SEAL PROPERTY SUBDIVISION

Transportation Impact Analysis Hardin Valley Road Knoxville, TN

A Transportation Impact Analysis for the Seal Property Subdivision

Submitted to

Knoxville-Knox County Planning

Revised July 27, 2020 June 22, 2020 FMA Project No. 592.006

Submitted By:

TABLE OF CONTENTS 1 2 TABLE 2.1-1 HUNTERS WAY SUBDIVISION TRIP GENERATION SUMMARY 3 4 TABLE 4-1 SEAL PROPERTY SUBDIVISION TRIP GENERATION SUMMARY 5 TABLE 5-1 INTERSECTION ANALYSIS LEVEL OF SERVICE (LOS) SUMMARY 6 7

FIGURES

1	LOCATION MAP	. 5
2	Site Plan	. 6
3	2020 Existing Peak Hour Traffic	. 9
4	2020 Combined Existing Peak Hour Traffic	11
5	2023 Background Peak Hour Traffic	13
6	VINING MILL SUBDIVISION PEAK HOUR SITE TRIPS	15
7	2023 Combined Background Peak Hour Traffic	16
8	Peak Hour Trip Distribution	19
9	Seal Property Subdivision Peak Hour Site Trips	20
10	2023 Full Buildout Peak Hour Traffic	21

ATTACHMENTS

- 1 AERIAL PHOTO
- 2 CCI TRAFFIC COUNTS
- 3 VINING MILL SUBDIVISION
- 4 ADT TRENDS
- 5 TRIP GENERATION
- 6 INTERSECTION WORKSHEETS EXISTING AM/PM PEAKS
- 7 INTERSECTION WORKSHEETS BACKGROUND AM/PM PEAKS
- 8 INTERSECTION WORKSHEETS FULL BUILDOUT AM/PM PEAKS
- 9 TURN LANE WARRANT ANALYSIS
- 10 SIGHT TRIANGLES

Executive Summary

Ball Homes, LLC is proposing a residential development (i.e. Seal Property Subdivision) with single-family housing located in Knox County. The project is located south of the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road, east of Creekside Manor Lane, and west of Marietta Church Road. The full buildout of the development will consist of 265 single family lots. Construction is proposed to take place this year and this study assumes full build out for the development will occur in 2023.

The main driveway connection is located at the proposed roundabout at the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road. The main driveway connection will have a 10 foot wide curbed median, a roadway width of 18 feet and total width of 46 feet. A second driveway connection is proposed along Hardin Valley Road 770 feet east of the proposed roundabout.

In order to maintain or provide an acceptable level-of-service for each of the intersections studied, some recommendations are presented.

Hickory Creek Road at Hardin Valley Road

The background and full buildout traffic conditions at the proposed roundabout intersection will operate at a LOS A during both the AM and PM peak hours. The addition of the driveway to the proposed roundabout at Hickory Creek Road, Hardin Valley Road and E Gallaher Ferry Road will only cause a minor increase in delay to the intersection; therefore there are no recommended improvements.

Hardin Valley Road at Muddy Creek Lane

As a part of the Seal Property Subdivision the driveway connection (Road "A") will tie into the existing intersection of Hardin Valley Road at Muddy Creek Lane. The full buildout traffic conditions for the eastbound and westbound left turning movements operate at a LOS A during both the AM and PM peak hours, the northbound approach (Road "A") operates at a LOS B during both the AM and PM peak hours and the southbound approach (Muddy Creek Lane) will operate at a LOS C during both the AM and PM peak hours after the completion of the Seal Property Subdivision.

After the completion of the Seal Property Subdivision neither an eastbound right turn lane nor a westbound left turn lane are warranted at the intersection of Hardin Valley Road at Muddy Creek Lane / driveway connection (Road "A").

1 Introduction

1.1 Project Description

This report provides a summary of a transportation impact analysis that was performed for the Seal Property Subdivision. The project is located south of the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road, east of Creekside Manor Lane, and west of Marietta Church Road. The location of the site is shown in Figure 1.

The full build out of the development will consist of 265 single family lots. Construction is proposed to take place this year, and this study assumes full build out for the development will occur in 2023.

The existing intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road will be replaced by a proposed roundabout designed by others. The roundabout is expected to be completed prior to the construction of the main driveway connection and the subdivision Road "A" will tie directly into the proposed roundabout. The driveway connection will have a 10 foot wide curbed median, a roadway width of 18 feet and total width of 46 feet. A second driveway connection is proposed along Hardin Valley Road 770 feet east of the proposed roundabout. The proposed site layout including the roundabout is shown in Figure 2.

The purpose of this study is to evaluate the impacts to the traffic conditions caused by the proposed development.

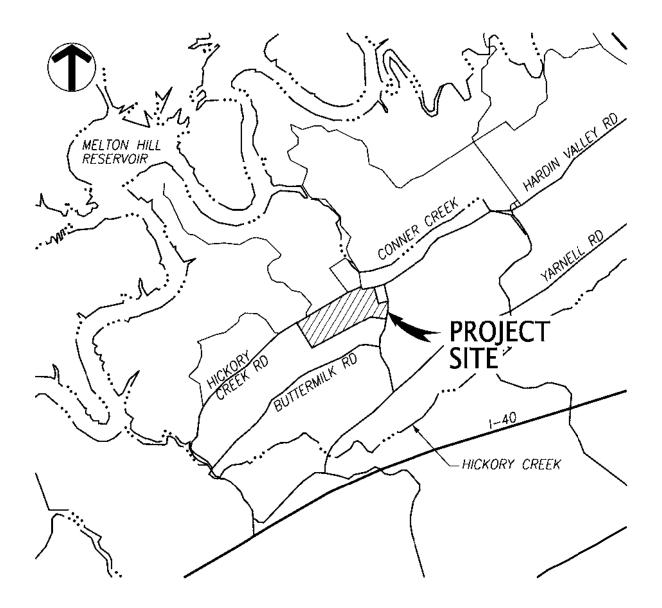


Figure 1: Location Map

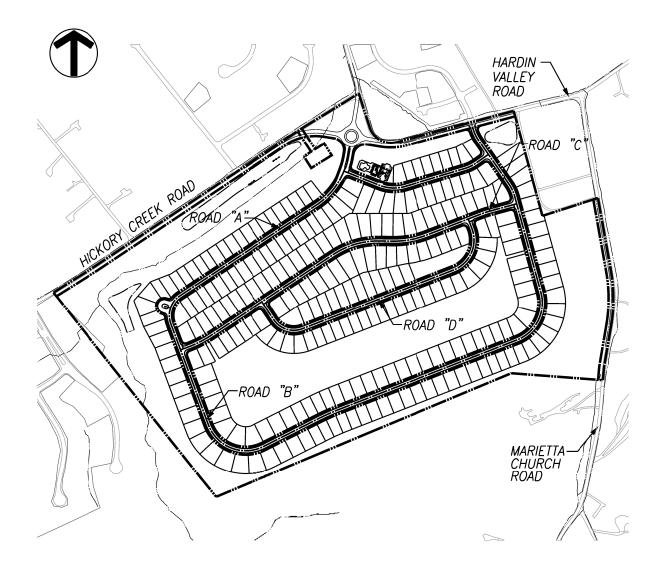


Figure 2: Site Plan

1.2 Existing Site Conditions

Hardin Valley Road at the intersection of Hickory Creek Road is a two-lane road. The Knoxville-Knox County Planning Commission classifies Hardin Valley Road as a Minor Arterial with a 70 feet right-of-way per the Major Road Plan. The posted speed limit on Hardin Valley Road is 40 mph.

Hickory Creek Road at the intersection with Hardin Valley Road is a two-lane road. The Knoxville-Knox County Planning Commission classifies Hickory Creek Road as a Minor Arterial with a 60 feet right-of-way per the Major Road Plan. The posted speed limit on Hickory Creek Road is 40 mph.

E Gallaher Ferry Road at the intersection with Hickory Creek Road is a two-lane road. The Knoxville-Knox County Planning Commission classifies E Gallaher Ferry Road as a Major Collector with a 60 feet right-of-way per the Major Road Plan. The posted speed limit on E Gallaher Ferry Road is 30 mph.

Marietta Church Road at the intersection with Hardin Valley Road is a two-lane road. The Knoxville-Knox County Planning Commission classifies Marietta Church Road as a Minor Collector with a 60 feet right-of-way per the Major Road Plan. The posted speed limit on Marietta Church Road is 30 mph.

There are no existing sidewalks or designated bike lanes along Hardin Valley Road, Hickory Creek Road, E Gallaher Ferry Road or Marietta Church Road in the vicinity of the proposed development.

An aerial photo of the existing intersection is included in Attachment 1.

2 Existing Traffic Volumes

Due to the altered traffic patterns from COVID-19 FMA did not collect any new turning movement counts for the Seal Property Subdivision transportation impact analysis.

As part of a different transportation analysis Cannon & Cannon, Inc. (CCI) conducted a peak hour turning movement count at the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road on Thursday November 1, 2018 from 7:00 a.m. to 9:00 a.m. and 4:00 p.m. to 6:00 p.m. The AM peak hour occurred between 7:15 a.m. and 8:15 a.m. with an AM peak volume of 375 vehicles and an AM peak hour factor of 0.93. The PM peak hour occurred between 5:00 p.m. and 6:00 p.m. with a PM peak hour volume of 442 vehicles and a PM peak hour factor of 0.90. The CCI peak hour turning movement count is included in Attachment 2.

In order to calculate existing traffic conditions FMA estimated growth rate from the 2018 turning movement count to the projected existing 2020 traffic conditions. The growth rate was determined by analyzing nearby traffic counts provided by the Knoxville Regional Transportation Planning Organization (TPO) in the vicinity of the proposed development. Traffic counts located on Hardin Valley Road, E Gallaher Ferry Road and Marietta Church Road had an average growth rate of approximately 5%. The ADT trend line growth charts are included in Attachment 3. Figure 3 shows the projected 2020 traffic volumes including both the AM and PM peak hour traffic volumes at the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road.

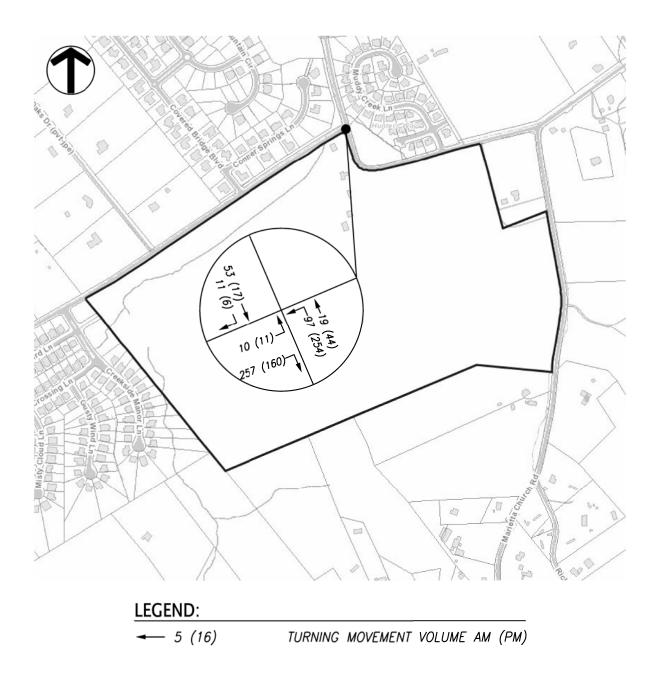


Figure 3: 2020 Existing Peak Hour Traffic

2.1 Hunters Way Subdivision

Hunters Way Subdivision is an existing subdivision located on Hardin Valley Road between Hickory Creek Road and Marietta Church Road. Hunters Way Subdivision has 40 existing single family homes.

Due to the altered traffic patterns from COVID-19 FMA did not collect any new turning movement counts for the intersection of Muddy Creek Lane at Hardin Valley Road. FMA estimated the traffic generated at the intersection of Muddy Creek Lane at Hardin Valley Road using the *Trip Generation*, 10th Edition, published by the Institute of Transportation Engineers. Single- Family Detached Housing or Land Use 210 was used to calculate site trips for the subdivision using the fitted curve equations. The land use worksheets are included in Attachment 5 and a trip generation summary is shown in Table 2.1-1.

		Table : Trip Generatio Hunters Way	on Summary	
Land Use	Density	Daily Trips	AM Peak Hour Enter Exit	PM Peak Hour Enter Exit
Single-Family Detached Housing (LUC 210)	40 Lots	448	8 25	26 16

FMA assumed the directional distribution of the traffic generated by the Hunters Way Subdivision was determined using the existing traffic volumes along Hardin Valley Road. FMA assumed that 90% of traffic would enter/exit from Hardin Valley Road, 10% of traffic would enter/exit from Hickory Creek Road.

The thru traffic on Hardin Valley Road was estimated from Figure 3: 2020 Existing Peak Hour Traffic derived from the Cannon & Cannon, Inc. (CCI) turning movement count.

Figure 4 shows the combined existing peak hour traffic at the intersection of Hardin Valley Road at Muddy Creek Lane.

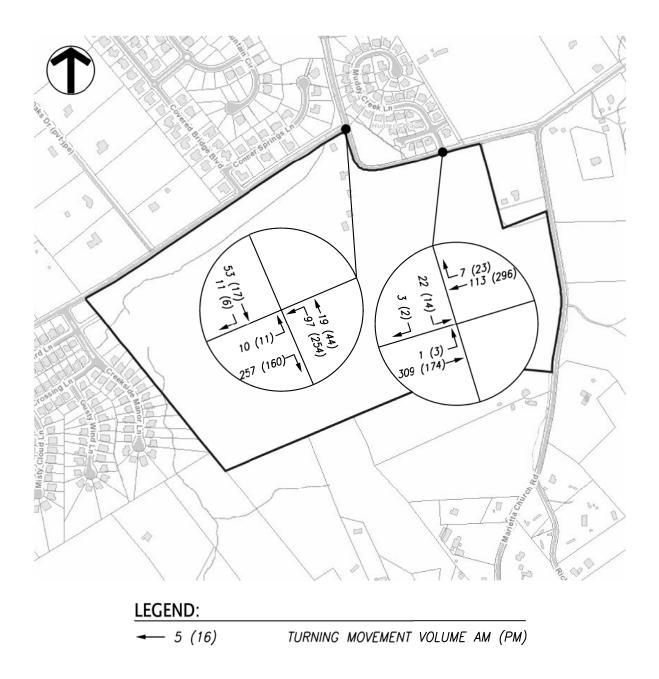


Figure 4: 2020 Combined Existing Peak Hour Traffic

3 Background Growth

The Knoxville Regional Transportation Planning Organization (TPO) maintains count stations in the vicinity of the proposed development.

Knoxville TPO count station ID 093M353 is located on Hardin Valley Road east of Marietta Church Road. The annual growth rate for this station over the last thirteen years is approximately 5.91% and the 2016 ADT was 5,340 vehicles per day.

Knoxville TPO count station ID 093M279 is located on E Gallaher Ferry Road north of Hardin Valley Road. The annual growth rate for this station over the last sixteen years is approximately 4.48% and the 2017 ADT was 790 vehicles per day.

Knoxville TPO count station ID 093M275 is located on Marietta Church Road south of Hardin Valley Road. The annual growth rate for this station over the last sixteen years is approximately 4.51% and the 2017 ADT was 1670 vehicles per day.

For the purpose of this study, an annual growth rate of 5.0% was assumed for the intersection of Hickory Creek Road at Hardin Valley Road and Hardin Valley Road at Muddy Creek Lane until full occupancy is reached in 2023. Attachment 3 shows the trend line growth charts for the TPO count station.

The proposed roundabout at the intersection of Hickory Creek Road, Hardin Valley Road and E Gallaher Ferry Road is currently in the design phase and is expected to be completed prior to the installation of the driveway connection. FMA assumed that the proposed roundabout project will be completed by the year 2023.

Figure 5 demonstrates the projected background peak hour volumes at the intersection of Hickory Creek Road at Hardin Valley Road and Hardin Valley Road at Muddy Creek Lane after applying the background growth rate to the existing conditions.

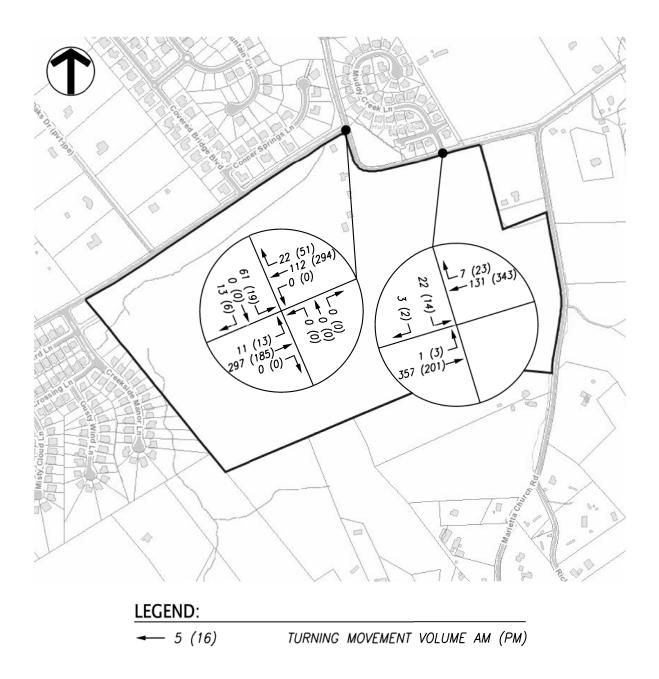


Figure 5: 2023 Background Peak Hour Traffic

3.1 Vining Mill Subdivision

The Vining Mill Subdivision is located on Hardin Valley Road east of the intersection of Marietta Church Road in Knox County. This residential development is currently under construction and as of June 2020 there are 28 single-family homes completed out of the 190 single-family lots planned for the full buildout of the subdivision.

The existing main subdivision entrance is located on Hardin Valley Road 1,685 feet east of the intersection of Marietta Church Road and a second driveway connection is proposed on Marietta Church Road 1,050 feet south of the intersection with Hardin Valley Road. As of June 2020 Boston Ivy Lane has been built with a temporary culde-sac, English Ivy Lane has been built with a temporary cul-de-sac and the second driveway connection to Marietta Church Road has not been built.

AJAX Engineering conducted a traffic impact study for the Vining Mill Subdivision in January 2017. The trip generation for the Vining Mill Subdivision includes 190 singlefamily detached houses. The estimated new site trips as stated in the "Vining Mill Subdivision Traffic Impact Study" is 1,896 daily trips, 143 trips during the AM peak hour and 188 trips during the PM peak hour. The trip distribution for the site trips is 90% of traffic entering/exiting from the direction of Pellissippi Parkway (SR162), 5% of traffic entering/exiting from Marietta Church Road and 5% of traffic entering/exiting from Marietta Church Road and 5% of traffic entering/exiting from Hickory Creek Road. Figure 2a "Proposed Plan Layout Vining Mill", Figure 5 "Vining Mill Subdivision Directional Distribution of Generated Traffic for Vining Mill" and Figure 6 "Vining Mill Subdivision Traffic Assignment of Generated Traffic for Vining Mill" are included in Attachment 3.

The 2018 turning movement count was completed prior to the construction of the Vining Mill Subdivision; therefore, the additional traffic from the construction of 28 single-family homes was considered in order to get an accurate depiction of the existing 2020 turning movement count. The additional traffic on Hickory Creek Road from the 28 single-family homes was considered negligible at 1 vehicle or less during the AM and PM peak hours so was not added to the existing traffic count shown on Figure 3.

The total additional traffic on Hickory Creek Road from the full buildout of the Vining Mill Subdivision is 6 trips eastbound and 2 trips westbound during the AM peak hour and 4 trips eastbound and 6 trips westbound during the PM peak hour as shown on Figure 6 "Vining Mill Subdivision Traffic Assignment of Generated Traffic for Vining Mill".

Figure 6 shows the Vining Mill Subdivision peak hour site trips and Figure 7 shows the 2023 background traffic including the trips from the Vining Mill Subdivision.

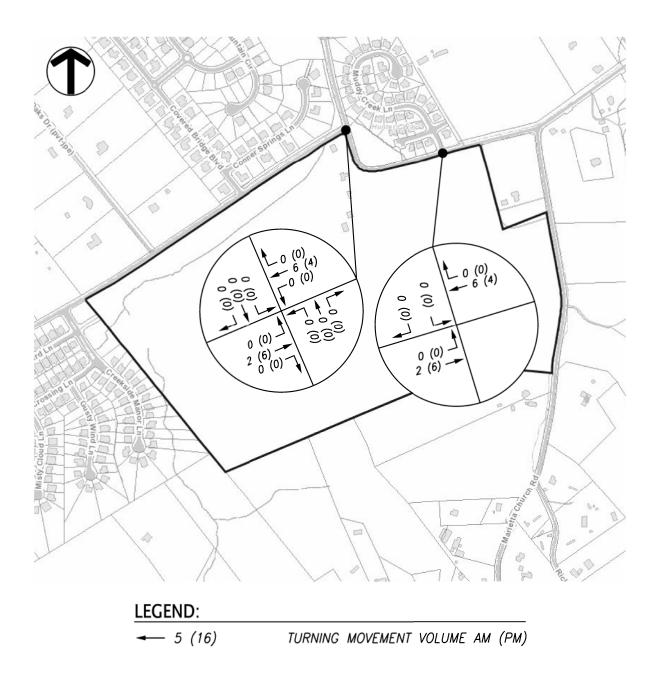


Figure 6: Vining Mill Subdivision Peak Hour Site Trips

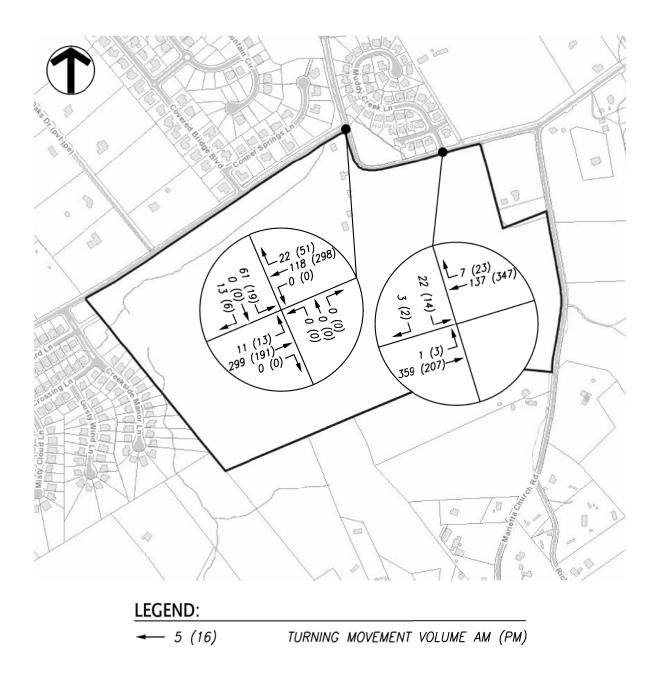


Figure 7: 2023 Combined Background Peak Hour Traffic

4 Trip Generation and Trip Distribution

The Seal Property Subdivision proposes 265 single family lots. Single- Family Detached Housing or Land Use 210 was used to calculate site trips for the subdivision using the fitted curve equations from the *Trip Generation*, 10th *Edition*, published by the Institute of Transportation Engineers. The land use worksheets are included in Attachment 5.

The total trips generated by the full buildout of the Seal Property Subdivision was estimated to be 2,549 daily trips. The estimated trips are 193 trips during the AM peak hour and 259 trips during the PM peak hour. A trip generation summary is shown in Table 4-1.

Table 1 1

		Seal Property Trip Generatio	Subdivision	
Land Use	Density	Daily Trips	AM Peak Hour Enter Exit	PM Peak Hour Enter Exit
Single-Family Detached Housing (LUC 210)	265 Lots	2549	48 145	163 96

The existing distribution of traffic at the intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road is 60% eastbound, 25% northbound and 15% southbound during the AM peak hour and 35% eastbound, 60% northbound and 5% southbound during the PM peak hour.

The directional distribution of the traffic generated by the Seal Property Subdivision was determined using the existing traffic volumes along Hardin Valley Road in combination with the concept plan layout. FMA assumed that 85% of traffic would enter/exit from Hardin Valley Road, 10% of traffic would enter/exit from Hickory Creek Road and 5% of traffic would enter/exit from E Gallaher Ferry Road.

The subdivision traffic will enter / exit using both the roundabout and the intersection of Hardin Valley Road at the driveway connection (Road "A"). FMA assumed that 25% of the proposed site traffic would enter from the intersection Hardin Valley Road at the driveway connection (Road "A") and 75% of the proposed site traffic would enter via the roundabout. FMA assumed that 50% of the proposed site traffic would exit from the intersection of Hardin Valley Road at the driveway connection (Road "A") and 50% of the proposed site traffic would exit from the intersection of Hardin Valley Road at the driveway connection (Road "A") and 50% of the proposed site traffic would exit via the roundabout.

Figure 8 shows the peak hour trip distribution and Figure 9 shows the peak hour site trips for the Seal Property Subdivision.

Figure 10 shows the combined peak hour traffic after the full buildout of the subdivision.

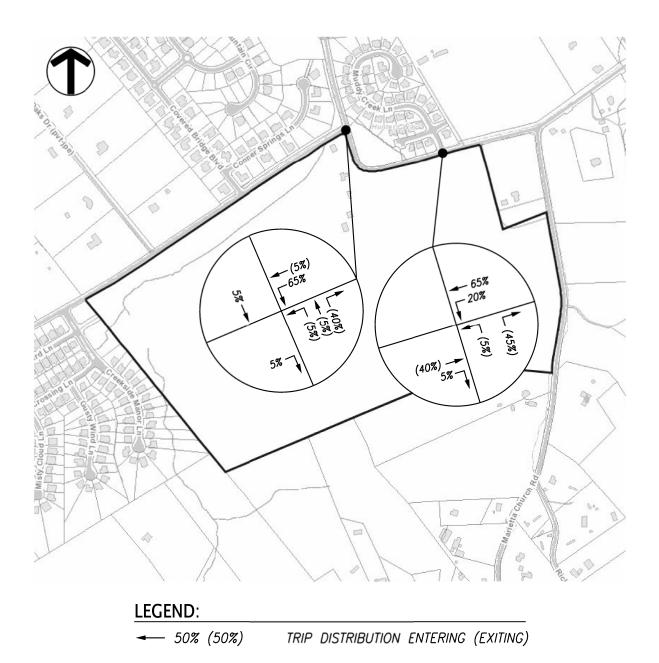


Figure 8: Peak Hour Trip Distribution

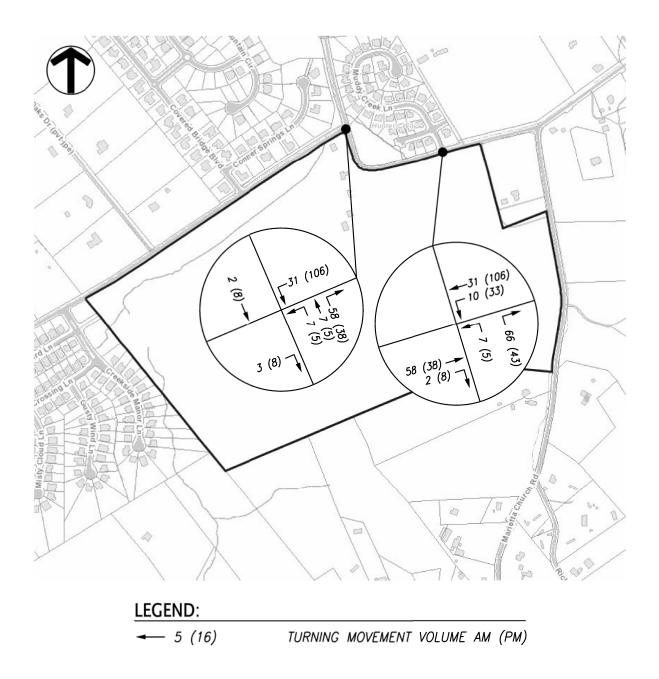


Figure 9: Seal Property Subdivision Peak Hour Site Trips

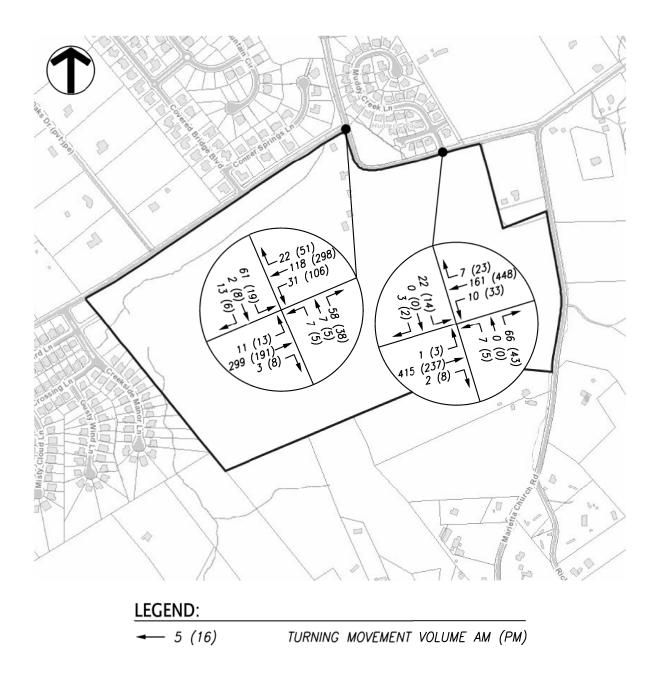


Figure 10: 2023 Full Buildout Peak Hour Traffic

5 **Projected Capacity and Level of Service**

The existing intersections of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road and Hardin Valley Road at Muddy Creek Lane are both two-way stop controlled intersections. During the background and full buildout conditions the intersection of Hickory Creek at Hardin Valley Road / E Gallaher Ferry Road will be replaced by a proposed roundabout designed by others.

Unsignalized intersection capacity analyses were performed using the Highway Capacity Software (HCS7) for the AM and PM peak hours to evaluate the traffic conditions at the intersections of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road and Hardin Valley Road at Muddy Creek Lane / Driveway Connection (Road "A").

Roundabout intersection capacity analyses were performed using the Highway Capacity Software (HCS7) for the AM and PM peak hours to evaluate the traffic conditions at the proposed intersection of Hickory Creek at Hardin Valley Road / E Gallaher Ferry Road for the background and full buildout conditions.

The results from the analyses are expressed with a term "level of service" (LOS), which is based on the amount of delay experienced at the intersection. The LOS index ranges from LOS A, indicating excellent traffic conditions with minimal delay, to LOS F indicating very congested conditions with excessive delay. LOS D generally is considered the minimum acceptable condition in urban areas. The existing, background and full buildout HCS7 worksheets are included in Attachments 6, 7 and 8.

Table 5-1 shows the results of the capacity analyses.

	Intersec	ble 5-1 tion Analysis ce (LOS) Summary
		Delay (sec)/LOS
Hard	in Valley Road @ Hick	kory Creek Road (Existing 2020)
AM Peak	EB Approach NB Left Turn	
PM Peak	EB Approach NB Left Turn	9.8 / A 7.8 / A

Har	din Valley Road @ Mu	ldy Creek Lane (Existing 2020)	
AM Peak	EB Left Turn	7.5 / A	
	SB Approach	11.5 / B	
PM Peak	EB Left Turn	8.0 / A	
	SB Approach	12.1 / B	
Hardin	valley Road @ Hickor	y Creek Road (Background 2023)	
AM Peak	Intersection	4.5 / A	
PM Peak	Intersection	4.8 / A	
Hardin Va	lley Road @ Muddy Cr	eek Lane (Background 2023)	
AM Peak	EB Left Turn	7.5 / A	
	SB Approach	12.1 / B	
PM Peak	EB Left Turn	8.1 / A	
	SB Approach	12.9 / B	
Hardin Val	ley Road @ Hickory Cr	eek Road (Full Buildout 2023)	
AM Peak	Intersection	4.8 / A	
PM Peak	Intersection	5.7 / A	
Hardin Valley R	oad @ Muddy Creek La	ne / Road "A" (Full Buildout 2023)	
AM Peak	EB Left Turn	7.6 / A	
	WB Left Turn	8.3 / A	
	NB Approach	12.3 / B	
	SB Approach	16.6 / C	
PM Peak	EB Left Turn	8.4 / A	
	WB Left Turn	7.9 / A	
	NB Approach	10.9 / B	
	SB Approach	19.4 / C	

6 Turn Lane Warrant Analysis

The intersection of Hardin Valley Road at the driveway connection (Road "A") was evaluated to determine if a right turn lane or a left turn lane are warranted. The Knox County Department of Engineering and Public Works handbook, "Access Control and Driveway Design Policy," was used to analyze the information. Neither an eastbound right turn lane nor a westbound left turn lane on Hardin Valley Road is warranted. The turn lane warrant worksheets and analysis are included in Attachment 9.

7 Conclusions and Recommendations

7.1 Hickory Creek Road @ Hardin Valley Road

The existing conditions at the two-way stop controlled intersection of Hickory Creek Road at Hardin Valley Road / E Gallaher Ferry Road and the background and full conditions at the proposed roundabout were analyzed using the Highway Capacity Software (HCS7).

The existing traffic conditions for the eastbound approach (Hickory Creek Road) operate at a LOS B during the AM peak hour and a LOS A during the PM Peak hour and the northbound left turn (Hardin Valley Road) operates at a LOS A during both the AM and PM peak hours.

The background and full buildout traffic conditions at the proposed roundabout intersection will operate at a LOS A during both the AM and PM peak hours.

The unsignalized intersection capacity analyses shows a 95% queue length at the full buildout of approximately two car lengths for the eastbound approach during the AM peak hour and two car lengths for the westbound approach during the PM peak hour; therefore the existing storage at the intersection is adequate and no change is necessary.

Hickory Creek Road is classified as a Minor Arterial per the Major Road Plan. The minimum intersection spacing required on an arterial is 400 feet per the "Knoxville-Knox County Subdivision Regulations" as amended through February 13, 2020. The proposed driveway connection is located approximately 915 feet east of the intersection of Hickory Creek Road at Covered Bridge Boulevard. This driveway connection exceeds the typical minimum separation on a Minor Arterial; therefore, no change is necessary.

7.2 Hardin Valley Road at Muddy Creek Lane

The existing, background and full buildout conditions at the unsignalized intersection of Hardin Valley Road at Muddy Creek Lane were analyzed using the Highway Capacity Software (HCS7).

The existing traffic conditions for the eastbound left turn movement (Hardin Valley Road) currently operate at a LOS A during both the AM and PM peak hours and the southbound approach (Muddy Creek Lane) operates at a LOS B during both the AM and PM peak hours.

The background traffic conditions for the eastbound left turn movement (Hardin Valley Road) currently operate at a LOS A during both the AM and PM peak hours and the southbound approach (Muddy Creek Lane) operates at a LOS B during both the AM and PM peak hours.

As a part of the Seal Property Subdivision the driveway connection (Road "A") will tie into the existing intersection of Hardin Valley Road at Muddy Creek Lane. The full buildout traffic conditions for the eastbound and westbound left turning movements operate at a LOS A during both the AM and PM peak hours, the northbound approach (Road "A") operates at a LOS B during both the AM and PM peak hours and the southbound approach (Muddy Creek Lane) will operate at a LOS C during both the AM and PM peak hours after the completion of the Seal Property Subdivision.

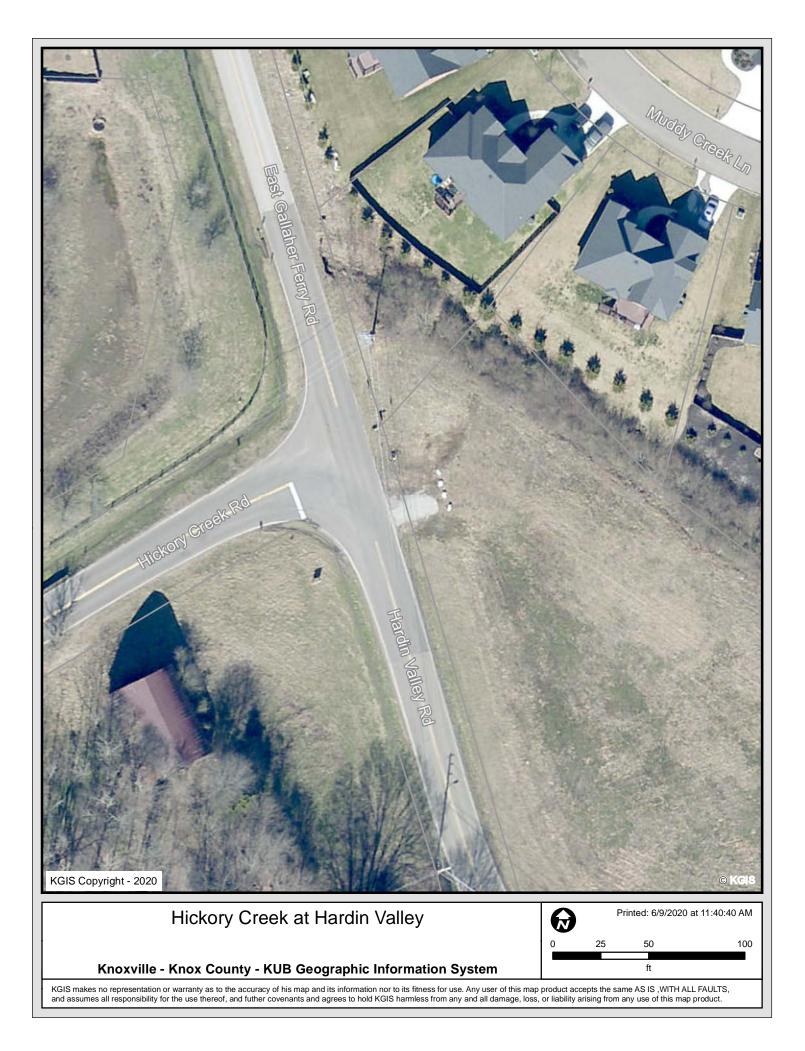
The standard practice for a residential subdivision with 150 or more lots is to require at least two access points to provide alternative access opportunities in the event that one access is blocked by a fallen tree, crash, or other. The Seal Property Subdivision has one proposed driveway entrance/exit at the Hickory Creek Road, Hardin Valley road and E Gallaher Ferry Road roundabout and a second driveway connection onto Hardin Valley Road. The two access points in combination with the subdivision layout should provide adequate accessibility.

After the completion of the Seal Property Subdivision neither an eastbound right turn lane nor a westbound left turn lane are warranted at the intersection of Hardin Valley Road at Muddy Creek Lane / driveway connection (Road "A").

The minimum required sight distance for a road with a posted speed limit of 45 mph is 450 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through February 13, 2020. FMA measured the sight distance at the existing intersection of Hardin Valley Road at Muddy Creek Lane in July 2020. At 15 feet from the edge of pavement the sight distance is greater than 600 feet eastbound and 580 feet westbound.

Hardin Valley Road is classified as a Minor Arterial per the Major Road Plan. The minimum intersection spacing required on an arterial is 400 feet per the "Knoxville-Knox County Subdivision Regulations" as amended through February 13, 2020. The proposed driveway connection (Road "A") is located approximately 770 feet east of the proposed roundabout and 705 feet west of the intersection with Marietta Church Road. This driveway connection exceeds the typical minimum separation on a Minor Arterial; therefore, no change is necessary.

7.3 Subdivision Roads


Road "A", Road "B", Road "C" and Road "D" will have a width of 26 feet in accordance with the "Knoxville-Knox County Subdivision Regulations" amended through February 13, 2020.

The minimum required sight distance for the internal subdivision Road "A", Road "B", Road "C" and Road "D" will be 250 feet in each direction in accordance with the "Knoxville-Knox County Subdivision Regulations" as amended through February 13, 2020. The sight triangles for the intersections of the internal subdivision roads are provided in Attachment 10.

Sight triangles are used to provide adequate sight distance for a stopped driver on the minor approach to enter or cross the major roadway. Any object (i.e. buildings, hedges, trees, walls, fences, etc.) within the sight triangle that would obstruct the driver's view of an approaching vehicle should be removed or modified. FMA recommends any necessary landscaping that may be involved to maintain the clear sight triangles and comply with Knox County Engineering and Public Works requirements.

Any required sight distance easements for the internal subdivision intersections of Road "A", Road "B", Road "C", and Road "D" should be coordinated with Knox County Engineering and Public Works and included on the final design drawings prior to construction of the subdivision.

Attachm	ent 1
Aerial P	hoto

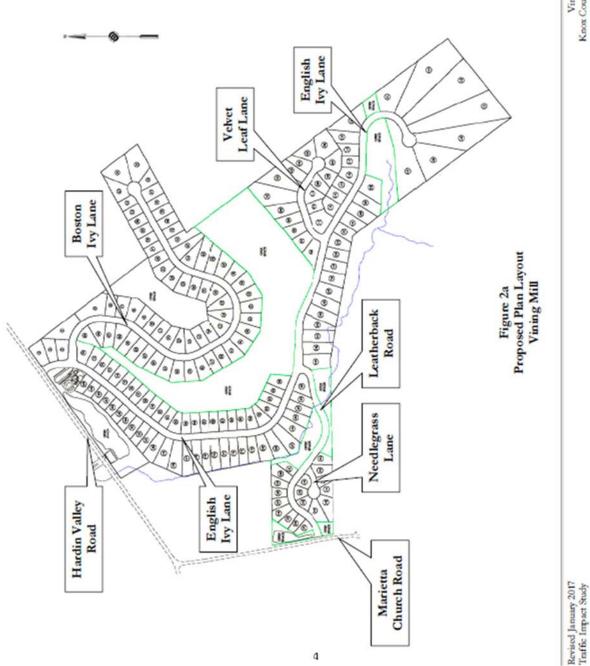
Attachment 2 CCI Traffic Counts

5-001	valley Rd/E Gallaher Ferry Rd & Hickory Creek Rd	-
Project 3D: 18-10025-001	o; Hardin Valley Rd	New New Mar
Project #	Location	

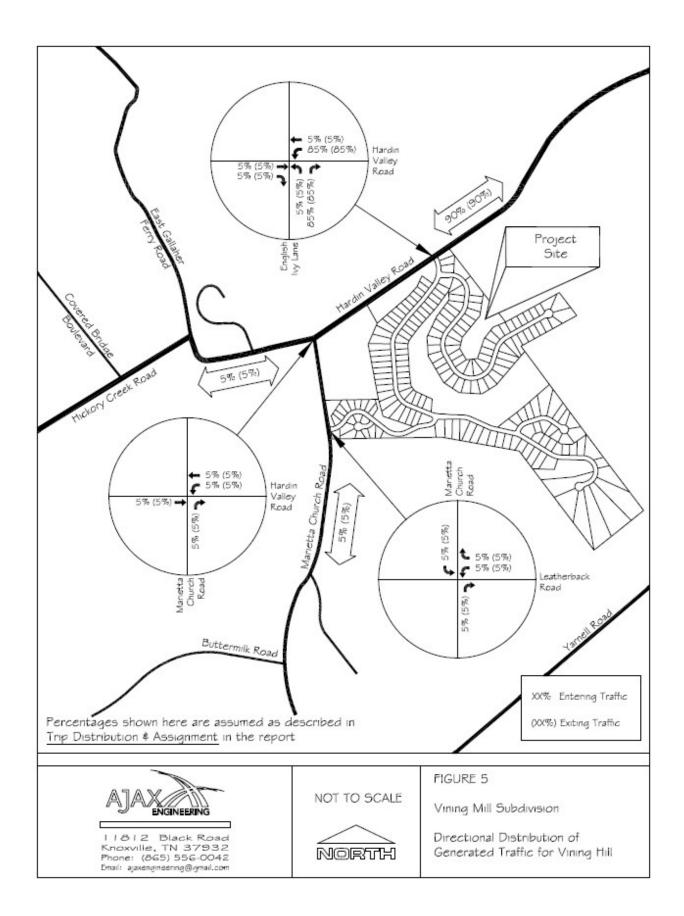
Day: Thursday Date: 11/01/2018

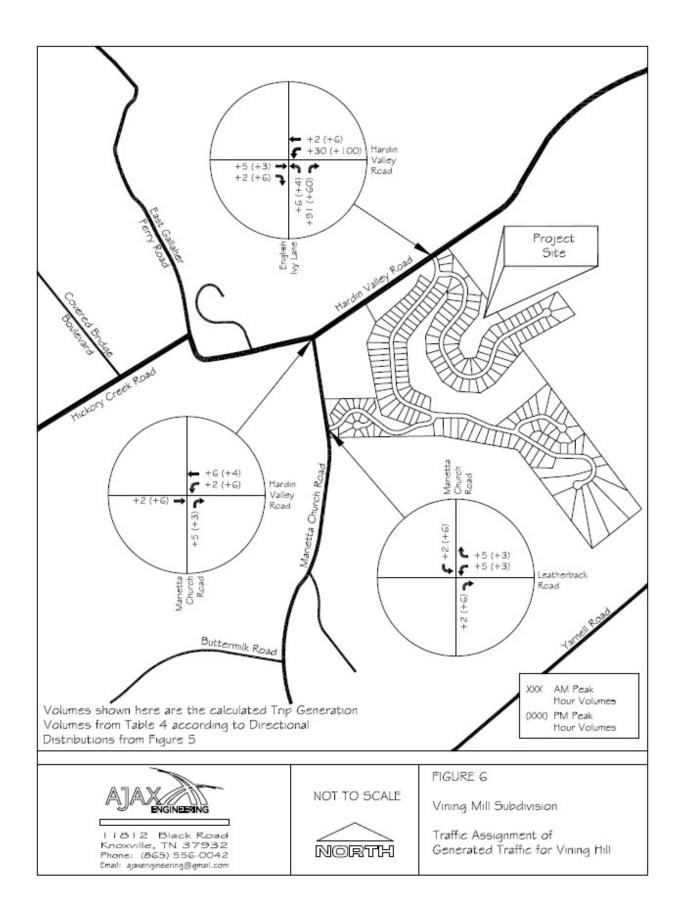
Northbound Left Thru Kinchbound 13 23 9 9 23 1 1 0 0 23 1 1 0 0 26 1 1 0 0 26 1 1 0 0 26 1 1 0 0 26 1 1 0 0 0 26 1 1 0 0 0 0 26 1 1 0 0 0 0 0 0 27 5 0	Peels P		Ĺ	Southhound										Viesthound			
Control Contro <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th>4</th><th>50000000000 5</th><th>L</th><th></th><th></th><th></th><th></th><th>ü</th><th>Eastbound</th><th></th><th></th><th></th><th>2</th><th>10000</th><th>P</th><th></th><th></th></thco<></thcontrol<></thcontrol<>	4	50000000000 5	L					ü	Eastbound				2	10000	P		
Add 13 2 0 Add 23 2 0 Add 24 1 0 Add 28 12 0 Add 25 4 1 0 Add 25 1 0 Add 26 1 0 Add 27	90000000000 本名2292929250 201500000000000000000000000000000000			ւ վատ	P415 . App.	Total	Lett Th	Thru Rat	t Ulum	Peds a	App, Tala:	Left 🗔	Thru R	Rat Utu	Lium Peds	Aps. Total	irt. Totai
A Mail 23 A Mail 24 A Mail	00000000000000000000000000000000000000		10	0	0	÷	-		5	9	85	0	0	ò			
AM 24 - 0 AM 24 - 0 AM 25 - 0 AM 25 - 1 0 PPM 45 - 1 0 PPM 55	22222222 2888888		12	P	ç	ņ	D				<u>م</u>	ç	e	Ð			
All 25 8 0 Oldat 85 12 0 All 25 8 12 0 All 25 12 0 0 All 25 1 0 0 All 25 5 0 0 PMI 25 5 0 0 PMI 25 5 0 0 PMI 3 2 5 0 0 PMI 3 2 5 0 0 PMI 5 5 0 0 0 PMI 3 2 0 0 0 PMI 3 2 0 0 0 PMI 3 2 0 0 <	00000000000000000000000000000000000000			•	Ų	4	2	9 0	0	U	8	Ų	•	D	0	0 0	
Alai 85 12 0 Alai 26 12 0 Alai 26 1 0 Alai 26 1 0 Alai 26 1 0 Alai 26 1 0 Alai 22 1 0 PMin 45 1 3 0 PMin 26 1 0 0 PMin 26 1 0 0 PMin 35 5 0 0 PMin 5 5 0 0	500000 28888 2888 288			4	ç	4	ъ	0 53			8	ç	n	¢			
Add 25 Add 26 Add 26 Ad	00000			0 6	0	3	80	I .	Ф 1.	မ	239	5	•	0	0	0	
AM 25 AM 25 AM 26 AM 26	0 0 0 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0000	15	¢	ų	ţ	R	0		J	ō	J	ĉ	0	o	° o	
Addia 26 E 0 data 26 E 0 Phil 47 2 35 0 Phil 45 1 0 0 Phil 45 1 0 0 Phil 55 5 0 0 Phil 53 22 0 0 Phil 53 22 0 0 Phil 53 22 0 0	01 23 30 01 23 30 01 23 30	U U U	••	0	ų	۴-	-				4	9	n	0	Ų	° c	
AM 25 3 0 maal 52 3 0 PM 47 4 0 PM 46 11 0 PM 86 5 0 PM 86 5 0 PM 68 12 0 PM 68 12 0	C 107	J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.	16		J	8	F	D.	282	ن	BN	ت	•	°	Ļ	Ŷ O	
Adail 32 15 0 PMMi 47 2 0 PMMi 45 1 0 PMMi 45 1 0 PMMi 25 5 0 PMMi 35 5 0 PMMi 35 5 0 PMMi 177 27 0 PMMi 53 12 0 PMMi 68 12 0	c 107	3		Ð	U	-10	Ļ				58	0	a	Q	ų	ý	
PM 47 4 0 PM 45 1 0 PM 26 5 0 PM 26 5 0 PM 26 5 0 PM 68 12 0 PM 70			77	0	0	\$0	प		23	0	167	o	ĉ	•	ç	0 0	
4 4 4 8 2 8 8 8 9 4 4 4 4 8 8 2 8 8 8 9 5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	-																
45 11 0 8 6 7 1 177 25 5 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12	ь 0	J	4	0	Ċ	ŝ	٢	н с	47 0	0	38.	0	0	₽	J	0 0	
46 7 0 38 5 0 53 12 0 53 12 0 12 0	8		ю М	0	0	'n	61			0	2	0	٥	ø	Ċ	0	
36 5 0 53 127 27 0 65 12 0 65 12 0	ц <mark>у</mark> ЭЗ	ن		0	0	Þ.	¢4	с С	9		ЭЧ.	c	0	Ģ	J	о С	
177 27 0 53 12 0 66 12 0			ŝ		•	4D	c.				24	•	0	•	ы		
53 53 12 0 0	0 20 4		19 1	0	c	20	~	Ľ	129 0		136	c	Ģ	Ð		0	
65 12 0	0 65	ه	~	0	÷	ø	-	0	б5 С	0	9	0	٥	Þ		0	
			ŝ	• •	Ċ	ģ	~				38	¢	0	0			
65 B C	0 73		e1	о -	0	4	•0				2	0	o	Ð	0	0 0	
8			3	ن م	0	-	4				3C	0	a	0			
Totel 250 40 0 C	0 270	0	s 5	9	c	20	10	0	5 2	c	155	ĉ	0	0	0	0	
94 0	0 678	0			Ģ	142					667	a	0				
Approh % 35.1 13.9 0.0 0.0	0.0	0.0	85.2 14.8	33	0.0		() 4	0.0 95.8		20		0.0	0.0	0.0	0.0		
33.5 5.2 0.0		0.0			3	2			1		41.0	2	0			0.0	
557 92 25 92	0 649	00			° ;	140				, ,	839 9	.	000				
	Т	2		L	2	3.25	L			L		J.	20	20			
	:				с с	•••	, c C			6	1,	• ¢		• •	 		

тер	din Vaj							-	Ś			~						Date: 1	Date: 11/01/2018	.2	
		jey Rdi North	V Rd/E Galla Northbound	her Fe	TTY Ref.	ardin Vi	alley Ro Sou	Hardin Valiey Rd/E Gallaher Ferry Rithardin Valley Rd/E Gallaher Ferry Rd Northbound	iner Fe	ny Rd		Hickor	Hickory Creek Rd Eastbound	Ra			Hickor	Hickory Creek Rd Westbound	2	[
12	Left T	Their	Rat Utum I App Tase	fum L	Pp Tetal	Left	ТЪЛ	Pigt	Utum App Total	Cp Tolo	1 Uar	25	:: Ж	-Tutt	AS TOB	4: 4:	1FR	Rat	Ent	Apo Tasa I	Int. Total
5 2	10 moj 11 se	NA CC: ction B	Peak Hour Analysis from 07:00 AM to 09:00 AM Peak Hour for Entire intersection Begins at 07:16 AM	O AM	AM								ł								
	6	-	ç	c	20	0	Ņ	-	Ų	11	0	•	6	Ģ	61	9	ð	0	ø	Ö	5
	ž	-	ų	0	N	0	::	17	v	겉	11	0	09	•	3	0	0	ò	à	o	ö
	58	40	ç	ņ	37	c	<u>.</u>	4	U	1	v	Ċ	53	Q	\$	~	0	Ģ	o	0	109
	9. '	۶.	u	0	ន	•	9	ы	IJ	Ŧ	ы	0	8	¢	5	5	o	ç	o	0	ę
	88	4	4	-	50,	0	48	\$	ں ا	Ś	m	c	233	0	545	^	0	^	0	o'	405
20	63.6	162	y Ç	0.0	8,	0.0	82.B	17.2	C.C	100.	3.7	0.0	96.3	0.0	166	0.0	0,0	2	0.0	0	
				Ĩ	0.709					3.853					0.576						0.929
	82	9	Ļ	~	8 6	0	ŧ	5	5	5	80	ĥ	Ň	0	X	ĥ	•	ĥ	•	0	375
co,	93.2	94.1	C.C	0.0	93.3		- 00.0	90.06	с С	38.3	88.9	C.C	6	0.0	00	0.0	0.0	00	0,0	0.0	92.6
1		-	J	6	2-4		•		0	F	-	Ģ	ĸ	0	2	ĥ	•	^	•	5	30
	6.8	5.9	0.0	J.J	6.7	0.0	0.0	10.0	0.0	E.	1.1	0.0	9.0	0.0	ui	0.0	0'0	0.0	0.0	0.0	7.4
15	din Val	ley Rdi	E Galla	her Fe	TA ROL	ardin Vi	alley Re	tardin Valley RdiE Gallaher Ferry Richardin Valley Role Gallaher Perry Ro	ther Fel	Å R		Hickor	Hickory Creek Rd	22			Hickor	Hickory Creek Rd	PR	Γ	
		Nort	Northbound				Sou	Southbound	-		;	ŵ	Eastbound	_			We.	Westbound	_		
د	Left T	Thra	स्का । U	Utum Apr - da		Left	Thru	н Н	Ulurra Apo Teal	Es Teal	Ę.	Tha	뷶	Clum, 40 1001	ž	Left	125	Bat		As teb D. Tolal	it. Total
20 8	l'arn 04 L'Interse	ction BM	Peak Hour Analysis from 04:00 PM to 06:00 PM Peak Hour tor Entire Intersector Begins at 05:00 PM	0 P.M 05-00	2				ł												
	8		0	ē	53	ĉ	2	-	0	0	-	C	3	e	46	Ð	Q	0	Q	U	112
5:15 PN	89	12	0	n	8	Ô	ŝ	-	0	ú	N	n	8	U	83	٥	•	0	¢	o	124
	3	æ	0	0	ľ	0	10		0	4	η	0	R	U	4	a	Ģ	a	¢	J	119
	â	æ	0	٥	ន	0	ŝ	2	0	7	4	0	8	U	30	٩	•	9	Ģ	U	88
		¥	0	•	510 510	e	ŧ	¥C	c	20	₽	e	5	ų	155	0	0	٩	0	þ	577
% App. Total 8	85.2	14.8	0.0	0,0	100	0,0	75.0	26.C	0.0	100	5.5	0.0	93.5	C.C	100	0.0	0.0	0.0	0.0	o	:
					0.844					0.7-4					0.842						788,0
		56	0	0	268		15			22		a	144	Ļ	154	•	٩	ò	a	0	277
"	9.66	5.79	0	0,0	99.3	0.0	100.0	100.0	0.0	0.00 -	100.0	0.0	198	с С	99.46	0,0	0'0	0.0	0.0	0.0	9 9.3
	٣	5	ņ	•	Ň	a	o	J	Ģ	0	¢	0	-	U	-	0	Ð	•	0	0	¢
	č	Ę																			

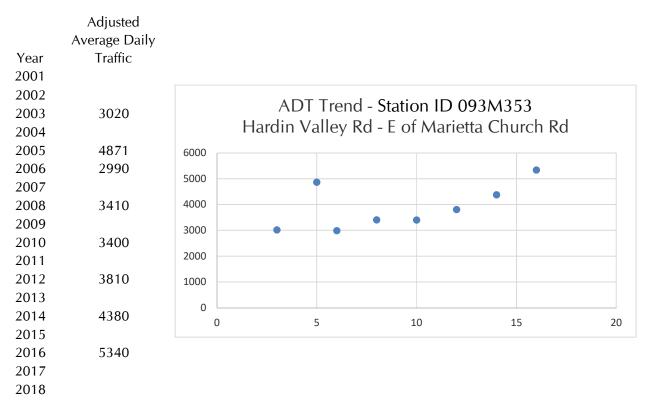

.

Project: Hickory Creek Subdivision Intersection: Hardin Valley Rd/E Gallaher Ferry Rd at Hickory Creek Rd Date Conducted: November 1, 2018

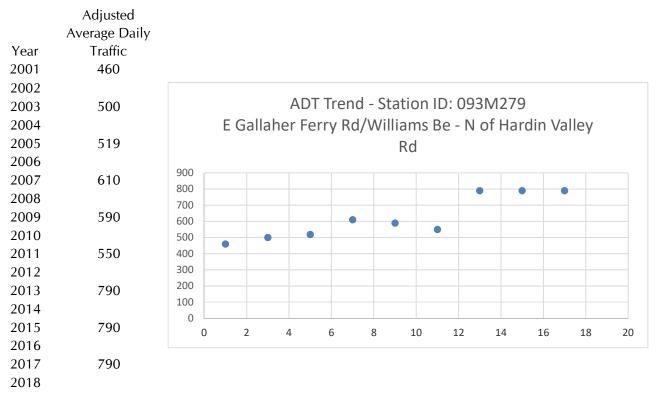

AM Peak Hour	7:15 AM - 8:15 AM	405
PM Peak Hour	5:00 PM - 6:00 PM	445


	Hardin	Valley	/E Gallah	ner Ferry	Hardin	Valley/	E Gallah	ner Ferry	Hie	ckory C	reek Ro	ad	Hie	ckory Ci	reek Ro	ad	
		Nort	hbound			South	nbound			West	ound			Eastbo	ound		
Start	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Int. Total
Peak Hour Analysis from 7	7:00 AM t	o 9:00 /	AM														
AM Peak Hour begins at 7	:15 AM																
7:15 AM	19	1	0	20	0	12	1	13	0	0	61	61	0	0	0	0	94
7:30 AM	24	1	0	25	0	11	3	14	2	0	60	62	0	0	0	0	101
7:45 AM	29	8	0	37	0	10	4	14	5	0	53	58	0	0	0	0	109
8:00 AM	16	7	0	23	0	15	2	17	2	0	59	61	0	0	0	0	101
Total Volume	88	17	0	105	0	48	10	58	9	0	233	242	0	0	0	0	405
Existing (5% over 2 yrs)	97	19	0		0	53	11		10	0	257		0	0	0		447
Future (5% over 5 yrs)	112	22	0		0	61	13		11	0	297		0	0	0		517
PHF	0.76	0.53	-		-	0.80	0.63		0.45	-	0.95		-	-	-		0.93
Peak Hour Analysis from 2	2:30 PM to	o 6:00 F	PM														
PM Peak Hour begins at 5	:00 PM																
5:00 PM	53	12	0	65	0	2	1	3	1	0	45	46	0	0	0	0	114
5:15 PM	68	12	0	80	0	5	1	6	2	0	36	38	0	0	0	0	124
5:30 PM	65	8	0	73	0	3	1	4	3	0	38	41	0	0	0	0	118
5:45 PM	44	8	0	52	0	5	2	7	4	0	26	30	0	0	0	0	89
Total Volume	230	40	0	270	0	15	5	20	10	0	145	155	0	0	0	0	445
Existing (5% over 2 yrs)	254	44	0		0	17	6		11	0	160		0	0	0		491
Future (5% over 5 yrs)	294	51	0		0	19	6		13	0	185		0	0	0		568
PHF	0.85	0.83	-		-	0.75	0.63		0.63	-	0.81		-	-	-		0.90

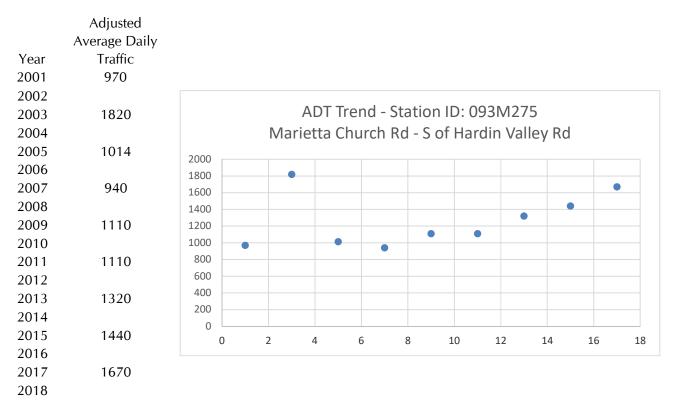
Attachment 3 Vining Mill Subdivision



Vining Mill Knox County, 'IN



Attachment 4 ADT Trends


Most Recent Trend	Line Growth
Year	ADT
2003	3020
2016	5340

Annual Percent Growth 5.91%

Most Recent Trend	Line Growth
Year	ADT
2001	460
2017	790

Annual Percent Growth	4.48%

Most Recent Trend L	ine Growth
Year	ADT
2001	970
2017	1670

Annual Percent Growth 4.51%

Attachment 5 Trip Generation

Project: Seal Property Subdivision Date Conducted: 6/9/2020

Single-Family Detached Housing (LUC 210) 269 Single Family Lots

Average Daily Traffic

Ln(T) = 0.92Ln(X) + 2.71 Ln(T) = 0.92Ln(269) + 2.71T = 2584

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m.

T = 0.71(X) + 4.80T = 0.71(269) + 4.80 T = 196

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Ln(T) = 0.96Ln(X) + 0.20 Ln(T) = 0.96Ln(269) + 0.20T = 263

		Pere	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	2584	50%	50%	1292	1292
AM Peak Hour	196	25%	75%	49	147
PM Peak Hour	263	63%	37%	166	97

Project: Hunters Way Subdivision Date Conducted: 7/27/2020

> Single-Family Detached Housing (LUC 210) 40 Single Family Lots

Average Daily Traffic

Ln(T) = 0.92Ln(X) + 2.71 Ln(T) = 0.92Ln(40) + 2.71T = 448

Peak Hour of Adjacent Street Traffic One Hour Between 7 and 9 a.m. T = 0.71(X) + 4.80

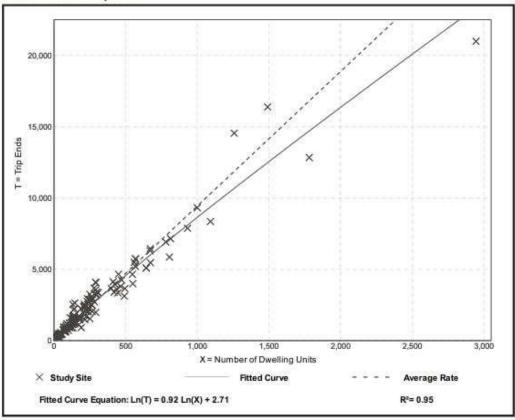
T = 0.71(40) + 4.80T = 33

Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.

Ln(T) = 0.96Ln(X) + 0.20 Ln(T) = 0.96Ln(40) + 0.20T = 42

		Per	cent	Nun	nber
Time Period	Total Trips	Enter	Exit	Enter	Exit
Weekday (24 hours)	448	50%	50%	224	224
AM Peak Hour	33	25%	75%	8	25
PM Peak Hour	42	63%	37%	26	16

Single-Family Detached Housing (210)


(4	10)	
Vehicle Trip Ends vs:	Dwelling Units	
On a:	Weekday	
Setting/Location:	General Urban/Suburban	
Number of Studies:	150	

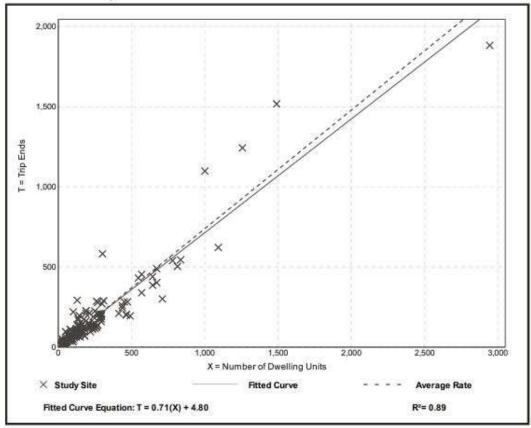
Number of Studies:	159
Avg. Num. of Dwelling Units:	264
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	4.81 - 19.39	2.10

Data Plot and Equation

2 Trip Generation Manual 10th Edition • Volume 2: Data • Residential (Land Uses 200-299)

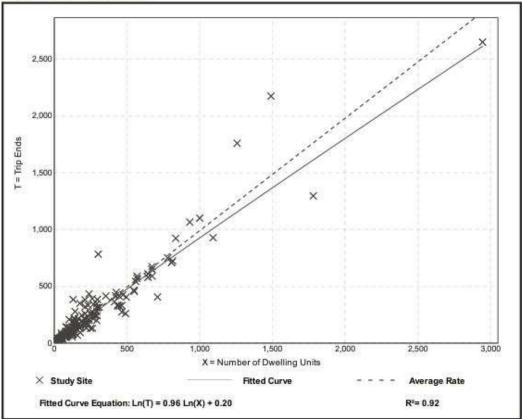

Single-Family Detached Housing (210)

Vehicle Trip Ends vs:	Dwelling Units
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	173
Avg. Num. of Dweiling Units:	219
Directional Distribution:	25% entering, 75% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

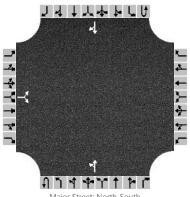
Data Plot and Equation


Single-Family Detached Housing (210)

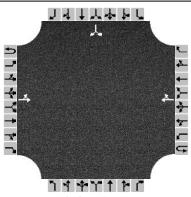
Vehicle Trip Ends vs:	Dwelling Units
On a:	Weekday,
	Peak Hour of Adjacent Street Traffic,
	One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	190
Avg. Num. of Dwelling Units:	242
Directional Distribution:	63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation	
0.99	0.44 - 2.98	0.31	

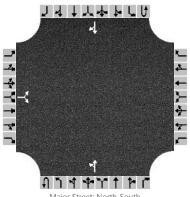


4 Trip Generation Manual 10th Edition • Volume 2: Data • Residential (Land Uses 200–299)


	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hickory Creek at Hardin V
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	6/11/2020	East/West Street	Hickory Creek Road
Analysis Year	2020	North/South Street	Hardin Valley/E Gallaher
Time Analyzed	Existing AM Peak	Peak Hour Factor	0.93
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	592.006 - Seal Property Subdivisio	on	

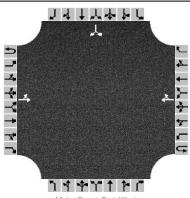
Major Street: North-South

Vehicle Volumes and Adj	ustme	ents															
Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0	
Configuration			LR							LT						TR	
Volume, V (veh/h)		10		257						97	19				53	11	
Percent Heavy Vehicles (%)		2		2						2							
Proportion Time Blocked																	
Percent Grade (%))														
Right Turn Channelized		Ν	lo			Ν	lo			N	lo			٩	10		
Median Type/Storage				Undi	vided												
Critical and Follow-up He	eadwa	iys															
Base Critical Headway (sec)		7.1		6.2						4.1							
Critical Headway (sec)		6.42		6.22						4.12							
Base Follow-Up Headway (sec)		3.5		3.3						2.2							
Follow-Up Headway (sec)		3.52		3.32						2.22							
Delay, Queue Length, an	d Leve	el of S	ervice	e													
Flow Rate, v (veh/h)			287							104							
Capacity, c (veh/h)			981							1531							
v/c Ratio			0.29							0.07							
95% Queue Length, Q ₉₅ (veh)			1.2							0.2							
Control Delay (s/veh)			10.2							7.5							
Level of Service, LOS			В							А							
Approach Delay (s/veh)		10).2	-					6.4								
Approach LOS		I	3														


	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2020	North/South Street	Muddy Creek Lane
Time Analyzed	Existing AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision		-

Major Street: East-West

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		LT						TR							LR		
Volume, V (veh/h)		1	309				113	7						22		3	
Percent Heavy Vehicles (%)		2												2		2	
Proportion Time Blocked																	
Percent Grade (%)															0		
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			Ν	10		
Median Type/Storage				Undi	vided												
Critical and Follow-up H	eadwa	iys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.12												6.42		6.22	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.22												3.52		3.32	
Delay, Queue Length, ar	d Leve	el of S	ervice	9													
Flow Rate, v (veh/h)	Τ	1													27		
Capacity, c (veh/h)		1453													581		
v/c Ratio		0.00													0.05		
95% Queue Length, Q ₉₅ (veh)		0.0													0.1		
Control Delay (s/veh)		7.5													11.5		
Level of Service, LOS		A													В		
Approach Delay (s/veh)		0	.0										11.5				
Approach LOS													В				

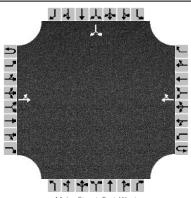

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hickory Creek at Hardin V
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	6/11/2020	East/West Street	Hickory Creek Road
Analysis Year	2020	North/South Street	Hardin Valley/E Gallaher
Time Analyzed	Existing PM Peak	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	592.006 - Seal Property Subdivision	n	

Major Street: North-South

Vehicle Volumes and Ad	justme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	0	1	0	0	0	1	0
Configuration			LR							LT						TR
Volume, V (veh/h)		11		160						254	44				17	6
Percent Heavy Vehicles (%)		2		2						2						
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		Ν	lo			Ν	lo			N	lo			٩	10	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.42		6.22						4.12						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Leve	el of S	ervice	e												
Flow Rate, v (veh/h)			190							282						
Capacity, c (veh/h)			942							1587						
v/c Ratio			0.20							0.18						
95% Queue Length, Q ₉₅ (veh)			0.8							0.6						
Control Delay (s/veh)			9.8							7.8						
Level of Service, LOS			A							А						
Approach Delay (s/veh)		9	.8	-		-	-			6.8				-	-	-
Approach LOS			Ą													

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2020	North/South Street	Muddy Creek Lane
Time Analyzed	Existing PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision	I	-

Major Street: East-West

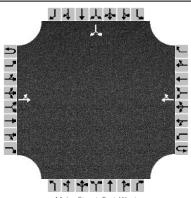

Vehicle Volumes and Ad	liuctro	onto			majo		ist most									
	justmo								1	NI						
Approach		Easte	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume, V (veh/h)		3	174				296	23						14		2
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		٩	10			Ν	10			Ν	lo			Ν	10	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)	Т	4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, ar	d Leve	el of S	Service	e			<u>.</u>									
Flow Rate, v (veh/h)	Т	3													17	
Capacity, c (veh/h)		1211													526	
v/c Ratio		0.00													0.03	
95% Queue Length, Q ₉₅ (veh)		0.0													0.1	
Control Delay (s/veh)		8.0													12.1	
Level of Service, LOS		A													В	
Approach Delay (s/veh)		C	0.1										12.1			
Approach LOS												В				

Attachment 7 Intersection Worksheets – Background AM/PM Peaks

				HCS	7 Ro	unda	abo	uts R	eport								
General Information							Site	Infor	matior	n			_	_			
Analyst	Addie	Kirkham					Inte	rsection		-	Hickory	Creek a	Hardi	n Valley			
Agency or Co.	FMA						E/W	Street N	ame		Hickory	Creek R	oad / H	lardin V	alley Roa	ad	
Date Performed	6/11/2	2020					N/S	Street N	ame	E Gallaher Ferry / Driveway							
Analysis Year	2023						Ana	lysis Time	e Period (l	nrs)							
Time Analyzed	Backg	round A	M Peak				Peak	k Hour Fa	octor								
Project Description	592.00)6 Seal P	roperty S	ubdivisior	า		Juris	diction			Knox C	ounty					
Volume Adjustments	and S	ite Ch	aracte	ristics													
Approach		E	B			W	В		T	N	В				SB		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	
Lane Assignment			LI	ſR				LTR			LTF	२				LTR	
Volume (V), veh/h	0	11	299	0	0	0	118	22	0	0	0	0	0	61	0	13	
Percent Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Flow Rate (VPCE), pc/h	0	12	328	0	0	0	129	24	0	0	0	0	0	67	0	14	
Right-Turn Bypass		No	one			No	ne			No	ne			١	lone	-	
Conflicting Lanes			1			1				1	L				1		
Pedestrians Crossing, p/h			0			0)			()				0		
Critical and Follow-U	p Head	dway	Adjust	ment													
Approach				EB		Т		WB			NB				SB		
Lane			Left	Right	Bypass	E Let	ft	Right	Bypass	Left	Right	Bypas	s L	.eft	Right	Bypass	
Critical Headway (s)				4.9763				4.9763			4.9763				4.9763		
Follow-Up Headway (s)				2.6087				2.6087			2.6087				2.6087		
Flow Computations,	Capaci	ty and	d v/c R	atios													
Approach				EB		T		WB			NB		Т		SB		
Lane			Left	Right	Bypass	i Lei	ft	Right	Bypass	Left	Right	Вурая	s L	.eft	Right	Bypass	
Entry Flow (v _e), pc/h				340				153			0	1			81		
Entry Volume veh/h				333				150			0				79		
Circulating Flow (vc), pc/h				67				12			407				129		
Exiting Flow (vex), pc/h				395				143			36				0		
Capacity (c _{pce}), pc/h				1289				1363			911				1210		
Capacity (c), veh/h				1264				1336			893				1186		
v/c Ratio (x)				0.26				0.11			0.00				0.07		
Delay and Level of Se	ervice																
Approach				EB				WB			NB		Τ		SB		
Lane			Left	Right	Bypass	E Let	ft	Right	Bypass	Left	Right	Вураз	s L	.eft	Right	Bypass	
Lane Control Delay (d), s/veh				5.2				3.6			4.0				3.6		
Lane LOS				А				А			A				А		
95% Queue, veh				1.1				0.4			0.0				0.2		
Approach Delay, s/veh				5.2				3.6							3.6		
Approach LOS				А				А							А		
Intersection Delay, s/veh LOS	;					4.5							A				

Copyright © 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2023	North/South Street	Muddy Creek Lane
Time Analyzed	Background AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision		


Major Street: East-West

Vehicle Volumes and Ad	justmo	ents															
Approach	Γ	Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		LT						TR							LR		
Volume, V (veh/h)		1	357				131	7						22		3	
Percent Heavy Vehicles (%)		2												2		2	
Proportion Time Blocked																	
Percent Grade (%)															0		
Right Turn Channelized		Ν	10			Ν	lo			Ν	lo			٩	10		
Median Type/Storage				Undi	vided												
Critical and Follow-up H	eadwa	iys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.12												6.42		6.22	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.22												3.52		3.32	
Delay, Queue Length, an	d Leve	el of S	ervice	e													
Flow Rate, v (veh/h)		1													27		
Capacity, c (veh/h)		1430													531		
v/c Ratio		0.00													0.05		
95% Queue Length, Q ₉₅ (veh)		0.0													0.2		
Control Delay (s/veh)		7.5													12.1		
Level of Service, LOS		A													В		
Approach Delay (s/veh)		0	.0	-							-	-	12.1				
Approach LOS									Ì				В				

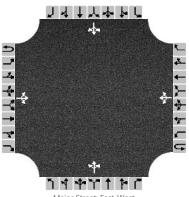
				HCS	57 Roi	unda	ıbοι	uts R	eport							
General Information							Site	Infor	matior	ı						
Analyst	Addie	Kirkham	1				Inter	rsection			Hickor	y Creek a	Hardi	n Valley		
Agency or Co.	FMA						E/W	Street N	ame		Hickor	y Creek R	oad / ⊦	lardin V	alley Roa	ad
Date Performed	6/11/2	2020					N/S	Street N	ame		E Galla	her Ferry	/ Drive	way		
Analysis Year	2023						Anal	ysis Time	e Period (l	nrs)	0.25					
Time Analyzed	Backg	round PI	M Peak				Peak	k Hour Fa	ictor		0.90					
Project Description	592.00	06 Seal P	roperty S	ubdivisio	า		Juris	diction			Knox C	County				
Volume Adjustments	and S	ite Ch	aracte	ristics												
Approach	T	E	B			WE	B		Т	N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			Ľ	ſR			ļ	LTR	+		LT	R				LTR
Volume (V), veh/h	0	13	191	0	0	0	298	51	0	0	0	0	0	19	0	6
Percent Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Flow Rate (vPCE), pc/h	0	15	216	0	0	0	338	58	0	0	0	0	0	22	0	7
Right-Turn Bypass		No	one			Nor	ne			Nc	ne			N	lone	
Conflicting Lanes		1				1				1					1	
Pedestrians Crossing, p/h		0				0				0					0	
Critical and Follow-U	p Head															
Approach	•			EB		T		WB			NB		Т		SB	
Lane			Left	Right	Bypass	Lef	t	Right	Bypass	Left	Right	Вурая	s L	.eft	Right	Bypass
Critical Headway (s)				4.9763			4	4.9763			4.9763				4.9763	
Follow-Up Headway (s)				2.6087			2.6087			2.6087				2.6087		
Flow Computations,	Capaci	ty and	l v/c R	atios		_							_			-
Approach	•	- -	-	EB		1		WB			NB		Т		SB	
Lane			Left	Right	Bypass	Lef	ť	Right	Bypass	Left	Right	Вурая	s L	.eft	Right	Bypass
Entry Flow (ve), pc/h				231	71		-	396	71		0	71	-		29	71
Entry Volume veh/h				226			+	388			0		+	-	28	
Circulating Flow (v _c), pc/h				22				15			253		-		338	<u> </u>
Exiting Flow (vex), pc/h				238				345			73		+		0	
Capacity (cpce), pc/h				1349			Т	1359			1066				978	
Capacity (c), veh/h				1323			+	1332			1045	-	+		958	
v/c Ratio (x)				0.17				0.29			0.00				0.03	<u> </u>
Delay and Level of Se	rvice			1												
Approach				EB				WB			NB				SB	
Lane			Left	Right	Bypass	Lef	ť	Right	Bypass	Left	Right	Вураз	s L	.eft	Right	Bypass
Lane Control Delay (d), s/veh				4.1				5.3			3.4		-		4.0	
Lane LOS				A				A			A				A	
95% Queue, veh				0.6				1.2			0.0		-		0.1	<u> </u>
Approach Delay, s/veh				4.1	1			5.3							4.0	
Approach LOS				A				A					-		A	
Intersection Delay, s/veh LOS						4.8							A			

Copyright © 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2023	North/South Street	Muddy Creek Lane
Time Analyzed	Background PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision		

Major Street: East-West

Vehicle Volumes and Ad	justm	ents														
Approach	T	Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume, V (veh/h)		3	201				343	23						14		2
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		١	١o			Ν	lo			Ν	lo			Ν	lo	
Median Type/Storage				Undi	vided											
Critical and Follow-up H	eadwa	ays														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, ar	d Leve	el of S	Service	e			<u>.</u>									
Flow Rate, v (veh/h)		3													17	
Capacity, c (veh/h)		1160													474	
v/c Ratio		0.00													0.04	
95% Queue Length, Q ₉₅ (veh)		0.0													0.1	
Control Delay (s/veh)		8.1													12.9	
Level of Service, LOS		А													В	
Approach Delay (s/veh)		C).1										12.9			
Approach LOS											В					


Attachment 8 Intersection Worksheets – Full Buildout AM/PM Peaks

				HCS	57 Ro	unda	abo	uts F	lepc	ort								
General Information		_			_	_	Site	e Info	mat	ion				_	_			
Analyst	Addie	Kirkham	1				Inte	ersection				Hickor	y Creek a	: Hardi	n Valley	4		
Agency or Co.	FMA						E/W	V Street I	lame			Hickor	y Creek R	oad / H	Hardin \	Valley Roa	ad	
Date Performed	7/27/2	2020					N/S	Street N	lame			E Galla	her Ferry	/ Drive	eway			
Analysis Year	2023						Ana	alysis Tim	e Perio	od (h	rs)	0.25						
Time Analyzed	Full Bu	uildout A	M Peak				Pea	ık Hour F	actor			0.93						
Project Description	592.00)6 Seal P	roperty S	Subdivision	ı		Juri	sdiction				Knox C	ounty					
Volume Adjustments	and S	ite Ch	aracte	ristics														
Approach		E	B			W	VВ		Т		N	В				SB		
Movement	U	L	Т	R	U	L	Т	R		U	L	т	R	U	L	Т	R	
Number of Lanes (N)	0	0	1	0	0	0	1	0		0	0	1	0	0	0	1	0	
Lane Assignment			Ľ	ΓR				LTR				LT	R				LTR	
Volume (V), veh/h	0	11	299	3	0	31	118	22		0	7	7	58	0	61	2	13	
Percent Heavy Vehicles, %	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2	2	
Flow Rate (VPCE), pc/h	0	12	328	3	0	34	129) 24		0	8	8	64	0	67	2	14	
Right-Turn Bypass		No	one		Nc	one				None					None			
Conflicting Lanes		1				:	1				1					1		
Pedestrians Crossing, p/h				0				0						0				
Critical and Follow-U	p Hea	dway	Adjust	tment														
Approach				EB				WB				NB		Т		SB		
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Вура	s I	Left	Right	Bypass	
Critical Headway (s)				4.9763				4.9763				4.9763				4.9763		
Follow-Up Headway (s)				2.6087			2.6087				2.6087				2.6087			
Flow Computations,	Capaci	ty and	l v/c R	latios								<u>.</u>						
Approach				EB				WB				NB		Т		SB		
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Вура	s I	Left	Right	Bypass	
Entry Flow (v _e), pc/h				343				187				80				83		
Entry Volume veh/h				336				183				78				81		
Circulating Flow (v _c), pc/h				103				28				407				171		
Exiting Flow (vex), pc/h				459				151				44				39		
Capacity (c _{pce}), pc/h				1242			Т	1341				911				1159		
Capacity (c), veh/h				1218				1315				893		Τ		1136		
v/c Ratio (x)				0.28			Т	0.14				0.09		Τ		0.07		
Delay and Level of Se	ervice																	
Approach				EB				WB				NB		Т		SB		
Lane			Left	Right	Bypas	s Le	eft	Right	Вура	ass	Left	Right	Вураз	s I	Left	Right	Bypass	
Lane Control Delay (d), s/veh				5.5				3.9				4.9				3.8		
Lane LOS				A				А				A				А		
95% Queue, veh				1.1				0.5				0.3				0.2		
Approach Delay, s/veh						3.9		4.9				3.8						
Approach LOS			5.5 A					A				A				A		
Intersection Delay, s/veh LOS	;					4.8								А				

Copyright © 2020 University of Florida. All Rights Reserved.

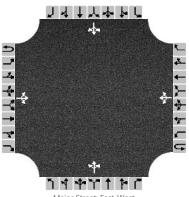
	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2023	North/South Street	Muddy Creek / Driveway
Time Analyzed	Full Buildout AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision		

. . ..

Major Street: East-West

Vehicle Volumes and Ad	,								1							
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume, V (veh/h)		1	415	2		10	161	7		7	0	66		22	0	3
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											C				0	
Right Turn Channelized		No No								Ν	lo			Ν	lo	
Median Type/Storage		Undivided														
Critical and Follow-up H	eadwa	iys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	nd Leve	el of S	ervice	•												
Flow Rate, v (veh/h)		1				11					80				27	
Capacity, c (veh/h)		1391				1107					572				337	
v/c Ratio		0.00				0.01					0.14				0.08	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.5				0.3	
Control Delay (s/veh)		7.6				8.3					12.3				16.6	
Level of Service, LOS		A				A					В				С	
Approach Delay (s/veh)		0.0 0.6								- 12	2.3		16.6			
Approach LOS									3		С					

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.


HCS7™ TWSC Version 7.2.1 Full Buildout AM Peak_Muddy.xtw

				HCS	57 Ro	unda	abo	uts R	eport							
General Information							Site	Infor	matior	1						
Analyst	Addie	Kirkham	1			_	Inte	rsection	_		Hickory	Creek at	Hardir	n Valley	_	_
Agency or Co.	FMA						E/W	/ Street N	ame		Hickory	Creek Ro	oad / H	lardin V	alley Roa	ad
Date Performed	7/27/2	2020					N/S	Street N	ame		E Gallah	er Ferry	/ Drive	way		
Analysis Year	2023						Ana	lysis Time	e Period (l	nrs)	0.25					
Time Analyzed	Full Bu	uildout P	M Peak				Peal	k Hour Fa	ctor		0.90					
Project Description	592.00)6 Seal P	roperty S	ubdivisio	n		Juris	sdiction			Knox Co	ounty				
Volume Adjustments	and S	ite Ch	aracte	ristics												
Approach		E	B			W	/B		1	N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment			LT	ΓR				LTR			LTR	2				LTR
Volume (V), veh/h	0	13	191	8	0	106	298	51	0	5	5	38	0	19	8	6
Percent Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Flow Rate (VPCE), pc/h	0	15	216	9	0	120	338	58	0	6	6	43	0	22	9	7
Right-Turn Bypass		Nc	one			Nc	one	_		None				١	lone	
Conflicting Lanes		1				:	1			1					1	
Pedestrians Crossing, p/h		(0				0			0					0	
Critical and Follow-U	p Head	dway	Adjust	ment												
Approach				EB		T		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	eft	Right	Bypass
Critical Headway (s)				4.9763				4.9763			4.9763		+		4.9763	
Follow-Up Headway (s)				2.6087			2.6087				2.6087		+		2.6087	
Flow Computations, (Capaci	ty and	l v/c R	atios									_			
Approach		-	_	EB	_	T	_	WB	_		NB	_	Т		SB	_
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	eft	Right	Bypass
Entry Flow (v₀), pc/h				240				516			55		-		38	
Entry Volume veh/h				235				506			54				37	
Circulating Flow (vc), pc/h				151				27			253		+		464	
Exiting Flow (vex), pc/h				281		-		351			79		+		138	
Capacity (cpce), pc/h				1183	T		Т	1343			1066	<u> </u>	+		860	
Capacity (c), veh/h				1160			+	1316			1045		+		843	
v/c Ratio (x)				0.20				0.38			0.05				0.04	
Delay and Level of Se	rvice	1		1	1					1	1	1				
Approach				EB		T		WB			NB		T		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Right	Bypas	s L	eft	Right	Bypass
Lane Control Delay (d), s/veh				4.9				6.4			3.9		1		4.7	
Lane LOS				A				А			A				А	
95% Queue, veh				0.8				1.8			0.2		1		0.1	
Approach Delay, s/veh				4.9	1		6.4			3.9				4.7		
			4.9 A				6.4 A			A				-4.7 A		
Approach LOS				A			A A 7					A A				

Copyright © 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Addie Kirkham	Intersection	Hardin Valley at Muddy C
Agency/Co.	FMA	Jurisdiction	Knox County
Date Performed	7/28/2020	East/West Street	Hardin Valley Road
Analysis Year	2023	North/South Street	Muddy Creek Lane
Time Analyzed	Full Buildout PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	592.006 Seal Property Subdivision		

. . ..

Major Street: East-West

Vehicle Volumes and Ad	Jastin				1				1							
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume, V (veh/h)		3	237	8		33	448	23		5	0	43		14	0	2
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized		No No								Ν	lo			Ν	10	
Median Type/Storage		Undivided														
Critical and Follow-up H	eadwa	dways														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, ar	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		3				36					52				17	
Capacity, c (veh/h)		1053				1296					660				267	
v/c Ratio		0.00				0.03					0.08				0.06	
95% Queue Length, Q ₉₅ (veh)	1	0.0				0.1					0.3				0.2	
Control Delay (s/veh)		8.4				7.9					10.9				19.4	
Level of Service, LOS		A				A					В				С	
Approach Delay (s/veh)		0.1 0.8								- 1().9		19.4			
Approach LOS									I	3				с		

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.2.1

Full Buildout PM Peak_Muddy.xtw

Attachment 9 Turn Lane Warrant Analysis

Project: Seal Property Subdivision

Hardin Valley Road at	VOLUMES				
at Driveway Connection					
LEFT TURN	Opposing	Thru	LT	LT MAX	Warrant Met
AM	418	168	10	70	NO
PM	248	471	33	40	NO
Hardin Valley Road	VOLUMES				
at Driveway Connection					
RIGHT TURN		Thru	RT	RT MAX	Warrant Met
AM	_	416	2	149	NO
PM		240	8	349	NO

TABLE 5A

LEFT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN Y	<u>/OLUME</u>	1
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399
100 - 149	250	180	140	110	80	70
150 - 199	200	140	105	90	70	60
200 - 249	160	115	85	75	65	55
250 - 299	130	100	75	65	60	50
300 - 349	110	90	70	60	55	45
350 - 399		80	65	55	50	40
400 - 449	991	711 AM	Peak 10 LT	50	45	35
450 - 499	S0	65		45	40	30
500 - 549	70	60	45	35	35	25
	65	55	40	35	30	25
600 - 649	60	45	35	30	25	25
650 - 699	55	35	35	30	25	20
700 - 749 750 or More	50	35	30 25	25 25	20 20	20

(If the left-turn volume exceeds the table value a left -turn lane is needed)

OPPOSING	THROU	GH VOLUME	PLUS RIGH	T-TURN V	/OLUME	;*
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	=/ > 600
100 - 149	70	60	50	45	40	35
150 - 199	60	55	45	40	35	30
200 - 249	55	50	40 PM	Peak 33 LT	30	30
250 - 299	50	45	35		30	30
300 - 349	45	40	35	30	25	25
350 - 399	40 -	35	30	25	25	20
400 - 449	35	30	30	25	20	20
450 - 499	30	25	25	20	20	20
500 - 549 550 - 599	25 25 25	25 20	20 20	20 20	20 20	15 15
600 - 649	25	20	20	20	20	15
650 - 699	20	20	20	20	20	15
700 - 749 750 or More	20 20	20 20	20	15 15	15 15	15 15

* Or through volume only if a right-turn lane exists

[~

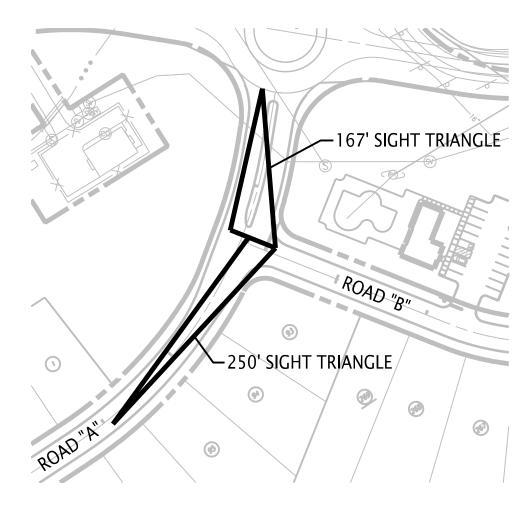
Hardin Valley Road at Driveway Connection Road "A"

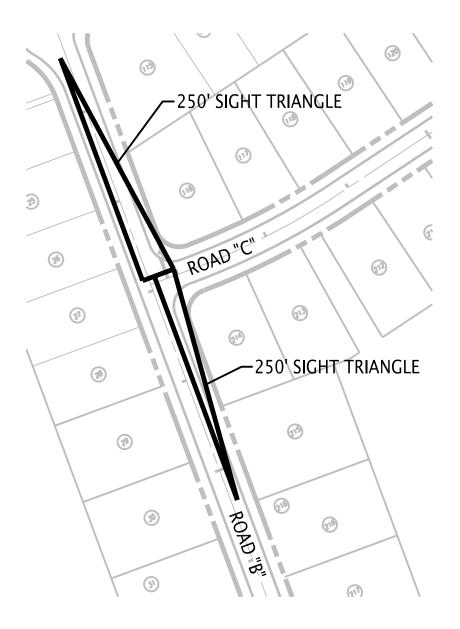
TABLE 5B

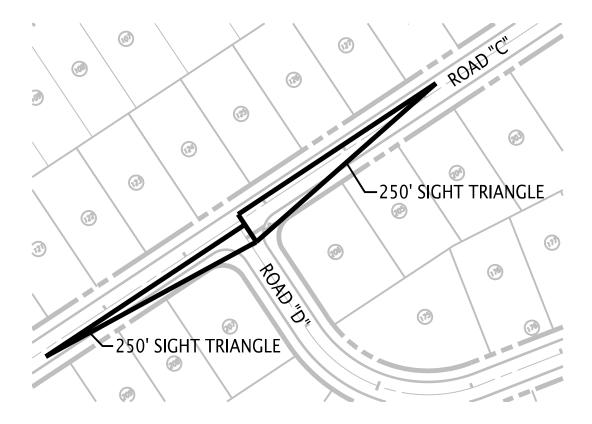
RIGHT-TURN LANE VOLUME THRESHOLDS FOR TWO-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH

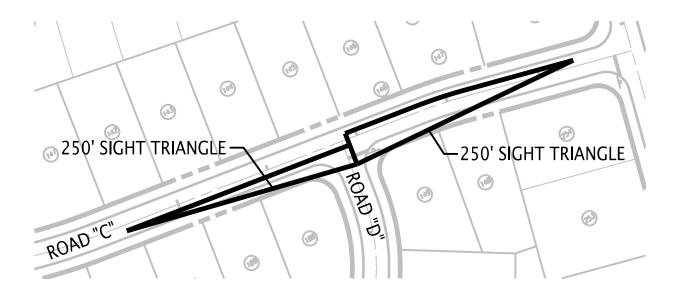
RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
Fewer Than 25 25 - 49 50 - 99			Орм	Peak 8 RT				
100 - 149 150 - 199		· · · · · · · · · · · · · · · · · · ·						
200 - 249 250 - 299					Yes	Yes Yes		
300 - 349 350 - 399			Yes	Ves Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499		Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

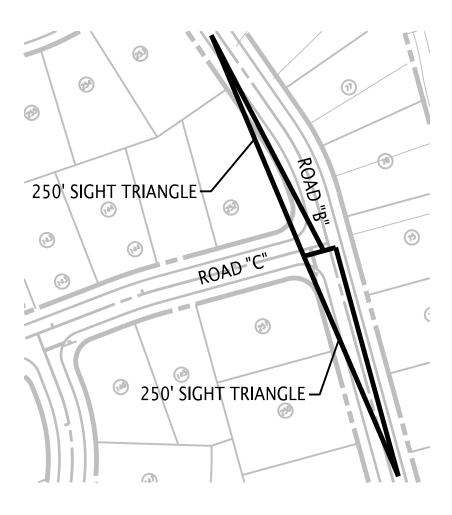
ł

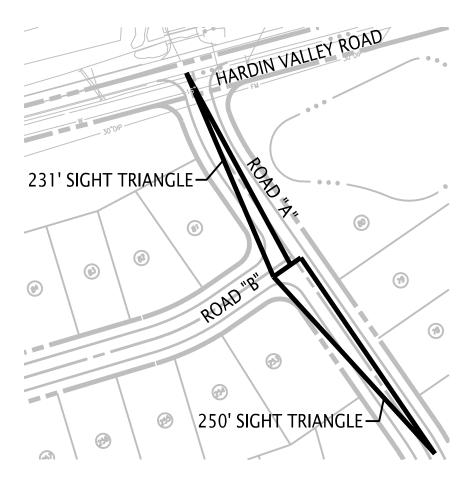

Į.


.


RIGHT-TURN VOLUME	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
	350 - 399	400 - 449	450 - 499	500 - 549	550 - 600	+ / > 600		
Fewer Than 25 25 - 49 50 - 99			M Peak 2 RT	Yes	Yes Yes	Yes Yes		
100 - 149 150 - 199	···· ··· ··· ··· ·	Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
200 - 249 250 - 299	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
300 - 349 350 - 399	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
400 - 449 450 - 499	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
500 - 549 550 - 599	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		


* Or through volume only if a left-turn lane exists.


Attachment 10
Sight Triangles



Date: July 27, 2020

Project Name: Sealy Property Subdivision

To: Knoxville-Knox County Planning

Subject: TIS Review for Sealy Property Subdivision (8-SC-20-C / 8-E-20-UR)

Dear Knoxville-Knox County Planning staff,

The following comment response document is submitted to address comments dated July 21, 2020:

- 1. **Reviewer Comment:** The TIA scope determination form indicated that the applicant must look at two access points for the subdivision, not only the single access point as shown in the site plan and analyzed in the TIS. Please reevaluate the TIS with two access points. Please revise Section 6.2 first paragraph of the TIS in relation to this issue. Even though there is a boulevard located at the single proposed access currently, this does not preclude a requirement of a second access given the number of units and surrounding traffic patterns that must be evaluated by the jurisdiction. There are 3-2 access options to the applicant and they are as follow:
 - a. Connection to the stub-out of Creekside Manor Subdivision
 - b. Connection to Hickory Creek Road
 - c. Connection to Hardin Valley Road

<u>Response:</u> The site layout was revised to include a second driveway connection to Hardin Valley Road.

2. Reviewer Comment: Page 6, please provide a revised site plan to include the parcel lines around the whole parcel.

<u>Response:</u> Revised Figure 2: Site Plan per the updated subdivision layout and added the property lines.

3. **Reviewer Comment:** Page 7, please include Marietta Church Road as a separate paragraph since the property has frontage along this road as well.

<u>Response:</u> Added a separate paragraph for the existing site conditions along Marietta Church Road.

4. **Reviewer Comment:** Page 12 second paragraph, revise "1,685" to "1,685 feet".

Response: Revised to "1,685 feet"

Ms. Barrett July 27, 2020 Page 2 of 2

5. **Reviewer Comment:** Please evaluate sight distance within the study given the sight triangles presented at the back of the TIS and at the access points for the subdivision.

<u>Response:</u> Evaluated sight distance at the intersection of Hardin Valley Road at driveway connection (Road "A") and added a more detailed explanation of the sight triangles.

6. **Reviewer Comment:** Page 21 (end), there looks to be another section (6.3) needed for internal roads of the subdivision.

Response: Added Section 6.3 Subdivision Roads.

Sincerely,

Addie Kirkham, P.E.