TOO PROJECTED 2022-40% BUI 07/24/2018	LES BEND RD LD			
			PEDESTRIAN GAPS/HOUR :	0	
			ESTABLISHED SCHOOL CROSSING, MINIMUM 20 Xing (YES/NO):	NO	
	85TH PERCENTILE SPEED:	45	NEAREST SIGNALIZED INTERSECTION:	0	
	POPULATION:	50,000	IMPROVE PROGRESSION-PLATOONING (YES/NO):	NO	
	NUMBER OF APPROACHES:	#REF!	MAJOR ROUTES (YES/NO):	NO	
	LANES ON MAIN STREET:	2	WARRANTS IN 5 YRS (YES/NO):	NO	
	MINOR STREET APPROACH LANES:	2			
			ALTERNATIVES TO A SIGNAL EXPLORED:	YES	
	PEDESTRIANS:	N/A	NUMBER OF ACCIDENTS/YR:	6	
PEAK-HOUR VO	OLUME (4-CONSECUTIVE 15MIN PERIODS)	NO	PEAK HOUR DELAY (VEH-HR):	0	
	MAJOR	1441			
	57% MINOR:	118	PROXIMITY OF RR ON MINOR APPROACH TO MAJOR STREET:	0	
			RAIL TRAFFIC FREQUENCY:	0	0
			MINOR APPROACH HIGH-OCCUPANCY BUSES :	0.0%	0
EXISTING C	OR PROPOSED SIGNAL SYSTEM (YES/NO):	N/A	TRACTOR-TRAILER PERCENTAGE	0.0%	0
	() , () ,				

Т

	MAIN STREET				MINOR STREET									
HOUR	PEDESTRIAN VOLUME	MAIN STREET VOLUME	PERCENT OF WARRANT 1A 420	PERCENT OF WARRANT 1B 630	MINOR STREET VOLUME	MINIMUM VOLUME INTERRUPTION WARRANT 1A WARRANT 1B 140 70		COMBINATION 4-HOUR WARRANT A&B WARRANT 2		PEAK HOUR WARRANT 3B				
24-1	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
1-2	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
2-3	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
3-4	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
4-5	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
5-6	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
6-7	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
7-8	0	1,039	247%	165%	171	122%	YES	244%	YES	YES	214%	YES	128%	YES
8-9	0	1,214	289%	193%	131	94%	YES/NO	187%	YES	YES	164%	YES	131%	YES
9-10	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
10-11	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
11-12	0	834	198%	132%	152	109%	YES	217%	YES	YES	164%	YES	76%	NO
12-13	0	1,014	241%	161%	157	112%	YES	225%	YES	YES	197%	YES	112%	YES
13-14	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
14-15	0	1,023	244%	162%	83	60%	NO	119%	YES	NO	104%	YES	61%	NO
15-16	0	1,164	277%	185%	94	67%	NO	135%	YES	NO	118%	YES	89%	NO
16-17	0	1,231	293%	195%	106	76%	NO	152%	YES	NO	133%	YES	106%	YES
17-18	0	1,441	343%	229%	118	84%	NO	169%	YES	YES	148%	YES	118%	YES
18-19	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
19-20	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
20-21	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
21-22	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
22-23	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO
23-24	0	0	0%	0%	0	0%	NO	0%	NO	NO	0%	NO	0%	NO

		WARRANT	WARRANT		>=90%	PRIORITY
	WARRANT	DESCRIPTION	OBTAINED?	HOURS	HOURS	POINTS
			NO	•		
	1 A		NO	3	1	33
	В	INTERUPTION:	YES	8	0	80
S	A & B	COMBINATION:	NO	5	N/A	45
U	2	FOUR-HOUR:	YES	8	0	128
м	3 A	PEAK HOUR DELAY:	N/A	N/A	N/A	0
М	В	PEAK HOUR VOLUME:	YES	5	0	280
Α	4 No data collected	MINIMUM PED. VOLUMES:	N/A	N/A	N/A	N/A
R	5	SCHOOL CROSSING:	NO	N/A	N/A	0
Υ	6	CORD. SIGNAL SYSTEM:	NO	N/A	N/A	0
	7	ACCIDENT EXPERIENCE:	YES	8	N/A	115
	8	ROADWAY NETWORK:	NO	7	N/A	0
	9	INTERSECTION NEAR A GRADE CROSS	N/A	0	0	0
				PRIORITY VALUE		681.2

					Northbound			Northbound	Southbound			
	Westbound			Westbound	South			South	South			Northbound
	Tooles Bend			Tooles Bend	Northshore			Northshore	Northshore			South
	Road		Percent	Road	Drive	Northbound	Percent	Drive	Drive	Southbound	Percent	Northshore
	Background	Westbound	Total	Projected	Background	Trips In	Total	Projected	Background	Trips In	Total	Drive Projected
	Traffic	Trips Out	Trips ⁽¹⁾	Traffic	Traffic	(0.35)	Trips ⁽¹⁾	Traffic	Traffic	(0.55)	Trips ⁽¹⁾	Traffic
24-1	0	0	0%	0	0	0	0%	0	0	0	0%	0
1-2	0	0	0%	0	0	0	0%	0	0	0	0%	0
2-3	0	0	0%	0	0	0	0%	0	0	0	0%	0
3-4	0	0	0%	0	0	0	0%	0	0	0	0%	0
4-5	0	0	0%	0	0	0	0%	0	0	0	0%	0
5-6	0	0	0%	0	0	0	0%	0	0	0	0%	0
6-7	0	0	0%	0	0	0	0%	0	0	0	0%	0
7-8	42	129	11%	171	496	13	1%	509	509	21	2%	530
8-9	19	112	9%	131	630	11	1%	641	551	22	2%	573
9-10	0	0	0%	0	0	0	0%	0	0	0	0%	0
10-11	0	0	0%	0	0	0	0%	0	0	0	0%	0
11-12	19	133	11%	152	411	13	1%	425	382	27	2%	409
12-13	22	136	11%	157	467	14	1%	480	507	27	2%	534
13-14	0	0	0%	0	0	0	0%	0	0	0	0%	0
14-15	24	60	5%	83	475	21	2%	496	495	33	3%	527
15-16	23	72	6%	94	557	25	2%	582	542	39	3%	581
16-17	23	83	7%	106	634	29	2%	663	522	46	4%	568
17-18	32	86	7%	118	729	47	4%	776	592	73	6%	665
18-19	0	0	0%	0	0	0	0%	0	0	0	0%	0
19-20	0	0	0%	0	0	0	0%	0	0	0	0%	0
20-21	0	0	0%	0	0	0	0%	0	0	0	0%	0
21-22	0	0	0%	0	0	0	0%	0	0	0	0%	0
22-23	0	0	0%	0	0	0	0%	0	0	0	0%	0
23-24	0	0	0%	0	0	0	0%	0	0	0	0%	0

Signal Warrant Projections- 2022 Projected - 40% Development

Distributed peak hour trips from Table 2: Trip Generation

Distributed trips have been synthesized in order to maintain peak periods and applied at similar rate to existing traffic distributions

Percent of Total Trips shown to validate peak period assumptions. Percent of Total Trips = Trips / Daily Trips (at projected development) (1)

July 26, 2018

fax: 865.963-4301

Ms. Tarren Barrett Knoxville Regional TPO & Metropolitan Planning Commission 400 Main Street, Suite 403 Knoxville, TN 37902

RE: Post Oak Bend Subdivision Traffic Impact Study Review Response

Dear Ms. Barrett:

This letter addresses comments from your July 22, 2018 letter to me and John Sexton's comments (and addenda in red text) from his July 12, 2018 memo to Cindy Pionke. My responses are in blue text and, where appropriate, references to changes in the report have been noted.

1. On page 1-4 under Existing Traffic Conditions, the report mentions the width of Tooles Bend Road as being 20 ft wide without shoulders. The width has been evaluated and is not entirely 20 ft. It varies. Please evaluate the entire width of Tooles Bend Road from S Northshore Drive to the secondary entrance.

This has been done and further discussion is provided on Page 1-4. Additionally, text has been added to discuss the road widths observed on Page 3-4.

a. On the same page under Sight Distance, the report says that "the developer is aware of these restrictions and is prepared to make modifications to Tooles Bend Road." To what extent is the developer willing to do this? Please explain.

The developer is willing to make physical vertical and horizontal changes to Tooles Bend Road to achieve adequate sight distance.

2. On page 3-1 first paragraph, the report mentions "the most recent site layout." Please give a date of the site plan for reference.

This paragraph has been removed as it no longer applies to the study.

a. What was the reasoning for adding Table 2? The table and discussion about a slightly larger site plan does not seem important to this study.

G

Page 2

Table 2 noted the difference between the analyzed traffic and the traffic of an updated site plan. It is no longer necessary in the report as the site plan and analyses are compatible and has been eliminated.

b. In the second paragraph, the report says that the "48 single family lots are not part of this submittal," but the 48 single family lots are included in the trip generation for the whole site. Please explain.

The traffic impact study includes the ultimate buildout of the development to account for all future trips and to ensure that recommended improvements consider all planned development. This is a conservative approach because the 48 lots would be built later. This comment has been provided in the text on Pages 1-1, 3-1, and 4-3.

c. In Table 3, the Senior Adult Attached Housing worksheets from the Trip Generation Manual are not included in the Appendix. The Land Use Code (LUC) for Senior Adult Attached Housing is 252, not 251. Also, the total number of units do not match what the Community brochure says. Please evaluate.

The senior adult housing component of the site plan has been replaced with a condo/townhouse. It is the developer's intent that some of the units be reserved for senior adults, but in an attempt to be conservative, trips were applied using the condo/townhouse category. Table 3 has been revised to match the residential units of the Community brochure dated July 24, 2018.

3. On page 3-2 under Anticipated Trip Distribution Pattern, the travel time survey completed does not account for the left turning delay. Is this the time to get to S Northshore Dr.? The report mentions that the survey times do not include any intersection delay. What does this mean?

This has been further explained on Page 3-2.

a. What is the existing percent distribution to Tedford Lane?

Looking at outbound traffic, it is about 50/50 Tedford Lane and Tooles Bend Road.

4. In the last paragraph of page 3-4, the first line mentions that "Tooles Bend Road can accommodate more than 4,000 VPD." How much more can it accommodate? The current statement makes it very unclear.

Page 3

Text has been added to Page 3-4 to further explain.

5. In the second paragraph on page 3-7, please reword the last sentence to "LOS B in the AM peak hour and LOS C in the PM peak hour."

This sentence has been revised.

6. In the analysis, please be consistent with the direction of travel of S Northshore Drive. It mainly is an East-West corridor, not North-South.

This has been changed in the appropriate locations in the report with specific reference to the following:

- Pages 1-8 (previously 1-5), 3-4, and 4-1 where Tooles Bend was referenced as northbound;
- Page 4-1 where South Northshore Drive was referenced as eastbound; and
- Pages 3-2 and 4-1 where South Northshore Drive was referenced as westbound.

Please note that on Page 4-2 recommendations to Tooles Bend Road are still referenced in the southbound direction as Tooles Bend Road runs primarily north-south in this vicinity.

7. In the recommended improvements to Tooles Bend Road on page 4-3, the report mentions safety improvements. Please show in a figure where improvements are being proposed along Tooles Bend Road.

Figures 15 and 16 illustrate these recommended improvements where specific locations are referenced.

8. The developer mentioned that this development will be broken up into phases. The study does not show phases, so please explain.

The development will be constructed gradually over a 10-year period, so no phases are planned. The 48-units that are separate from the primary development will be constructed later, but still within the 10-year timeframe.

Page 4

Comments from John Sexton:

i The portion of Northshore Drive within the study area is actually South Northshore Drive. Consider revising here and throughout report.

Did not address.

This has been changed throughout the report, figures, and Appendix.

1-4 Under "Sight Distance" the report assumes a single driveway at the north access point even though the site plan shows two. This is clarified in the "Summary and Recommendations" section, but please add a statement here regarding the two driveways shown vs. the single driveway evaluated.

Apparently, the site plan has been changed to address this item, and the paragraph that discussed it under "Summary and Recommendations" has been removed.

No response required by CDM Smith.

1-5 Under "Traffic Volumes and Level of Service", 1st paragraph, 4th line, add "existing" before "LOS". The existing peak hour factors were utilized in the 2018 capacity analyses, but a default peak hour factor of 0.92 was used in subsequent capacity analyses.

Did not address.

The word "existing" has been added where recommended. I believe that the PHF will smooth out over the 10-year buildout schedule as significant traffic is added to the street network which will reflect peak hour factors more similar to the default 0.92 than existing peak hour factors.

3-2 The assumed trip distribution is 90% to and from S. Northshore Drive via Tooles Bend Road and 5% each on Tedford Lane and Badgett Road. For reference, it should be noted that the split of existing ADTs on these roadways is 62% on Tooles Bend Road, 21% on Tedford Lane and 17% on Badgett Road.

This is sufficiently explained in the text, so disregard.

No response required from CDM Smith.

Page 5

3-3 Please add a figure or other details to supplement Figure 10 showing the trip distribution percentages at the 3 access points to facilitate checking as well as how the split between the 2 primary access points was estimated.

Did not address.

There are two access points to the main development site (referenced as North Access and South Access). An additional Off-Site Access is for the future developed homesites located off of Tooles Bend Road. The site distribution percentages have been added to Figure 10 and additional text has been provided on Page 3-2.

3-5 Add a statement in Figure 11 to note the trip balancing among the intersections of Tooles Bend Road/Tedford Lane and the 3 access points.

Did not address.

Additional text has been added on Page 3-2 to elaborate on the trip distribution of Tedford Lane and noted on Figure 10.

3-7 The calculation worksheets in the Appendix referenced in the 1st paragraph are a little confusing. Please provide more annotation so that the origin of the numbers is evident.

Did not address.

More detail has been included in the calculation worksheets in the Appendix.

4-1 Under "Northshore Drive at Tooles Bend Road"-

• The recommended taper lengths do not discriminate between approach tapers and bay tapers. Also, the minimum taper lengths need to comply with TDOT design standards based on speed and lateral offset. Did not address.

Noted. The recommendation on Page 4-1 has been expanded to include storage, approach, and bay taper lengths that comply with TDOT design standards.

• It should be noted that construction of the westbound left-turn lane will require widening of the bridge or culvert at Sinking Creek. (Not included in comments sent to engineer).

Page 6

CDM Smith is aware of this and are developing functional plans for Knox County on the traffic signal and roundabout alternatives.

• It should be noted that installing separate turn lanes on a STOP controlled approach can create operational problems as side-by-side drivers compete for sight distance past one another. The revised study assumes a traffic signal or roundabout, so this comment is no longer applicable.

No response required from CDM Smith.

• Please include evaluation of this intersection as a single-lane roundabout under build-out conditions. Roundabout analysis has been provided.

No response required from CDM Smith.

Under "Badgett Road at Tooles Bend Road"-

• Please add an evaluation of turn lane warrants. Did not address.

The turn lane evaluation has been added to the recommendations on Page 4-2 and Appendix.

• Please comment on the feasibility of improving sight distance at this intersection. (Not included in comments sent to engineer).

Additional text has been added on Page 4-2 indicating it is not feasible to improve the vertical curve.

Under "North Access on Tooles Bend Road"-

• Please provide the turn lane warrant evaluation. This is provided.

No response required from CDM Smith.

• See comments above regarding approach vs. bay tapers and minimum taper lengths. Did not address.

Noted. The recommendation on Page 4-2 has been expanded to include storage, approach, and bay taper lengths that comply with TDOT design standards.

• 2nd paragraph, 4th line, change "agree" to "agreed". Paragraph was removed.

Page 7

No response required from CDM Smith.

4-2 Under "South Access on Tooles Bend Road"-

• Please provide the turn lane warrant evaluation. This is provided.

No response required from CDM Smith.

• See comments above regarding approach vs. bay tapers and minimum taper lengths. Did not address.

Noted. The recommendation on Page 4-2 has been expanded to include storage, approach, and bay taper lengths that comply with TDOT design standards.

Add turn lane evaluation for the intersection of Tooles Bend Road at Tedford Lane. Did not address.

The turn lane evaluation has been added to the recommendations on Page 4-2 and Appendix.

4-3 • The page was rotated 180 degrees in bound study. The page was rotated 90 degrees, still needs to be rotated another 90 degrees and enlarged for clarity.

This problem has been corrected.

• Please correct the 2028 Projected Traffic AM peak delay and LOS for Tooles Bend Road at Tedford Lane from 10.4 seconds/LOS B to 9.3 seconds/LOS A to match the capacity analysis output in the Appendix. Capacity analyses have been revised and corrected.

No response required from CDM Smith.

Appendix

• The capacity analysis for the Projected 2028 AM Peak with added turn lanes at Northshore Drive/Tooles Bend Road should include the title, "With Improvements". (Not included in comments sent to engineer).

This option for mitigation to Northshore Drive at Tooles Bend Road is recommended in two stagesadding turn lanes only and full improvements (adding turn lanes with signalization) as shown in the LOS table and referenced on Page 3-4. These improvements are noted in the titles of the analysis reports to maintain clarity.

Ms. Tarren Barrett July 26, 2018

Page 8

• The left-turn lane warrant analysis for Northshore Drive at Tooles Bend Road should include the eastbound right-turn volumes on Northshore Drive in the "opposing volume" values since westbound left-turn drivers would have to yield to these vehicles. Did not address.

Noted. The warrant analysis has been revised to include these volumes.

• See comments from page 3-7 regarding the calculation worksheets used to estimate volumes for signal warrant analyses. Did not address.

More detail has been included in the calculation worksheets in the Appendix.

I had a few new comments on the revised study as follows:

On page 3-1,

• In the first paragraph, the engineer states that the TIS analyses reflect a larger level of development than that shown in the site plan. Please provide an explanation for this discrepancy.

Please see the response for comment 2 from Ms. Barrett.

• In the second paragraph the engineer states that the 48 SF lots west of I-140 are not part of this submittal, but they are in the TIS. Please clarify.

Please see the response for comment 2b from Ms. Barrett.

• In Table 3, please cite the source for the attached housing daily trip generation.

The attached senior living category no longer applies to the revised trip generation.

• On page 3-5 (Figure 11) there are numerous errors in the volumes. These should be the sum of volumes shown in Figures 8 and 10, but the numbers do not match.

The volumes have been updated to reflect the site plan and the sums have been verified.

Ms. Tarren Barrett July 26, 2018

Page 9

• On page 3-7, second paragraph, the last sentence should be revised to read "... LOS B in the AM peak hour and LOS C in the PM peak hour."

Noted. This sentence has been revised.

• On page 4-1, the discussion of the traffic signal assumes an east-west orientation for S. Northshore Drive, but the roundabout discussion assumes a north-south orientation for S. Northshore Drive. Please make these consistent with the rest of the TIS.

Please see the response for comment 6 from Ms. Barrett.

As requested, I am providing 5 copies and a PDF of the revised study along with these responses. If you need further explanation on these responses, please let me know.

Sincerely,

allyion's for

Allyson N. Foster, PE Transportation Engineer CDM Smith Inc.

cc: Mr. Chris Ooten, Safe Harbor Development

