

Traffic Impact Study Millstone Subdivision
 Knox County, Tennessee

-Prepared For-

Ideal Engineering Solutions, Ir
Mr. David Campbell, PE 325 Wooded Lane Knoxville, TN 37922

-Prepared By-

Revised January 2017

TABLE OF CONTENTS

SECTION
INTRODUCTION 1
Project Description 1
Existing Conditions in Study Area 6
Photo Exhibits 8
Existing Traffic Volumes 11
Background Traffic Volumes 18
TRIP GENERATION 22
Trip Distribution \& Assignment. 24
Projected Traffic Volumes 29
Conclusions and Recommendations 33
Appendix A - Historical Traffic Count Data
Appendix B - Manual Traffic Count Data
Appendix C - Knox County School System Information Emails
Appendix D - Traffic Signal Information
Appendix E - CApacity Analyses - HCM Worksheets (Synchro 8)
Appendix F - ITE Trip Generation Rates
Appendix G - MPC REZONing REport
Appendix H - Knox County Left \& Right Turn Lane Volume Threshold Worksheets
Appendix I - SImtraffic Queue Reports

LIST OF FIGURES

FIGURE PAGE

1. Location Map 2
2A. Proposed Plan Layout 4
2B. Proposed Typical Road Cross Sections 5
3A. 2016 PM School Peak Hour Traffic Volumes - Existing 13
3B. 2016 Traditional Peak Hour Traffic Volumes - Existing 14
4A. 2021 PM School Peak Hour Traffic Volumes - Background 19
4B. 2021 Traditional Peak Hour Traffic Volumes - Background 20
5a. Directional Distribution of Generated Traffic to/From Schools During School PM Peak Hour 25
5B. Directional Distribution of Generated Traffic During Traditional AM and PM Peak Hour. 26
6A. Traffic Assignment of Generated Traffic to/From Schools During School PM Peak Hour 27
6B. Traffic Assignment of Generated Traffic During Traditional AM and PM Peak Hour 28
7A. 2021 PM School Peak Hour Traffic Volumes - Projected 30
7B. 2021 Traditional Peak Hour Traffic Volumes - Projected 31
LIST OF TABLES
TABLE1. LEVEL OF SERVICE \& DELAY FOR UNSIGNALIZED INTERSECTIONS................... 15
2. Level of Service \& Delay for Signalized Intersections. 16
3. 2016 Peak Hour Level of Service \& Delay - Existing 17
4. 2021 Peak Hour Level of Service \& Delay - Background 21
5. Trip Generation for Millstone Subdivision 22
6. 2021 Peak Hour Level of Service \& Delay - Projected 32

INTRODUCTION

The purpose of this traffic study is to analyze the traffic impacts of a new proposed residential subdivision in Knox County, Tennessee. At this point in the concept stage of design, this development is named Millstone Subdivision. This development is being proposed to the southwest of the intersection of Millstone Lane and Freels Lane near George Williams Road. This traffic impact study follows the procedures as outlined for a Level 1 study in accordance with the standards set forth by the Knoxville/Knox County Metropolitan Planning Commission.

In this study the following analyses/methodologies were conducted:

- A review of the operating characteristics of the existing adjacent roadway system that will provide access to the proposed site
- Determination and application of the trips to the existing adjacent road system that are expected to be generated by the proposed development
- Evaluation of the road system locations to determine the potential traffic impacts of the proposed development
- Identification of recommendations for road improvements to mitigate the expected increase in traffic volume from the projected future traffic volumes

PROJECT DESCRIPTION

The proposed location of this new development is shown on a map in Figure 1. The development is to be located adjacent to Millstone Lane and Freels Lane approximately 700 feet to the southwest of the signalized intersection of George Williams Road and Millstone Lane. In the adjacent vicinity of this study area, there are several other residential subdivisions, apartments, individual residences, undeveloped properties, and a public middle school. The existing site primarily consists of undeveloped woods and undeveloped open land. Norfolk Southern Railroad and Ten Mile Creek bound the site to the south.

The proposed subdivision is expected to be comprised of several new internal roads on approximately 40 acres. At this stage, the subdivision concept design shows 136 single family residential lots which vary in size with some lots slightly over a half acre. The design shows that the subdivision will tie into Millstone Lane approximately 240 feet to the west of the intersection of Freels Lane. No access road is being proposed to tie into Freels Lane.

Millstone Subdivision

The proposed concept plan layout given by David Campbell, PE is shown in Figure 2a. As can be seen in the figure, one main entrance is proposed to tie into Millstone Lane. Figure 2 b shows the typical road cross sections for the development. The one entrance into the development will be located on the northeast side of the development at Road "A" and Millstone Lane. The road entrance will be a boulevard roadway section for almost 500 feet as shown in Figure 2b. The total length of the new roadways within the development will be approximately 4,800 feet and are labeled as Road "A" thru Road "F" on the concept plan. The internal roadways as shown in Figure 2b will have 5 foot wide sidewalks.

The actual schedule for completion of this new residential development is dependent on economic factors. However, the current residential market in Knox County is experiencing fairly rapid growth. This project is also contingent on permitting, design, and other issues. However, for the purposes of this study, it was assumed that the total construction build-out and full occupation of the development will occur by the year 2021 (in 5 years).

EXISTING CONDITIONS IN STUDY AREA

George Williams Road is classified as a Major Arterial and traverses in a general northeastsouthwest direction in west Knox County. George Williams Road terminates and intersects Fox Road 1.7 miles to the west and South Peters Road 0.6 miles to the east. The speed limit on George Williams Road is posted at 35 mph surrounding the intersection at Millstone Lane. George Williams Road, at the signalized intersection at Millstone Lane, continues at a "dog-leg" intersection. Refer to the image below for clarification.

George Williams Road directly to the north and to the east of the school includes a center two way turn lane that separates opposing traffic and provides for left turn movements. There are 6.5 foot wide concrete sidewalks on both sides of the road to the east of the intersection at Millstone Lane. In addition to the crosswalks at the signalized intersection, a couple of midblock pedestrian crosswalks are marked across the roadway further towards the east. George Williams Road in front of West Valley Middle School has a fairly level vertical alignment and has 12 foot travel lanes. According to the Major Road Plan published by the MPC, George Williams Road is listed as having 70 feet of right-of-way.

George Williams Road at Millstone Lane

George Williams Road provides road access to several residential subdivisions, individual homes and apartment complexes in the surrounding area. West Valley Middle School is located to the southeast of the intersection of George Williams Road and Millstone Lane. For the 20152016 school year, there were 1,192 students from the $6^{\text {th }}$ to $8^{\text {th }}$ grade attending the school. George Williams Road has flashing school beacons to the east and northwest of the

Revised January 2017
Traffic Impact Study

Millstone Subdivision
Knox County, TN
school. During the periods of operation, the flashing school beacon indicates a speed limit of 20 mph . Additionally, road signage near the school indicates that the speed limit is 20 mph during the periods of 7:50-8:35 am and 3:15-4:00 pm. The daily school schedule for students is from 8:00 am to $3: 30 \mathrm{pm}$. Average Daily Traffic (ADT) on George Williams Road west of the project site (closer to Fox Road) was reported by the Tennessee Department of Transportation (TDOT) at 2,917 vehicles per day in 2015 (Station \#000498). Historical TDOT traffic count data can be viewed in Appendix A.

Millstone Lane is a local low-volume street that intersects George Williams Road at the signalized intersection that is adjacent to West Valley Middle School. Several individual residences currently use Millstone Lane to access George Williams Road. The Millstone Lane approach and the other approaches at George Williams Road were upgraded and widened with curb, gutter, and sidewalk to accommodate the traffic signal that was installed in the late 90's concurrently with the construction of West Valley Middle School. A sidewalk on the south side of Millstone Lane extends 450 feet from the signalized intersection. Approximately 500 feet to the west of the traffic signal, Millstone Lane transitions to a narrower roadway with a pavement width of 17 feet. West of the intersection at Freels Lane, Millstone Lane has a pavement width of approximately 13 feet. Millstone Lane terminates at a dead end.

Freels Lane is also a local low-volume residential street that intersects Millstone Lane. Freels Lane is a circuitous roadway that does not have an outlet and serves only a couple of residences. The pavement width of Freels Lane is 14.5 feet. The intersection of Freels Lane at Millstone Lane does not have any traffic control.

Millstone Lane at Freels Lane

Millstone Subdivision Knox County, TN

Millstone Subdivision Knox County, TN

EXISTING TRAFFIC VOLUMES

In order to analyze the traffic impacts associated with the proposed future development, traffic counts were conducted at the intersection of Millstone Lane at Freels Lane and Millstone Lane at George Williams Road. The traffic counts were obtained on Wednesday, November $9^{\text {th }}$, 2016 during the morning and afternoon peak periods. West Valley Middle School and other local schools were in operation during the traffic counts. The AM peak hours were observed at 7:45-8:45 AM at Freels Road and Millstone Lane and at 7:30-8:30 AM at the intersection of Millstone Lane at George Williams Road. The PM peak hour was observed from 4:45-5:45 at both intersections. The manual tabulated traffic counts can be reviewed in Appendix B.

During the traffic counts, school crossing guards were observed to help students cross at the intersection of Millstone Lane at George Williams Road during morning arrivals and afternoon departures at the school. Several dozen students were observed walking to and from school and the nearby residences and apartments during the morning arrival and afternoon dismissal. Currently, there are 135 students residing within the Parent Responsibility Zone (PRZ) which means that school bus service is not available. It is not known how many of these students regularly walk to/from school or are transported by personal vehicle. This information and the historic student enrollment population at the school are presented in Appendix C which includes information given by the Knox County School system.

Also, during the afternoon dismissal period at the school, traffic queues were observed backing up at the signalized intersection of Millstone Lane at George Williams Road. Approximately 10 minutes before the afternoon dismissal at 3:30 pm, the dismissal line vehicle queue was observed backing all the way up to the signalized intersection on the school driveway leg at the intersection. This vehicle queue is formed by waiting guardians to pick up children at the school. Some queue jumping was also observed during this time. The queue from the school dismissal line ultimately resulted in queues forming on the southbound thru/right turn lane and the westbound left turn lane at the signalized intersection. By 3:45 pm the queues that had formed on the various approaches at the intersection had dissipated and the queue was contained within the school property.

Typically, in most instances, the daily morning peak traffic for schools coincides with the adjacent roadway peak hour traffic since the school arrival times correspond with the "traditional" rush hour morning commute periods. However, peak school traffic in the
afternoon does not usually coincide with the "traditional" afternoon peak hour due to earlier school dismissals in the afternoon. Thus for this study, it would be appropriate to assume that the morning peak hour traffic of the proposed residential subdivision will occur simultaneously with the school arrival morning peak traffic. However, the peak school traffic at dismissal in the afternoon will need to be analyzed separately since there will not be a simultaneous occurrence of peak hour adjacent roadway traffic and school dismissal traffic. Typically most traffic impact studies only analyze the AM and PM peak hours of traffic which occur during the traditional rush hours. The Institute of Transportation Engineers (ITE) recommended practices state that traffic impact studies should examine the time period(s) that provide the highest cumulative traffic demands to assess a development's impact on the adjacent street system. Therefore for this study, the traditional AM and PM peak hour of traffic were studied for the intersections along with the PM school peak hour which occurs earlier in the afternoon around the dismissal period (3:30 pm) at the school.

Figure 3 a and Figure 3 b show the existing traffic volumes for the intersections based on three different time periods. Figure 3a shows the existing traffic volumes at the intersections studied during the PM peak hour when the school dismissal occurs at 3:30 pm (PM School peak hour 3:00-4:00 pm). In Figure 3b, the volumes shown are from the existing traffic counts volumes during the traditional AM and PM peak hours. For this study, the AM and PM peak hours during the typical rush hours are labeled and referred as the "traditional" peak hours.

Capacity analyses were undertaken to determine the existing Level of Service (LOS) for the intersections. The capacity analyses were calculated by following the methods outlined in the Highway Capacity Manual and using Synchro Traffic Software (Version 8).

LOS is a qualitative measurement developed by the transportation profession of how well an intersection or roadway performs based on a driver's perception. LOS designations include LOS A through LOS F. The designation of LOS A signifies a roadway or intersection operating at best, while LOS F signifies road operations at the worst. The Highway Capacity Manual (HCM) lists level of service criteria for unsignalized intersections and is presented in this report as Table 1. For unsignalized intersections, Level of Service is measured in terms of delay (in seconds). This measure is an attempt to quantify delay that includes travel time, driver discomfort, and fuel consumption. LOS for unsignalized intersections are only calculated for turning movements associated with stop or yield control and also for left turns on "un-controlled" major streets.

(Source: FDOT)

TABLE 1

LEVEL OF SERVICE AND DELAY FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	DESCRIPTION	DELAY RANGE (seconds/vehicle)
A	Little or no delay	≤ 10
B	Short Traffic Delays	>10 and ≤ 15
C	Average Traffic Delays	>15 and ≤ 25
D	Long Traffic Delays	>25 and ≤ 35
E	Very Long Traffic Delays	>35 and ≤ 50
F	Extreme Traffic Delays	>50

[^0]For signalized intersections, level of service is based upon control delay (in seconds) for various movements within the intersection. This delay is a measurement of driver discomfort, frustration, fuel consumption, lost travel time and is dependent on traffic signal cycle lengths, lengths of green phases, and the quality of traffic progression. This control delay includes deceleration/acceleration delay, queue move-up time, and stopped delay time. Generally, for most instances, LOS D is considered the upper limit of acceptable delay. Table 2 lists the level of service criteria for signalized intersections.

TABLE 2

LEVEL OF SERVICE	DESCRIPTION	CONTROL DELAY PER VEHICLE (seconds)
A	Operation with very low control delay. Progression is extremely favorable and most vehicles do not stop at all.	≤ 10.0
B	Generally good level of progression. More vehicles stop than with LOS A, causing higher levels of average delay.	10.1-20.0
C	Higher delays with individual cycle failures may begin at this level. Many vehicles may still pass through without stopping.	20.1-35.0
D	Approaching unstable flow. The influence of congestion becomes more noticeable. Many vehicles stop.	35.1-55.0
E	Considered the limit of acceptable delay. High delays indicated by poor progression, long cycle lengths, and high v / c ratios.	55.1-80.0
F	Unacceptable delay occurs. Progression is extremely poor with long cycle lengths and high v / c ratios.	>80.0

Source: Highway Capacity Manual

The signal timing information that was used for this study was given by Knox County Engineering and is shown in Appendix D. The intersection of George Williams Road and Millstone Lane operates as an actuated traffic signal and is not in coordination with any other traffic signals.

From the capacity calculations, the results from the existing peak hour traffic can be seen in Table 3 for the intersections. The intersections are shown with a LOS designation for the AM, PM, and PM school peak hours in the table. The signalized intersection of Millstone Lane at George Williams Road shows an intersection-wide result in Table 3. The unsignalized intersection of Millstone Lane at Freels Lane gives results based on the individual movements. Appendix E includes the worksheets from the capacity analyses for the existing traffic peak hours. For the existing intersections, the existing peak hour levels of service are shown to operate at a very good level during the AM and PM peak hours. The PM school peak hours also operated at a very good level notwithstanding the brief queue backups from the school.

TABLE 3
2016 PEAK HOUR LEVEL OF SERVICE \& DELAY - EXISTING

INTERSECTION	TRAFFIC CONTROL	APPROACH			LEVEL OF SERVICE			DELAY (seconds)		
					AM PEAK	SCHOOL PM PEAK	PM PEAK	AM PEAK	SCHOOL PM PEAK	PM PEAK
Millstone Lane at Freels Lane		Westbound Left/Thru			A	A	A	5.4	4.9	5.4
		Northbound Left/Right			A	A	A	8.4	8.4	8.4
	TRAFFIC CONTROL	V/C RATIO			LEVEL OF SERVICE			DELAY (seconds)		
INTERSECTION		AM PEAK	SCHOOL PM PEAK	PM PEAK	AM PEAK	SCHOOL PM PEAK	PM PEAK	AM PEAK	SCHOOL PM PEAK	PM PEAK
Millstone Lane at George Williams Road		0.68	0.35	0.23	C	B	A	21.3	13.4	9.2

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology
Note: Millstone Lane at Freels Lane was modeled as stop controlled for the Freels Lane approach

BACKGROUND TRAFFIC VOLUMES

Background traffic volumes are estimates of non-development related traffic for a particular horizon or design year. These background traffic volume estimates represent the future base condition for which the proposed study area is potentially subject to without the project being developed.

As previously stated, the build-out year for the proposed new residential subdivision was assumed to occur in 2021. Background traffic volumes for this project were calculated by applying an annual growth rate to the existing traffic volumes that are shown in Figure 3a and 3b. A background growth rate was determined by obtaining and analyzing the nearby traffic count in the area located on George Williams Road and provided by TDOT. This historical data is located in Appendix A. The traffic data at this count station indicates that the average daily traffic has fluctuated but has had positive growth over the past few years. Overall, the traffic count data has shown a more stabilized growth pattern of approximately 1.6% for the past 6 years.

Nonetheless, to insure a reasonable and conservative estimate for this study, a 3\% growth was used to take into account any future development in the area and possible rising travel volumes. The results of this growth rate application to the existing traffic volumes can be seen in Figure 4 a and 4 b for the year 2021. Figure 4 a shows the background traffic volumes during the PM school peak hour and Figure 4 b shows the background traffic volumes during the traditional AM and PM peak hours. (Note: The growth factor was not applied to the volumes associated with the turning movements into and out of the school driveway since the student population has stabilized and remained fairly constant over the past five years.)

The application of background traffic to the existing intersections did not change the LOS designations from the existing traffic analysis for the AM, PM, and PM school peak hours. Table 4 reports the LOS results and Appendix E contains the LOS worksheets for the background conditions. It is important to point out that these projected LOS designations for the intersections would potentially exist in the future even without the proposed residential subdivision being developed.

TABLE 4
2021 PEAK HOUR LEVEL OF SERVICE \& DELAY - BACKGROUND

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology
Note: Millstone Lane at Freels Lane was modeled as stop controlled for the Freels Lane approach

TRIP GENERATION

The estimated amount of traffic that will be generated by the proposed residential subdivision during peak hours was calculated based upon rates and equations for peak hour trips provided by Trip Generation Manual, 9th Edition, a publication of the Institute of Transportation Engineers (ITE). A generated trip is a single or one-direction vehicle movement that is either entering or exiting the study site. The Trip Generation Manual is the traditional and most-sourced resource for determining trip generation rates when traffic impact studies are produced. The Manual lists traffic generation data for a variety of land uses. The data from ITE for the land use below is shown in Appendix F. A summary of this information is presented in the following table:

TABLE 5
TRIP GENERATION FOR MILLSTONE SUBDIVISION

ITE LAND	LAND USE	UNITS	GENERATED DAILY		NERAT RAFFIC EAK H		PM		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
\#210	Single-Family Detached Housing	136 Lots	1,394	25\%	75\%		63\%	37\%	
				26	79	105	88	51	139
Total New Volume Site Trips			1,394	26	79	105	88	51	139

ITE Trip Generation Manual, 9th Edition

Based on these calculations, potentially it can be expected that 26 vehicles will enter the development, 79 will exit, for a total of 105 new generated trips during the AM Peak Hour in the year 2021. Similarly, potentially it can be expected that 88 vehicles will enter the development, 51 will exit, for a total of 139 new generated trips during the PM Peak Hour in the year 2021. The calculated trips generated for an average day are expected to be approximately 1,394 vehicles for the entire 136 lot development. These volumes are for the "traditional" time periods associated with rush hour traffic in the morning and afternoon.

The ITE Trip Generation Manual does not provide data for the generation of residential traffic during a "School Peak Hour" (i.e. school morning arrival and afternoon dismissal). As stated earlier, typically, peak school traffic in the morning coincides with the roadway morning peak hour since the arrival times at schools correspond with "traditional" rush hour morning
commutes. However, school peak traffic in the PM does not coincide with the "traditional" afternoon peak hour due to the earlier dismissal in the afternoon. To determine the residential site traffic generation for the development during the PM school peak hour (3:00-4:00 PM), several assumptions were made for the study.

According to the Knoxville/Knox County MPC Rezoning Report dated 7/6/2016 (included in Appendix G), this residential subdivision could potentially yield 126 school children. The schools affected by this would include A.L. Lotts Elementary School, Bearden High School, and the adjacent West Valley Middle School. A.L. Lotts Elementary School is located to the due south on Westland Drive and Bearden High School is located several miles further to the east. Also according to the MPC, this property lies within the Parental Responsibility Zone (PRZ) which would mean that bus service would not be provided to the students attending West Valley Middle School. According to the Knox County School system, the PRZ is defined as being 1.5 miles for grades $6-12(1.0$ mile for grades $\mathrm{K}-5)$ from the point where the students parcel is accessed and the point where the busses unload at the school.

To provide some means of conservatively estimating the traffic impacts at the studied intersections during the "School Peak Hour", this study assumed that the 126 school children would be evenly divided among the three schools, all the students would travel by passenger vehicle, fellow students and parents would not carpool, none of the students would walk from school, each student would be in a separate household, the parent would go to the school and return home within the peak hour, and that none of the children would be homeschooled. Based on those assumptions, it can be calculated that each school would generate an additional 42 trips leaving and 42 trips returning to the subdivision during the school peak hour (126 students $/ 3$ schools $=42$ trips per direction). This calculation would guarantee an extreme overestimation of trips generated and result in a very conservative analysis.

TRIP DISTRIBUTION \& ASSIGNMENT

Figure 5a shows the projected distribution for traffic entering/exiting the new residential subdivision during the future PM school peak hour at the existing intersections and at the new proposed subdivision road entrance/exit on Millstone Lane. The percentages shown only pertain to the new trips generated by the new proposed residential dwellings in the subdivision and Figure 5a shows the conservatively estimated generated trips associated with the school dismissal period. The projected trip distributions shown in Figure 5a for the future PM school peak hour are based on the location of the three schools serving the proposed subdivision.

Figure 5b shows the projected distribution for traffic entering/exiting the new residential subdivision during the future AM peak and the future PM "traditional" peak hour at the existing intersections and at the new proposed subdivision road entrance/exit on Millstone Lane. Access to other areas in the Knoxville region outside of George Williams Road will be served by South Peters Road, Fox Road, and Confederate Drive. The projected trip distributions of Figure 5 b are based on the existing traffic movements at the examined intersections and are also surmised from surrounding concentrations of development and population.

Figure 6a and 6b shows the Traffic Assignment of the computed trips that will be generated by the development and applied to the various intersection movements based on the assumed distribution of trips shown in Figure 5a and 5b.

PROJECTED TRAFFIC VOLUMES

Overall, several additive steps were taken to calculate the total future projected traffic volumes at the studied intersections when the residential subdivision is fully constructed, builtout, and occupied by 2021. The steps as described previously are illustrated below for clarity:

To calculate the total future projected traffic volumes at the intersections, application of the calculated peak hour traffic generated by the new proposed Millstone Subdivision were added to the 2021 background traffic volumes (shown in Figure 4a and 4b) in accordance to the predicted directional distributions and assignments (shown in Figure 5a, 5b, 6a, and 6b). This procedure was necessary to obtain the total projected traffic volumes at the time the development is fully built-out by the year 2021. Figure 7a shows the projected peak PM school hour volumes at the studied intersections for the year 2021. Figure 7b shows the "traditional" projected AM and PM peak hour volumes at the studied intersections for the year 2021.

Capacity analyses were once again undertaken to determine the projected Level of Service (LOS) for the studied intersections. Appendix E includes the worksheets for these capacity analyses. The projected capacity analyses include the new entrance, Millstone Lane at Road "A".

The results of the capacity calculations of the projected peak hour traffic can be seen in Table 6 for the intersections. For the intersections, the peak hour levels of service are once again shown to operate at very good levels during both the AM, PM, and PM school peak hours and did not substantially degrade from the previous capacity calculations.

TABLE 6
2021 PEAK HOUR LEVEL OF SERVICE \& DELAY - PROJECTED

Note: All analyses were calculated in Synchro 8 software and reported with HCM 2000 methodology
Note: Millstone Lane at Freels Lane was modeled as stop controlled for the Freels Lane approach

CONCLUSIONS AND RECOMMENDATIONS

The following is an overview of recommendations to mitigate the traffic impacts of the proposed development with the surrounding road system while attempting to achieve an acceptable level of traffic flow and safety.

1) Millstone Lane at Millstone Subdivision Road "A": From the capacity calculations, it has been shown (Table 6) that the traffic movements at the new entrance should operate very well during the AM, PM, and PM school peak periods when the development is complete and fully occupied.
1a) From the capacity calculations, the analysis shows that only a single exiting lane is required at the Millstone Subdivision entrance. Also, a separate left turn lane on Millstone Lane into the development is not required due to the low volumes. This was determined by using "Knox County's Access Control and Driveway Design Policy" for turn lane requirements. The Knox County turn lane policy worksheets are located in Appendix H . The projected low volumes fall under the threshold for requiring a separate left turn lane.

1b) It is recommended that the 20 mph speed limit currently posted on Millstone Lane be changed to $\mathbf{2 5} \mathbf{m p h}$ once Millstone Lane upgrades are completed. Based on a posted speed limit of 25 mph on Millstone Lane, the recommended intersection sight distance requirement is 250 feet. Using a rolling wheel, the measured sight distance at the new intersection on Millstone Lane looking west was found to be in excess of 750 feet. Sight distance at the new intersection on Millstone Lane looking east was measured to be at least a minimum of 300 feet. While not surveyed for this study, a sufficient sight distance is estimated to be available for vehicles exiting and entering from the new proposed main entrance. The site designer should ensure that these sight distance lengths are met and they should be labeled on the plans. A land surveyor should measure the sight distance available and verify these estimates. The overall required sight distance should be measured at the intersection at a minimum of 15 feet off of the edge of the roadway per Knox County subdivision regulations (Section 62-88).

1c) It is recommended that the main entrance approach at the intersection with Millstone Lane be designed and constructed with a 24 " white stop bar and with a Stop Sign (R1-1).

1d) Intersection sight distance at the new proposed main entrance at Millstone Lane must not be impacted by new signage, future landscaping or existing vegetation.
2) Millstone Subdivision Internal Drives: The current layout plans show 6 new roadways being constructed within the development labeled Road "A" thru Road "F" as shown on Figure 2a. Road "A" will be the connecting road to Millstone Lane.
2a) A Stop Sign (R1-1) should be installed at the Road "B", Road "C", Road "D", Road "E", and Road "F" approach intersections with Road "A".

2b) It is recommended that the internal speed limit for Millstone Subdivision be 25 mph and this speed limit be posted on signage in the new residential subdivision as required.

2c) Sight distance at all of the new internal " T " and four-way intersections must not be impacted by new signage, or future landscaping. For an assumed posted 25 mph speed for the internal development streets, the intersection sight distance requirement is 250 feet. The road layout designer should ensure that these sight distance lengths are met, maximized, and they should be labeled on the plans.

2d) Sidewalks should be installed within the development and have appropriate ADA compliant curbed ramps at all of the internal intersections corners.

2e) All road grade and intersection elements internally and externally should be designed to AASHTO, TDOT, and Knox County Engineering specifications and guidelines to ensure proper operation.

2f) Possible traffic calming measures might be needed for this development on Road "A". The Road "A" alignment within the development is fairly straight and has been designed to maximize the lots on the property within a fairly narrow land parcel. The narrowness of the land parcel hinders the potential to design curvature in the horizontal road alignment that could discourage excessive vehicular speeds. The possible need for traffic calming measures inside the project for Road "A" will need to be coordinated with the Knox County Engineering and Public Works during the detailed design phase. Speed humps could be considered to lower speeds through the subdivision.

3) Millstone Lane at Freels Lane:

3a) The intersection currently exists without any traffic control. Due to the volumes generated by the new development, a Stop Sign (R1-1) should be installed on the northbound approach on Freels Lane.

3b) From the capacity calculations, the analysis shows that an additional northbound turn lane at Freels Lane is not required. Also, a separate left turn lane on Millstone Lane onto Freels Lane is not required due to the low volumes. This was determined by using "Knox County's Access Control and Driveway Design Policy" for turn lane requirements. The Knox County turn lane policy worksheets are located in Appendix H. The projected low volumes fall under the threshold for requiring a separate left turn lane.
4) Millstone Lane at George Williams Road: From the capacity calculations, it has been shown (Table 6) that the LOS at the signalized intersection should be at a very good level during the AM, PM, and PM school peak periods when the development is constructed and occupied. The intersection was modeled under the projected future volumes and was shown to maintain a very good level of service.
4a) The signal timing of the intersection should be reviewed for possible greater efficiencies after the residential subdivision is constructed and occupied. However, the existing timing of the traffic signal used in this study showed very good operation even with the increased volumes of the proposed subdivision.

4b) During the projected AM peak hour when the proposed development peak traffic and school peak traffic coincide, the traffic volumes generated by the new development should not result in queues that would extend beyond the existing storage lane length capacities at the signalized intersection. To estimate these projected lengths, SimTraffic (Version 8) software was utilized which performs micro-simulation and animation of vehicular traffic and also calculates various vehicle parameters such as intersection queue lengths. The queue results from the SimTraffic software are located in Appendix I.

As stated in the Existing Traffic Volumes section of this report, this study did observe queues forming during the PM school peak hour around the West Valley Middle School dismissal time of 3:30 PM. The vehicle dismissal line queued from the front of the school back to the signalized intersection. This queue forms when parents and guardians arrive to pick up their children prior to the official dismissal at the school. This dismissal line backed up and spilled outside of the school property and eventually started forming queues along George Williams Road for the westbound left turn and southbound thru movements during the traffic counts. During the traffic count at the intersection, the following school traffic queue observations were made:

- the school dismissal queue line reached the signalized intersection at 3:22 PM
- queues began forming on the southbound thru/right turn lane and the westbound left turn lane by 3:24 PM
- the dismissal queue line within the school property began advancing away from the intersection at 3:36 PM
- all of the queues were dissipated within the intersection by 3:45 PM and allowed for free movement according to the traffic signal indications

During the approximate 20 minute period where the school dismissal queues impacted the signalized intersection, the southbound thru/right turn lane experienced queues which impacted and impeded vehicles turning right onto Millstone Lane. The other queues at the intersection during the 20 minute period did not appear to have any impact on the existing access to/from Millstone Lane. It could be expected that due to the queue spillage at the intersection from the
school dismissal, traffic movements for southbound right turns at the intersection going to the proposed subdivision on Millstone Lane and eastbound thru and right turn movements at the intersection going from the proposed subdivision on Millstone Lane could be impeded in the future. Efficiencies or changes to the school dismissal could potentially be made to reduce the queue lengths and eliminate spill back to the signalized intersection, however that analysis is beyond the scope of this study. Due to the brevity of the approximate 20 minute period in which school dismissal queues spill back into the intersection, construction of additional southbound and eastbound turn lanes are not warranted.
5) Millstone Lane: As stated earlier in the report, Millstone Lane was upgraded and widened to 12 foot lanes at its approach to the signalized intersection at George Williams Road when the middle school was constructed. A sidewalk on the south side of Millstone Lane extends 450 feet from the signalized intersection towards the west. Approximately 500 feet to the west of the traffic signal, Millstone Lane transitions to a narrower roadway with a total pavement width of 17 feet (8.5 foot travel lanes). West of the intersection at Freels Lane, Millstone Lane has a pavement width of approximately 13 feet (6.5 foot travel lanes).
5a) For this proposed residential subdivision, Millstone Lane should be widened from the existing curb, gutter, and sidewalk roadway section all the way to the proposed subdivision entrance at Road "A". The roadway widening distance from the end of the existing sidewalk to the proposed intersection of Road "A" at Millstone Lane is approximately 460 feet. The roadway widening should follow Knox County Engineering's requirement for local streets and should be 20 feet in width with a posted speed limit of $\mathbf{2 5} \mathbf{m p h}$. The MPC Rezoning Report (Appendix G) indicates that Millstone Lane has between 40 to 45 feet of right-of-way.

5b) Along with the road widening, the sidewalk that currently exists on the south side of Millstone Lane should be extended to the new residential subdivision entrance and tied to the internal subdivision sidewalk network. According to Knox County Subdivision Regulations, the inner edge of a sidewalk should not be closer than five feet to the street pavement and shall have a minimum width of 5 feet.

APPENDIX A
HISTORICAL TRAFFIC COUNT DATA

Traffic History

Traffic History reflects the Annual Average Daily Traffic (AADT) count along specific locations on Tennessee's road network

Download File:	KML (/Applications/Files /TrfcHist.kmz)	ESRI Geodatabase (/Applications/Files	ESRI Shapefile (/Applications/Files	Database Table (/Applications/Fil
Open	Google Earth	ArcGIS Explorer (http://www.esri.com/software /arcgis/explorer/index.html)		/TrfcHistDBF.zip)
With:	(https://earth.google.com/)			MS Access or Exct

© 2016-TDOT Applications

Traffic History

Station $\#$	County	Location	Route $\#$
000498	Knox	GEORGE WILLIAMS DR. - N. OF I-140 SW	05632

Record	Year	AADT
1	2015	2917
2	2014	2857
3	2013	2848
4	2012	2891
5	2011	2610
6	2010	2690

Historical Traffic Counts

Organization: TDOT
Station ID \#: 000498
Location: George Williams Road - East of Fox Road

2010-2015 \% Growth $=8.4 \%$
Annual Growth Rate $=\quad 1.6 \%$

APPENDIX B

MANUAL TRAFFIC COUNT DATA

TRAFFIC COUNT DATA

Major Street: Millstone Lane (EB-WB)
Minor Street: Freels Lane (NB)
Sunny

Traffic Control: None

Primary Movement: Vehicles

	Millstone Lane		Freels Lane		Millstone Lane			
$\begin{gathered} \hline \text { TIME } \\ \text { BEGIN } \end{gathered}$	WESTBOUND		NORTHBOUND		EASTBOUND		VEHICLE TOTAL	PEAK HOUR
	LT	THRU	LT	RT	THRU	RT		
7:00 AM	0	2	0	2	0	0	4	
7:15 AM	2	1	0	1	1	0	5	
7:30 AM	0	1	0	1	1	0	3	
7:45 AM	0	0	0	1	1	0	2	7:45 AM - 8:45 AM
8:00 AM	1	0	0	3	1	0	5	
8:15 AM	1	1	0	2	1	0	5	
8:30 AM	3	1	0	2	1	0	7	
8:45 AM	0	0	0	2	0	0	2	
TOTAL	7	6	0	14	6	0	33	
2:00 PM	1	0	0	1	1	0	3	
2:15 PM	0	1	0	0	2	0	3	
2:30 PM	0	2	0	0	0	0	2	
2:45 PM	1	2	0	0	2	0	5	
3:00 PM	1	1	0	0	4	0	6	3:00 PM - 4:00 PM
3:15 PM	4	2	0	2	0	0	8	
3:30 PM	0	1	0	1	1	0	3	
3:45 PM	2	1	0	0	2	0	5	
4:00 PM	1	0	0	0	1	0	2	
4:15 PM	0	0	0	1	0	0	1	
4:30 PM	1	0	0	2	2	0	5	
4:45 PM	2	0	0	0	0	0	2	4:45 PM - 5:45 PM
5:00 PM	1	1	0	1	0	1	4	
5:15 PM	0	0	0	1	2	0	3	
5:30 PM	3	1	0	2	0	0	6	
5:45 PM	1	0	0	0	0	0	1	
TOTAL	18	12	0	11	17	1	59	

2016 AM Peak Hour 7:45 AM - 8:45 AM

TIME	WESTBOUND		NORTHBOUND		EASTBOUND	
BEGIN	LT	THRU	LT	RT	THRU	RT
7:45 AM	0	0	0	1	1	0
8:00 AM	1	0	0	3	1	0
8:15 AM	1	1	0	2	1	0
8:30 AM	3	1	0	2	1	0
TOTAL	5	2	0	8	4	0
PHF	0.42	0.50	-	0.67	1.00	-

2016 PM School Peak Hour 3:00 PM - 4:00 PM

TIME BEGIN	WESTBOUND		NORTHBOUND		EASTBOUND	
	LT	THRU	LT	RT	THRU	RT
3:00 PM	1	1	0	0	4	0
3:15 PM	4	2	0	2	0	0
3:30 PM	0	1	0	1	1	0
3:45 PM	2	1	0	0	2	0
TOTAL	7	5	0	3	7	0
PHF	0.44	0.63	-	0.38	0.44	-

2016 PM Peak Hour 4:45 PM - 5:45 PM

TIME	WESTBOUND		NORTHBOUND		EASTBOUND	
BEGIN	LT	THRU	LT	RT	THRU	RT
4:45 PM	2	0	0	0	0	0
5:00 PM	1	1	0	1	0	1
5:15 PM	0	0	0	1	2	0
5:30 PM	3	1	0	2	0	0
TOTAL	6	2	0	4	2	1
PHF	0.50	0.50	-	0.50	0.25	0.25

Major Street: George Williams Road (EB-WB)

2016 AM Peak Hour
7:30 AM - 8:30 AM

	George Williams Road			George Williams Road			W. Valley MS Driveway			Millstone Lane		
TIME	SOUTHBOUND			WESTBOUND			NORTHBOUND			EASTBOUND		
BEGIN	LT	THRU	RT									
7:30 AM	40	50	1	86	1	23	0	55	90	2	4	0
7:45 AM	33	82	1	118	1	14	0	48	103	2	1	0
8:00 AM	23	64	1	104	2	13	0	56	126	5	1	1
8:15 AM	20	18	0	45	2	10	0	31	65	5	0	0
TOTAL	116	214	3	353	6	60	0	190	384	14	6	1
PHF	0.73	0.65	0.75	0.75	0.75	0.65	-	0.85	0.76	0.70	0.38	0.25

2016 PM School Peak Hour
3:00 PM - 4:00 PM

	George Williams Road			George Williams Road			W. Valley MS Driveway			Millstone Lane		
TIME	SOUTHBOUND			WESTBOUND			NORTHBOUND			EASTBOUND		
BEGIN	LT	THRU	RT									
3:00 PM	18	24	2	45	1	12	0	1	7	1	1	0
3:15 PM	25	5	0	29	8	13	0	3	4	0	6	0
3:30 PM	18	19	2	26	2	25	0	37	109	2	6	0
3:45 PM	24	13	1	25	2	34	0	30	60	2	2	0
TOTAL	85	61	5	125	13	84	0	71	180	5	15	0
PHF	0.85	0.64	0.63	0.69	0.41	0.62	-	0.48	0.41	0.63	0.63	-

2016 PM Peak Hour

4:45 PM - 5:45 PM

	George Williams Road			George Williams Road			W. Valley MS Driveway			Millstone Lane		
TIME	SOUTHBOUND			WESTBOUND			NORTHBOUND			EASTBOUND		
BEGIN	LT	THRU	RT									
4:45 PM	31	9	0	11	2	22	0	0	2	1	3	0
5:00 PM	34	6	2	8	2	26	0	9	21	0	2	0
5:15 PM	39	3	1	4	1	37	0	4	7	2	0	0
5:30 PM	44	1	4	2	1	25	0	1	0	1	0	0
TOTAL	148	19	7	25	6	110	0	14	30	4	5	0
PHF	0.84	0.53	0.44	0.57	0.75	0.74	-	0.39	0.36	0.50	0.42	-

APPENDIX C

KNOX COUNTY SCHOOL SYSTEM INFORMATION EMAILS

Mr. Jacks,

There are 135 students residing within the parent responsibility zone (1.5 miles from the point where the students parcel is accessed and the point where the buses unload behind the school). We have no information related to the number of students that walk or bike to and from school.

The student enrollment for the last 5 years at West Valley Middle School is listed below:
$2011 \quad 1162$

20121141

20131153

20141229

20151215

20161192

The number of students projected to reside within the West Valley Middle School is listed below:

20171149
20181182

20191160

20201120

Dr. Rick Grubb
Knox County Schools
Director
Transportation \& Enrollment
912 S Gay St
Knoxville, TN 37902
865-594-1532

From: Russ Oaks
Sent: Friday, July 15, 2016 8:32:49 AM
To: RICK GRUBB
Subject: FW: School Information Request for Traffic Study
Rick - can you answer the questions below re: West Valley Middle? Some of it is probably in the Brailsford report.

Russ Oaks
Chief Operating Officer
Knox County Schools
865-594-4488

From: DOUGLAS DILLINGHAM
Sent: Thursday, July 14, 2016 8:31 PM
To: Russ Oaks russ.oaks@knoxschools.org
Subject: Fwd: School Information Request for Traffic Study

Russ,

It appears that the majority of the information that Robert is requesting this time probably needs to come from Rick or Justin.

Thanks,
Doug
Douglas L. Dillingham, Director
Facilities and Construction
Knox County Schools
Office 865-594-1558
Cell. 865-740-7118

Begin forwarded message:
From: "Robert Jacks" ajaxengineering@gmail.com
Date: July 14, 2016 at 7:25:51 PM EDT
To: "'DOUGLAS DILLINGHAM'" douglas.dillingham@knoxschools.org
Subject: RE: School Information Request for Traffic Study
Doug,

You might be on vacation or might have missed this email below from earlier this week, but if you get the chance, I would appreciate it if you could help me out on these questions.

Thanks,

Robert

From: Robert Jacks [mailto:ajaxengineering@gmail.com]
Sent: Monday, July 11, 2016 1:54 PM
To: 'DOUGLAS DILLINGHAM'
Subject: RE: School Information Request for Traffic Study

Doug,

Now that I am further in the traffic study, could you help me with these questions as well?
a) Do you know if any of the student population walks to school regularly?
b) Has the enrollment at the school stabilized the past few years? Do you have any enrollment figures from the past few years (5 years)?
c) Outside of the development that I am currently preparing a traffic study for, do you have any expectations of future student growth? Is the school at capacity currently?

Once again, I appreciate your help on this. It really helps me get a grasp on the past and future traffic growth in the area.

Robert

From: DOUGLAS DILLINGHAM [mailto:douglas.dillingham@knoxschools.org]
Sent: Thursday, J uly 07, 2016 10:32 AM
To: Robert Jacks
Cc: Russ Oaks; DAVID CLAXTON; MELISSA TINDELL
Subject: RE: School Information Request for Traffic Study
Robert,
Thank you for your request. Based on our records, please find the answers to your questions listed below.
a) West Valley Middle School was opened in 1999.
b) The current enrollment is approximately 1200 students.
c) There are 12 busses that operate both morning and afternoon.
d) Ridership records indicate that approximately 425 students ride in the morning and 600 in the afternoon. We also have 4 special education busses that transport 14 students both morning and afternoon.

Please let me know if you have further questions or need additional information.
Thanks,
Doug

Douglas L. Dillingham, Director
Facilities and Construction Department
Knox County Schools
Office: 865-594-1825
Cell: 865-740-7118

From: Robert Jacks [mailto:ajaxengineering@gmail.com]
Sent: Thursday, July 07, 2016 9:45 AM
To: DOUGLAS DILLINGHAM douglas.dillingham@knoxschools.org
Subject: School Information Request for Traffic Study

Mr. Dillingham,

As Principal Claxton recommended, I would like to ask you the questions I originally posed to him in regards to West Valley Middle School. Could you assist me in answering these questions? This is being done in preparation of a traffic impact study for a potential subdivision located near West Valley Middle School.
a) The year the school was established (wasn't it around 2000 or so?)
b) The amount of students that are enrolled at West Valley
c) The number of busses that operate at the school in the morning and afternoon
d) Rough estimation of the number of students who ride on the bus versus car pickup

If you need to ask me questions about this request feel free to call or email me.

Thank you,

Robert Jacks, PE

AdAX Engineering, LLC

11812 Black Road
Knoxville, Tennessee 37932
Phone (865) 556-0042
www.ajaxengineeringllc.com

From: DAVID CLAXTON [mailto:david.claxton@knoxschools.org]
Sent: Wednesday, July 06, 2016 5:18 PM
To: Robert Jacks
Cc: DOUGLAS DILLINGHAM; MELISSA TINDELL; BETH HOWARD; ROBIN CURRY
Subject: Re: School Information Request for Traffic Study

Mr. Jacks,

Good day to you and, after some digging, I'm happy to get you connected to the person with KCS that can assist with your questions. Doug Dillingham is the person that can best help. I am copying him on this email, but feel free to contact him directly at your convenience.

Sincerely,

David Claxton

Sent from my iPhone
On Jul 6, 2016, at 9:59 AM, Robert Jacks ajaxengineering@gmail.com wrote:
Mr. Claxton,

I am a local traffic/civil engineer that is currently in the process of developing a traffic impact study for a potential new subdivision located close by to your
school. As part of my study, I would like to include some general information in the report about West Valley Middle School to describe and examine the surrounding area. I have tried locating some general information on the Knox County Schools website, but I have not been able to find any information that I was hoping to find.

If this email and questions should be directed to someone else, please let me know. Specifically, I was hoping to find out the following:
e) The year the school was established (wasn't it around 2000 or so?)
f) The amount of students that are enrolled at West Valley
g) The number of busses that operate at the school in the morning and afternoon
h) Rough estimation of the number of students who ride on the bus versus car pickup

If you could answer these questions, I would greatly appreciate it.
If you need to ask me questions about this request feel free to call or email me.

Thank you,

Robert Jacks, PE

Adax Engineering, LLC
11812 Black Road
Knoxville, Tennessee 37932
Phone (865) 556-0042
www.ajaxengineeringllc.com

APPENDIX D

TRAFFIC SIGNAL INFORMATION

LOCAL CONTROLLER PROGRAMMING

Intersection:
Timing changed: 2/18/11
Peek 3000

TIME BY PHASE (SEC) \& FUNCTIONS

PHASE	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
MOVEMENTS	SBLT	NB		WB		SB		EB
INITIAL	8	15		10		15		10
PASSAGE	2.5	3		2.5		3		2.5
YELLOW	4	4		4		4		4
RED CLEAR	1.5	2		1.5		2		1.5
WALK		8		8		8		8
PED CLEAR		12		12		12		12
MAX 1	15	40		40		40		40
MAX 2	0	0		0		0		0
RECALL	MIN					MIN		

APPENDIX E

CAPACITY ANALYSES -

 HCM WORKSHEETS (SYNCHRO 8)

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

	*	\rightarrow		\checkmark		4	4	\dagger	\%	(\dagger	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		*	4	「		\uparrow	「'	${ }^{1}$	\uparrow	
Volume (vph)	6	17	0	125	15	97	0	71	180	98	61	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		0\%			0\%			3\%			3\%	
Total Lost time (s)	5.5	5.5		5.5	5.5	5.5		6.0	6.0	5.5	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Frt	1.00	1.00		1.00	1.00	0.85		1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00		1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1900		1805	1900	1615		1872	1591	1778	1845	
Flt Permitted	0.73	1.00		0.74	1.00	1.00		1.00	1.00	0.49	1.00	
Satd. Flow (perm)	1393	1900		1405	1900	1615		1872	1591	911	1845	
Peak-hour factor, PHF	0.63	0.63	0.92	0.69	0.41	0.62	0.92	0.48	0.41	0.85	0.64	0.63
Adj. Flow (vph)	10	27	0	181	37	156	0	148	439	115	95	10
RTOR Reduction (vph)	0	0	0	0	0	95	0	0	312	0	4	0
Lane Group Flow (vph)	10	27	0	181	37	61	0	148	127	115	101	0
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Perm	NA		Perm	NA	pm+ov		NA	Perm	pm+pt	NA	
Protected Phases		8			4	1		2		1	6	
Permitted Phases	8			4		4	2		2	6		
Actuated Green, G (s)	12.2	12.2		12.2	12.2	20.4		15.2	15.2	28.9	28.9	
Effective Green, g (s)	12.2	12.2		12.2	12.2	20.4		15.2	15.2	28.9	28.9	
Actuated g/C Ratio	0.23	0.23		0.23	0.23	0.39		0.29	0.29	0.55	0.55	
Clearance Time (s)	5.5	5.5		5.5	5.5	5.5		6.0	6.0	5.5	6.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5		3.0	3.0	2.5	3.0	
Lane Grp Cap (vph)	323	440		325	440	795		540	459	635	1013	
v/s Ratio Prot		0.01			0.02	0.01		0.08		c0.03	0.05	
v/s Ratio Perm	0.01			c0.13		0.03			c0.08	0.07		
v/c Ratio	0.03	0.06		0.56	0.08	0.08		0.27	0.28	0.18	0.10	
Uniform Delay, d1	15.6	15.7		17.8	15.8	10.2		14.4	14.5	6.0	5.6	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.0	0.0		1.7	0.1	0.0		0.3	0.3	0.1	0.0	
Delay (s)	15.7	15.8		19.5	15.9	10.2		14.7	14.8	6.1	5.7	
Level of Service	B	B		B	B	B		B	B	A	A	
Approach Delay (s)		15.7			15.2			14.8			5.9	
Approach LOS		B			B			B			A	
Intersection Summary												
HCM 2000 Control Delay			13.3	HCM 2000 Level of Service					B			
HCM 2000 Volume to Capacity ratio			0.36	HCM 2000 Level of Service								
Actuated Cycle Length (s)			52.6		of los	time (s)			17.0			
Intersection Capacity Utilization			47.9\%		Level	of Service			A			
Analysis Period (min)			15									
C Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

HCM Signalized Intersection Capacity Analysis
3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road
11/11/2016

	*	\rightarrow	$\stackrel{7}{7}$	\checkmark		4	4	4	p	(\dagger	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		*	4	「		4	「	${ }^{1}$	\uparrow	
Volume (vph)	6	101	52	125	99	97	42	71	180	98	61	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (\%)		0\%			0\%			3\%			3\%	
Total Lost time (s)	5.5	5.5		5.5	5.5	5.5		6.0	6.0	5.5	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Frt	1.00	0.96		1.00	1.00	0.85		1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00	1.00		0.99	1.00	0.95	1.00	
Satd. Flow (prot)	1805	1825		1805	1900	1615		1850	1591	1778	1845	
Flt Permitted	0.57	1.00		0.61	1.00	1.00		0.90	1.00	0.47	1.00	
Satd. Flow (perm)	1085	1825		1168	1900	1615		1686	1591	885	1845	
Peak-hour factor, PHF	0.63	0.63	0.92	0.69	0.41	0.62	0.92	0.48	0.41	0.85	0.64	0.63
Adj. Flow (vph)	10	160	57	181	241	156	46	148	439	115	95	10
RTOR Reduction (vph)	0	16	0	0	0	92	0	0	313	0	4	0
Lane Group Flow (vph)	10	201	0	181	241	64	0	194	126	115	101	0
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Perm	NA		Perm	NA	pm+ov	Perm	NA	Perm	pm+pt	NA	
Protected Phases		8			4	1		2		1	6	
Permitted Phases	8			4		4	2		2	6		
Actuated Green, G (s)	14.5	14.5		14.5	14.5	22.9		16.0	16.0	29.9	29.9	
Effective Green, g (s)	14.5	14.5		14.5	14.5	22.9		16.0	16.0	29.9	29.9	
Actuated g/C Ratio	0.26	0.26		0.26	0.26	0.41		0.29	0.29	0.53	0.53	
Clearance Time (s)	5.5	5.5		5.5	5.5	5.5		6.0	6.0	5.5	6.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5		3.0	3.0	2.5	3.0	
Lane Grp Cap (vph)	281	473		302	492	820		482	455	607	986	
v/s Ratio Prot		0.11			0.13	0.01				c0.03	0.05	
v/s Ratio Perm	0.01			c0.15		0.03		c0.12	0.08	0.07		
v/c Ratio	0.04	0.43		0.60	0.49	0.08		0.40	0.28	0.19	0.10	
Uniform Delay, d1	15.5	17.2		18.2	17.6	10.1		16.1	15.5	6.8	6.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.0	0.5		2.7	0.6	0.0		0.6	0.3	0.1	0.0	
Delay (s)	15.5	17.7		20.8	18.1	10.1		16.6	15.8	6.9	6.4	
Level of Service	B	B		C	B	B		B	B	A	A	
Approach Delay (s)		17.6			16.8			16.1			6.7	
Approach LOS		B			B			B			A	
Intersection Summary												
HCM 2000 Control Delay			15.3	HCM 2000 Level of Service					B			
HCM 2000 Volume to Capacity ratio			0.44	HCM 2000 Level of Senice								
Actuated Cycle Length (s)			55.9		of los	time (s)			17.0			
Intersection Capacity Utilization			48.1\%		Level	of Service			A			
Analysis Period (min)			15									
C Critical Lane Group												

APPENDIX F

ITE TRIP GENERATION RATES

Land Use: 210 Single-Family Detached Housing

Description

Single-family detached housing includes all single-family detached homes on individual lots. A typical site surveyed is a suburban subdivision.

Additional Data

The number of vehicles and residents had a high correlation with average weekday vehicle trip ends. The use of these variables was limited, however, because the number of vehicles and residents was often difficult to obtain or predict. The number of dwelling units was generally used as the independent variable of choice because it was usually readily available, easy to project and had a high correlation with average weekday vehicle trip ends.

This land use included data from a wide variety of units with different sizes, price ranges, locations and ages. Consequently, there was a wide variation in trips generated within this category. Other factors, such as geographic location and type of adjacent and nearby development, may also have had an effect on the site trip generation.

Single-family detached units had the highest trip generation rate per dwelling unit of ail residential uses because they were the largest units in size and had more residents and more vehicles per unit than other residential land uses; they were generally located farther away from shopping centers, employment areas and other trip attractors than other residential land uses; and they generally had fewer alternative modes of transportation available because they were typically not as concentrated as other residential land uses.

The peak hour of the generator typically coincided with the peak hour of the adjacent street traffic.
The sites were surveyed between the late 1960s and the 2000s throughout the United States and Canada.

Source Numbers

$1,4,5,6,7,8,11,12,13,14,16,19,20,21,26,34,35,36,38,40,71,72,84,91,98,100,105$,
$108,110,114,117,119,157,167,177,187,192,207,211,246,275,283,293,300,319,320,357$,
$384,435,550,552,579,598,601,603,611,614,637,711,735$

Single-Family Detached Housing

(210)

Average Vehicle Trip Ends vs: Dwelling Units
 On a: Weekday

Number of Studies: 355
Avg. Number of Dwelling Units: 198
Directional Distribution: 50\% entering, 50\% exiting
Trip Generation per Dwelling Unit

Average Rate		Range of Rates	Standard Deviation
9.52	$4.31-21.85$	3.70	

Data Plot and Equation

Single-Family Detached Housing
 (210)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 292
Avg. Number of Dwelling Units: 194
Directional Distribution: 25% entering, 75% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.75	$0.33-2.27$	0.90

Data Plot and Equation

Single-Family Detached Housing
 (210)

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 321
Avg. Number of Dwelling Units: 207
Directional Distribution: 63\% entering, 37\% exiting
Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
1.00	$0.42-2.98$	1.05

Data Plot and Equation

APPENDIX G

MPC REZONING REPORT

- APPLICANT:

OWNER(S):

TAX ID NUMBER:
JURISDICTION:
STREET ADDRESS:

- LOCATION:
- APPX. SIZE OF TRACT:

SECTOR PLAN:
GROWTH POLICY PLAN:
ACCESSIBILITY:

UTILITIES:

WATERSHED:

S \& E PROPERTIES

Eric Moseley

132 04909, 04917 \& 04918
View map on KGIS
County Commission District 5
825 Freels Ln
Southeast side Millstone Ln., west side Freels Ln.
40.34 acres

Southwest County
Planned Growth Area
Access is via Millstone Ln., a local street with 13-35' of pavement width within 40-45' of right-of-way, and Freels Ln., a local street with 14' of pavement within 40-50' of right-of-way.
Water Source: First Knox Utility District
Sewer Source: First Knox Utility District
Sinking Creek and Ten Mile Creek

- PRESENT ZONING:
- ZONING REQUESTED:
- EXISTING LAND USE:
- PROPOSED USE:

DENSITY PROPOSED:
EXTENSION OF ZONE:
HISTORY OF ZONING:

SURROUNDING LAND USE AND ZONING:

A (Agricultural)

PR (Planned Residential)

Residence and vacant land

Residential development

5 dulac

No
The PR zoning to the northeast was approved in the 70's and 80's and are developed with densities approximately 7-11 du/ac.
North: Large lot residential / A (Agricultural)
South: Large and small lot residential, Railroad right-of-way, Golf course, / A (Agricultural), OS-1 (Open Space Preservation), PR 1-3 du/ac (Planned Residential)
East: Large lot residential, West Valley Middle School / A (Agricultural)
West: Large lot residential / A (Agricultural)
NEIGHBORHOOD CONTEXT:

Adjacent development consists of large lot single-family residences, and attached and detached residences and apartments to the north. West Valley Middle School is immediately to the east and S. Peters Rd. is less than a mile away.

STAFF RECOMMENDATION:

- RECOMMEND that County Commission APPROVE PR (Planned Residential) zoning at a density of up to 3 dulac. (Applicant requested 5 du/ac.)
PR zoning at the recommended density is consistent with the sector plan designation and will allow residential uses compatible with the surrounding land uses. The site is relatively flat with few environmental constraints

| AGENDA ITEM \#: $31 \quad$ FILE \#: 7-D-16-RZ | 7/6/2016 12:20 PM | MIKE REYNOLDS |
| :--- | :--- | :--- | :--- | :--- |

and is within a short walking distance to West Valley Middle School.

COMMENTS:

The subject property is currently zoned Agricultural (A), which allows houses on 1 acre lots, the same as the properties in the immediate vicinity. There are lots approximately 1 acre in size at the end of Freels Ln. The properties along Millstone Ln., west of Freels Ln., are also zoned Agricultural, however, the lots are 2 acres in size or greater, which is consistent with the Estate (E) zone district which requires a minimum lot size of 2 acres. The properties along Millstone Ln., east of Freels Ln., are zoned Planned Residential (PR) and have lot sizes of approximately 5,000 square feet. This subdivision was developed at approximately 6 dwelling units per acre. Millstone Lane is a local road that is improved with a sidewalk on the east end near the entrance to West Valley Middle School. The western portion of Millstone Ln. has a pavement width of approximately 14' with no sidewalk. If the PR zoning is approved at either the recommended or requested density, road improvements to a portion of Millstone Ln. and Freels Ln. will most likely be needed, including a sidewalk to connect to the existing sidewalk along Millstone Ln. A traffic study is typically required for residential developments that generate 750 trips per day or more, which if the site is developed at approximately 2 dwelling units per acre or more, a traffic study would be required. If the PR zoning is approved at the recommended 3 dwelling units per acre, the average lot size would be approximately $10,000-12,000$ square feet, however, the lot sizes could be smaller if portions of the site are left undeveloped or if the lot sizes vary in size. This property is within the parental responsibility zone (PRZ) of West Valley Middle School, where school bus service is not provided. Because of this, sidewalks will be expected within the subdivision and as an improvement installed by the developer along Millstone Ln. and/or Freels Ln. from the neighborhood entrance to the existing sidewalk along Millstone Ln. In addition, the development should maintain the required 35' peripheral boundary when submitting a development plan for use-on-review approval and should include an amenity area for the development. The northwestern portion of the subject property has frontage along an improved portion of the Millstone Ln. right-of-way. There should not be full access to this portion of Millstone Ln. from a subdivision. Access to the western end of Millstone Ln. should be restricted to lots that have a size consistent with other lots along this portion of Millstone Lane.

REZONING REQUIREMENTS FROM ZONING ORDINANCES (must meet all of these):
THE PROPOSED AMENDMENT SHALL BE NECESSARY BECAUSE OF SUBSTANTIALLY CHANGED OR CHANGING CONDITIONS IN THE AREA AND DISTRICTS AFFECTED, OR IN THE CITY/COUNTY GENERALLY:

1. This site is accessed from Millstone Ln. and Freely Ln., narrow local streets, and is adjacent to large lot residential developed under the A zoning and is in the vicinity of other small lot residential developed under the PR zoning.
2. The property is located in the Planned Growth Area on the Growth Policy Plan and is proposed for low density residential uses on the sector plan, consistent with the proposal.
3. The proposed PR zoning at the recommended density of $3 \mathrm{du} / \mathrm{ac}$, is not compatible with the scale and intensity of the immediate adjacent properties if developed with consistent lot sizes, but is compatible with the scale and intensity of the other nearby development and zoning. If the zoning is approved as recommended, the size and width of lots that are on the exterior boundary of the development should be more consistent with the surrounding properties. Landscape screening within the peripheral setback will also need to be considered. 4. The site is appropriate to be developed under PR zoning at the recommended density because it is within the recommended density range in the Low Density Residential sector plan designation (max. 5 dwelling units per acre).
4. The site is within close proximity to a public middle school.
5. The PR zone requires use on review approval of a development plan by MPC prior to construction. This will provide the opportunity for staff to review the plan and address issues such as road improvements, traffic circulation, lot layout, recreational amenities, drainage, types of units and other potential development concerns. It will also give the opportunity for public comment at the MPC meeting.

THE PROPOSED AMENDMENT SHALL BE CONSISTENT WITH THE INTENT AND PURPOSE OF THE APPLICABLE ZONING ORDINANCE:

1. PR zoning is intended to provide optional methods of land development which encourage more imaginative solutions to environmental design problems. Residential areas thus established would be characterized by a unified building and site development program, open space for recreation and provision for commercial, religious, educational and cultural facilities which are integrated with the total project by unified architectural and open space treatment.
2. Additionally, the zoning states that each development shall be compatible with the surrounding or adjacent zones. Such compatibility shall be determined by the Planning Commission by review of development plans. This could include varying the lot sizes within the development so that the lots along the exterior boundary of the development are more consistent with adjacent lots than those in the interior of the development. Staff maintains that PR is an appropriate zone for this development.

THE PROPOSED AMENDMENT SHALL NOT ADVERSELY AFFECT ANY OTHER PART OF THE COUNTY,

AGENDA ITEM \#: 31	FILE \#: 7-D-16-RZ	$7 / 6 / 2016$ 12:20 PM	MIKE REYNOLDS	PAGE \#:	31-2

NOR SHALL ANY DIRECT OR INDIRECT ADVERSE EFFECTS RESULT FROM SUCH AMENDMENT:

1. At the requested density of up to 5 du/ac on the 40.34 acres, up to 201 dwelling units could be proposed for the site. At the recommended density of up to 3 du/ac, up to 121 dwelling units could be proposed for the site. 2. The proposed PR zoning at the recommended density of 3 du/ac, if developed with consistent lot sizes, is not compatible with the scale and intensity of the immediate adjacent properties and zoning, but is compatible with the scale and intensity of the other nearby development and zoning. If the zoning is approved as recommended, the size and width of lots that are on the exterior boundary of the development should be more consistent with the surrounding properties. Landscape screening within the peripheral setback will also need to be considered.
2. The PR zoning district has provisions for preservation of open space and providing recreational amenities as part of the development plan. The applicant will be expected to demonstrate how these provisions are met as part of the required development plan review.
3. Public water and sanitary sewer utilities are available to serve the site.

THE PROPOSED AMENDMENT SHALL BE CONSISTENT WITH AND NOT IN CONFLICT WITH THE GENERAL PLAN OF KNOXVILLE AND KNOX COUNTY, INCLUDING ANY OF ITS ELEMENTS, MAJOR ROAD PLAN, LAND USE PLAN, COMMUNITY FACILITIES PLAN, AND OTHERS:

1. The Southwest County Sector Plan proposes low density residential uses for this property, consistent with the requested PR zoning at up to 5 du/ac.
2. The site is located within the Planned Growth Area on the Knoxville-Knox County-Farragut Growth Policy Plan map.
3. The site is appropriate to be developed under PR zoning at the recommended density because it is within the recommended density range in the Low Density Residential sector plan designation (max. 5 dwelling units per acre).
4. The northwestern portion of the site has 11.3 acres within the hillside protection area, however, it primarily consists of low to moderate slopes with only .52 acres being over 25 percent slope.
5. Approval of this request could lead to future requests for PR zoning in this area, consistent with the sector plan's low density residential proposal for the area.

Upon final approval of the rezoning, the developer will be required to submit a development plan for MPC consideration of use on review approval prior to the property's development. The plan will show the property's proposed development, landscaping and street network and will also identify the types of residential units that may be constructed. Grading and drainage plans may also be required at this stage, if deemed necessary by Knox County Engineering and MPC staff.

ESTIMATED TRAFFIC IMPACT: 1970 (average daily vehicle trips)
Average Daily Vehicle Trips are computed using national average trip rates reported in the latest edition of "Trip Generation," published by the Institute of Transportation Engineers. Average Daily Vehicle Trips represent the total number of trips that a particular land use can be expected to generate during a 24 -hour day (Monday through Friday), with a "trip" counted each time a vehicle enters or exits a proposed development.

ESTIMATED STUDENT YIELD: 126 (public and private school children, ages 5-18 years)

Schools affected by this proposal: A. L. Lotts Elementary, West Valley Middle, and Bearden High.

- School-age population (ages 5-18) is estimated by MPC using data from a variety of sources.
- While most children will attend public schools, the estimate includes population that may be home-schooled, attend private schools at various stages of enrollment, or drop out of the public system.
- Students are assigned to schools based on current attendance zones as determined by Knox County Schools. Zone boundaries are subject to change.
- Estimates presume full build-out of the proposed development. Build-out is subject to market forces, and timing varies widely from proposal to proposal.
- Student yields from new development do not reflect a net addition of children in schools. Additions occur incrementally over the build-out period. New students may replace current population that ages through the system or moves from the attendance zone.
- School capacities are subject to change by Knox County Schools through building additions, curriculum or scheduling changes, or amendments to attendance zone boundaries.

If approved, this item will be forwarded to Knox County Commission for action on 8/22/2016. If denied, MPC's action is final, unless the action to deny is appealed to Knox County Commission. The date of the appeal hearing will depend on when the appeal application is filed. Appellants have 30 days to appeal an MPC decision in the County.

7-D-16-RZ Slope Analysis

Betty Jo Mahan bettyjo.mahan@knoxmpc.org
by Google
[MPC Comment] Opposition to Proposed Rezoning Request for Millstone Ln 7-D-16RZ
1 message
Campbell, Michael MCampbell@scrippsnetworks.com
Tue, Jul 5, 2016 at 1:25 PM
Reply-To: mcampbell@scrippsnetworks.com
To: "commission@knoxmpc.org" commission@knoxmpc.org

Good morning MPC:

As a concerned neighbor and representative of the residents for Millstone Ln, Freels Ln and Zoya Ln we are opposed to the proposed rezoning of the properties in and around Millstone Ln (7-D-16-RZ). Formal opposition documentation will be coming shortly but we are opposed based on the following reasons:

1. Knox County Zoning Ordinance Section 4.10.16-Be compatible with the character of the neighborhood including the size and location of buildings in the vicinity.
2. Knox County Zoning Ordinance Section 4.10.17-The use will not significantly injure the value of adjacent property by noise, lights, fumes, odors, vibration, traffic congestion or other impacts which may detract from the immediate environment.
3. Knox County Zoning Ordinance Section 4.10.18 - The use is not of a nature or so located as to draw substantial additional traffic through residential streets.
4. Negative financial impact said rezoning will have on existing neighborhood residences.

Please note that we will be attending the July $14^{\text {th }}$ rezoning meeting and will be presenting our position of opposition at that time.

Thank you in advance for your consideration of this matter.

Sincerely,

Michael Campbell,MBA,MS

Michael Campbell, MBA, MS | Director, Project Management | Business Process Management
Office: 865-560-4284 | Cell: 865-414-8660 | Skype: souppmp

SCRIPPS NETWORKS INTERACTIVE | the Leader in Lifestyle | scrippsnetworksinteractive.com
HGTV | Food Network | Travel Channel | DIY Network | Cooking Channel | Great American Country | TVN | Fine Living | Asian Food Channel

APPENDIX H

KNOX COUNTY LEFT \& RIGHT TURN LANE VOLUME THRESHOLD WORKSHEETS

TABLE 4A

LEFT-TURN LANE VOLUME THRESHOLDS

 FOR TWO-LANE ROADWAYS WITH A PREVARLING SPEED OF 35 MPH OR LESS(If the Ieft-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING VOLUME	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *					
	100-149	150-199	200-249	250-299	300-349	350-399
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{aligned} & 300 \\ & 245 \end{aligned}$	$\begin{aligned} & 235 \\ & 200 \end{aligned}$	$\begin{aligned} & 185 \\ & 160 \end{aligned}$	$\begin{aligned} & 145 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	$\begin{aligned} & 205 \\ & 175 \end{aligned}$	$\begin{aligned} & 170 \\ & 150 \end{aligned}$	$\begin{aligned} & 140 \\ & 125 \end{aligned}$	$\begin{aligned} & 115 \\ & 105 \end{aligned}$	$\begin{aligned} & 160 \\ & 90 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 155 \\ & 135 \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 95 \\ & 85 \end{aligned}$	$\begin{gathered} \text { S0 } \\ 70 \end{gathered}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$
$\begin{aligned} & 400 \cdot 449 \\ & 450-499 \end{aligned}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$	$\begin{aligned} & 105 \\ & 90 \end{aligned}$	$\begin{aligned} & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$	$\begin{aligned} & 95 \\ & 85 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$
$\begin{aligned} & 6(k)-649 \\ & 650-699 \end{aligned}$	$\begin{aligned} & 75 \\ & 70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$

$\begin{aligned} & \text { OPPOSING } \\ & \text { VOLUME } \end{aligned}$	THLROUGH YOLUMLE PLUS RIGETTTURN VOLUME *					
	350-399	$400-449$	450-494	510-549	$550-309$	$=1>600$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 70 \\ & 65 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	55 50	50 45
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	72 65	$\begin{gathered} -460 \\ 55 \end{gathered}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	50	$\begin{aligned} & 45 \\ & 40 \end{aligned}$
$\begin{aligned} & 300-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$
$\begin{array}{r} 400-449 \\ 450.499 \end{array}$	$\begin{aligned} & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$
$\begin{aligned} & 600-649 \\ & 650-699 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
$\begin{gathered} 700-749 \\ 750 \text { or More } \end{gathered}$	30 30	30 30	30 30	30 30	30 30	30 30

* Or through volume only if a right-turn lane exists.

TABLE 4B
RIGHT-TURN LANE VOLUME THRESHOLDS
FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 35 MPH OR LESS

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	<100	100-199	200-249	250-299	300-349	350-399
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$.		
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$						
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$						Yes
$\begin{aligned} & 30-349 \\ & 350-399 \end{aligned}$				Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$			$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-599 \end{aligned}$		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
	350-399	$400 \cdot 449$	450-499	$500-549$	550.600	$+1>600$
$\begin{gathered} \text { Fewer Than } 25 \\ 25-49 \\ 50-99 \end{gathered}$					Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 100-149 \\ & 150-199 \end{aligned}$			Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes
$\begin{aligned} & 200-249 \\ & 250-299 \end{aligned}$	Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 306-349 \\ & 350-399 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 400-449 \\ & 450-499 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
$\begin{aligned} & 500-549 \\ & 550-509 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$
600 or More	Yes	Yes	Yes	Yes	Yes	Yes

* Or through volume only if a left-turn lane exists.

APPENDIX I

SIMTRAFFIC QUEUE REPORTS

Queuing and Blocking Report
Projected AM Peak
Intersection: 2: Freels Lane \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (tt)	14	34
Average Queue (ft)	1	10
95th Queue (ft)	10	33
Link Distance (ft)	625	319
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	T	R	LT	R	L	TR
Maximum Queue (ft)	66	85	260	214	105	209	159	113	144
Average Queue (ft)	22	34	156	22	18	82	79	47	53
95th Queue (ft)	54	72	240	123	66	154	137	91	111
Link Distance (ft)		625		413		331		205	
Upstream Blk Time (\%)				0		0		0	
Queuing Penalty (veh)				0		0			0
Storage Bay Dist (ft)	180		250		320		135	200	
Storage Blk Time (\%)			1		0	1	1	0	
Queuing Penalty (veh)			1		0	5	1	0	

Intersection: 5: Road A \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (tt)	9	66
Average Queue (ft)	0	31
95th Queue (tt)	5	51
Link Distance (tt)	148	245
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		
Network Summary		
Network wide Queuing Penalty: 7		

Intersection: 2: Freels Lane \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (ft)	11	29
Average Queue (tt)	0	4
95th Queue (tt)	7	21
Link Distance (ft)	625	319
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	T	R	LT	R	L	TR
Maximum Queue (ft)	41	64	45	70	47	46	38	89	40
Average Queue (ft)	11	23	15	27	16	12	15	33	7
95th Queue (ft)	35	53	41	57	38	37	37	70	24
Link Distance (ft)		625		413		331			205
Upstream Blk Time (\%)									
Queuing Penalty (veh)								135	200
Storage Bay Dist (ft)	180		250						
Storage Blk Time (\%)									

Intersection: 5: Road A \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (tt)	10	47
Average Queue (ft)	0	25
95th Queue (ft)	6	46
Link Distance (ft)	148	245
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		
Network Summary		
Network wide Queuing Penalty: 0		

Intersection: 2: Freels Lane \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (tt)	31	29
Average Queue (tt)	2	4
95th Queue (tt)	13	20
Link Distance (tt)	625	319
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (tt)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Intersection: 3: W. Valley MS Driveway \& Millstone Lane \& George Williams Road

Movement	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	T	R	LT	R	L	TR
Maximum Queue (ft)	31	126	118	96	54	106	77	71	49
Average Queue (ft)	5	58	56	39	20	50	40	28	12
95th Queue (ft)	22	104	99	77	42	90	67	57	34
Link Distance (ft)		625		413		331			205
Upstream Blk Time (\%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	180		250		320		135	200	
Storage Blk Time (\%)						0			

Intersection: 5: Road A \& Millstone Lane

Movement	WB	NB
Directions Served	LT	LR
Maximum Queue (tt)	16	75
Average Queue (ft)	1	36
95th Queue (ft)	10	60
Link Distance (ft)	148	245
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		
Network Summary		
Network wide Queuing Penalty: 0		

[^0]: Source: Highway Capacity Manual

