KENJO MARKET KNOXVILLE, TENNESSEE

TRAFFIC IMPACT STUDY

RUTLEDGE PIKE CITY OF KNOXVILLE, TENNESSEE

CCI PROJECT NO. 00590-0012

REV 1

Case # 9-B-21-SU TIS Revision 1 8/18/2021

PREPARED FOR:

MBI Companies, Inc. 299 North Weisgarber Road Knoxville, TN 37919

SUBMITTED BY:

Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, TN 37919 865.670.8555

> revised august 18 **2021**

KENJO MARKET KNOXVILLE. TENNESSEE

TRAFFIC IMPACT STUDY

RUTLEDGE PIKE CITY OF KNOXVILLE, TENNESSEE

CCI PROJECT NO. 00590-0012

REVISION I (08/18/21)

This report replaces the previous version of the traffic impact study dated 07/23/2021 prepared for this project in its entirety. The associated changes are related to comments received from the City of Knoxville and TDOT, which are located in Appendix F.

PREPARED FOR:

SUBMITTED BY:

MBI Companies, Inc. 299 North Weisgarber Road Knoxville, TN 37919

Cannon & Cannon, Inc. 8550 Kingston Pike Knoxville, TN 37919 865.670.8555

REVISED ------ AUGUST 18

2021

TABLE OF CONTENTS

SECTION I	EXECUTIVE SUMMARY	I
SECTION 2	INTRODUCTION & PURPOSE OF STUDY	2
SECTION 3	EXISTING CONDITIONS	4
SECTION 4	BACKGROUND CONDITIONS	9
SECTION 5	FUTURE CONDITIONS	11
SECTION 6	EVALUATIONS	17
SECTION 7	CONCLUSIONS & RECOMMENDATIONS	19
SECTION 8	APPENDIX	20

FIGURES

FIGURE 8 TRIP ASSIGNMENT	FIGURE 1	LOCATION MAP	2
FIGURE 42020 EXISTING TRAFFIC VOLUMES FROM ROCK POINTE CROSSING TIS7FIGURE 52021 EXISTING FACTORED TRAFFIC VOLUMES8FIGURE 62022 BACKGROUND TRAFFIC VOLUMES1FIGURE 7TRIP DISTRIBUTION1FIGURE 8TRIP ASSIGNMENT1	FIGURE 2	CONCEPTUAL SITE PLAN	3
FIGURE 52021 EXISTING FACTORED TRAFFIC VOLUMES8FIGURE 62022 BACKGROUND TRAFFIC VOLUMES1FIGURE 7TRIP DISTRIBUTION1FIGURE 8TRIP ASSIGNMENT1	FIGURE 3	EXISTING SITE CONDITIONS	5
FIGURE 62022 BACKGROUND TRAFFIC VOLUMESIFIGURE 7TRIP DISTRIBUTIONIFIGURE 8TRIP ASSIGNMENTI	FIGURE 4	2020 EXISTING TRAFFIC VOLUMES FROM ROCK POINTE CROSSING TIS	7
FIGURE 7 TRIP DISTRIBUTION FIGURE 8 TRIP ASSIGNMENT	FIGURE 5	2021 EXISTING FACTORED TRAFFIC VOLUMES	8
FIGURE 8 TRIP ASSIGNMENT	FIGURE 6	2022 BACKGROUND TRAFFIC VOLUMES	10
	FIGURE 7	TRIP DISTRIBUTION	14
FIGURE 9 2022 COMBINED TRAFFIC VOLUMES	FIGURE 8	TRIP ASSIGNMENT	15
	FIGURE 9	2022 COMBINED TRAFFIC VOLUMES	16

TABLES

TABLE 1	ANNUAL AVERAGE DAILY TRAFFIC COUNT SUMMARY	5
TABLE 2	TRIP GENERATION SUMMARY	12
TABLE 3	CAPACITY ANALYSES SUMMARY	17

APPENDICES

APPENDIX A	TRAFFIC DATA	A-1
APPENDIX B	TRIP GENERATION INFORMATION	B-1
APPENDIX C	CAPACITY ANALYSES	C-1
APPENDIX D	SIGNAL WARRANT SPREADSHEETS	D-1
APPENDIX E	TURN LANE WARRANT SHEETS	E-I
APPENDIX F	TIS COMMENT RESPONSE DOCUMENT	F-I

EXECUTIVE SUMMARY

This report provides a summary of a traffic impact study that was performed for a proposed redevelopment to the Kenjo Market on Rutledge Pike in Knoxville, Tennessee. The project site is located on the west side of Rutledge Pike just south of the I-40 / Rutledge Pike interchange. The development plan for this project proposes a new 5,000 square-foot building with a mixed-use of convenience market with gas pumps (3,100 square feet & 10 gas pumps) and a drive-through fast food restaurant (1,900 square feet). The proposed development will create a new primary full-movement access and a secondary right-in / right-out onto Rutledge Pike.

The purpose of this study was the evaluation of the traffic operational and safety impacts of the proposed development upon roadways in the vicinity of the project site. Discussion with the City of Knoxville and the Tennessee Department of Transportation staff resulted in two intersections being identified for detailed study. The studied intersections are Rutledge Pike at Primary Site Access / Existing McCalla Avenue / Proposed Rock Pointe Drive and Rutledge Pike at Secondary Site Access. Appropriate intersection evaluations such as capacity analyses, signal warrant analyses, and turn lane warrant evaluations were conducted at the study intersections for existing and future conditions, both with and without site generated traffic, in order to determine the anticipated impacts and to establish recommended measures to mitigate these impacts.

The primary conclusion of this study is that the traffic generated from the proposed development will not have a significant impact on the studied site access intersections at Rutledge Pike. Intersection levels-of-service are expected to be "C" or better exiting the site during peak traffic periods for the primary site access intersection and levels-of-service "A" exiting the site during peak traffic periods for the secondary site access intersection.

The following is a listing of recommendations that were developed to address traffic concerns in the vicinity of the project site:

- 1. Rutledge Pike at Primary Access / Existing McCalla Avenue / Proposed Rock Pointe Drive:
 - a. Install fourth leg (Proposed Primary Access) to the existing intersection of McCalla Avenue / Proposed Rock Pointe Drive at Rutledge Pike.
 - b. Install northbound left-turn lane with 75-foot storage lane and 180-foot taper.
 - c. Extend the existing solid white channelization line between the northbound ramps of Magnolia Avenue and Asheville Highway up to the beginning of the proposed left-turn lane to discourage drivers from making inappropriate maneuvers from the Asheville Highway Ramp to the proposed left-turn lane.
- 2. Rutledge Pike at Secondary Access (Right-in / Right-out):
 - a. Create new right-in / right-out intersection at Rutledge Pike.
 - b. Install a raised concrete channelization island to further enforce the right-in / right-out operation.
- 3. Maintain intersection corner sight distances on the site driveway by ensuring that site grading, landscaping, signage, and other site features do not restrict intersection sight distance lines of sight.

INTRODUCTION & PURPOSE OF STUDY

This report provides a summary of a traffic impact study that was performed for a proposed redevelopment to the Kenjo Market on Rutledge Pike in Knoxville, Tennessee. The project site is located on the west side of Rutledge Pike just south of the I-40 / Rutledge Pike interchange. FIGURE 1 is a location map showing the major roadways in the project site vicinity.

FIGURE 1 LOCATION MAP

The development plan for this project proposes a new 5,000 square-foot building with a mixed-use of convenience market with gas pumps (3,100 square feet & 10 gas pumps) and a drive-through fast food restaurant (1,900 square feet). The proposed development will create a new primary full-movement access and a secondary right-in / right-out onto Rutledge Pike. FIGURE 2 is a Conceptual Site Plan detailing the proposed site.

The purpose of this study was the evaluation of the traffic operational and safety impacts of the proposed development upon roadways in the vicinity of the project site. Discussion with the City of Knoxville and the Tennessee Department of Transportation staff resulted in two intersections being identified for detailed study. The studied intersections are Rutledge Pike at Primary Site Access / Existing McCalla Avenue / Proposed Rock Pointe Drive and Rutledge Pike at Secondary Site Access. Appropriate intersection evaluations such as capacity analyses, signal warrant analyses, and turn lane warrant evaluations were conducted at the study intersections for existing and future conditions, both with and without site generated traffic, in order to determine the anticipated impacts and to establish recommended measures to mitigate these impacts.

FIGURE 2 CONCEPTUAL SITE PLAN

3

SECTION 2 INTRODUCTION & PURPOSE OF STUDY

EXISTING CONDITIONS

EXISTING ROADWAY CONDITIONS

Roadway conditions for the study roadways are summarized as follows:

- Rutledge Pike (SR 1) is a four-lane roadway with two lanes in each direction and pocket leftturn lanes within the vicinity of the proposed site. It is classified as a major arterial per the Knoxville-Knox County Planning Major Road Plan. Lane widths are 11 feet with sidewalks, curb, and gutter on both sides of Rutledge Pike and the posted speed limit is 45 mph.
- Rock Pointe Drive (existing McCalla Avenue) is a proposed three-lane roadway with one lane in each direction and a two-way left-turn lane within the vicinity of the proposed site. There are sidewalks, curb, and gutter on both sides of proposed Rock Pointe Drive.
 - Rock Pointe Drive is a newly proposed access road for the adjacent Rock Pointe Crossing mixed-use development. According to the Transportation Impact Analysis for Rock Pointe Crossing, "Rock Pointe Drive will begin at the existing intersection of McCalla Avenue at Rutledge Pike (SR 1)."

Traffic control for the study intersection is as follows:

• Rutledge Pike at existing McCalla Avenue / Proposed Rock Pointe Drive is currently side-street STOP controlled.

EXISTING SITE CONDITIONS

The proposed redevelopment is located at the existing Kenjo Market on the west side of Rutledge Pike south of the I-40 East Interchange with Rutledge Pike. The site will expand to an undeveloped wooded portion of the property to create a primary full-movement access point across from the existing McCalla Avenue / Proposed Rock Pointe Crossing. FIGURE 3 provides an aerial view of the project site and the surrounding area.

FIGURE 3 EXISTING SITE CONDITIONS

EXISTING TRAFFIC DATA

Two types of existing traffic data were gathered for this study. The Tennessee Department of Transportation (TDOT) collects annual average daily traffic (AADT) data on roadways in the study area. A count station was found near the project site that was felt to have particular relevance for this study. The most currently available data from this station is contained in Table 1.

COUNT YEAR	TDOT COUNT STATION 47000358 RUTLEDGE PIKE SOUTH OF PROPOSED SITE
2016	9,978
2017	10,023
2018	10,214
2019	11,583
2020	9,122

TABLE 1: ANNUAL AVERAGE DAILY TRAFFIC COUNT SUMMARY

In addition to the available AADT data, intersection turning movement traffic counts were compiled at the study intersections from an adjacent proposed development, Rock Pointe Crossing, traffic impact study (TIS). The adjacent development's traffic impact study had an existing count year of 2020 so traffic volumes from that study were grown by a 1.5% growth factor to arrive at the 2021 existing traffic volumes utilized for this study.

The 2020 traffic data from the Rock Pointe Crossing TIS is summarized in FIGURE 4 and the factored 2021 existing traffic data is summarized in FIGURE 5. The Rock Pointe Crossing existing count summary sheets are contained in APPENDIX A.

EXISTING CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses employing the methods of the *Highway Capacity Manual* were conducted for the existing conditions at the study intersections. These analyses were performed with the 2021 existing traffic volumes, shown in FIGURE 5, and existing intersection traffic control and lane configurations. The EVALUATIONS section of this report may be referenced for tabular summaries of these analyses, while more detailed summaries are presented on the computer printouts contained in APPENDIX C. Also contained in APPENDIX C is a section entitled "Capacity and Level of Service Concepts", which provides a description of the utilized procedures.

SECTION 3 EXISTING CONDITIONS

.....

FIGURE 4 2020 EXISTING TRAFFIC VOLUMES FROM ROCK POINTE CROSSING TIS

SECTION 3 EXISTING CONDITIONS

FIGURE 5 2021 EXISTING FACTORED TRAFFIC VOLUMES

.........................

BACKGROUND CONDITIONS

BACKGROUND TRAFFIC GROWTH

The proposed development is anticipated to be constructed in one general phase with completion anticipated by 2022. Therefore, year 2022 was established as the appropriate design / analysis year for the study. In order to determine traffic volumes resulting solely from background traffic growth to year 2022, it was necessary to establish an annual growth rate for existing traffic. The TDOT AADT values previously discussed and a review of the recently approved TIS of the adjacent Rock Pointe Crossing mixed-use development determined an approximate annual growth rate of 1.5% to be utilized for this development. FIGURE 6 contains the background traffic volumes that would result from this annual growth rate from year 2021 to year 2022.

As previously mentioned, Rock Pointe Crossing is a mixed-use development proposed across Rutledge Pike from the primary access intersection at Rutledge Pike. The full build-out of the Rock Pointe Crossing development is anticipated to be complete by the year 2025. At the time of this study, only one of the proposed land uses is built-out and does not have direct access to Rutledge Pike through the existing McCalla Avenue / Proposed Rock Pointe Drive intersection. Since the background year for this proposed convenience market / fast-food development is anticipated to occur in 2022, prior to the full build-out of Rock Pointe Crossing in 2025, and minimal additional development has occurred to this point, no additional background traffic was accounted for from the proposed Rock Pointe Crossing development.

An additional adjacent project worth mentioning is the reconfiguration of the Rutledge Pike / Asheville Highway / Magnolia Avenue interchange directly south of the proposed development. Preliminary concept plans indicate a conversion of the interchange into a signalized intersection. This project is in the 2040 Mobility Plan but a specific construction timeline has not been established.

BACKGROUND CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses as described in the Existing Conditions section of this report were conducted utilizing the Year 2022 background volumes shown in FIGURE 6 and existing intersection traffic control and lane configurations. The EVALUATIONS section of this report may be referenced for tabular summaries of these analyses, while more detailed summaries are presented on the computer printouts contained in APPENDIX C.

SECTION 4

BACKGROUND CONDITIONS

FIGURE 6 2022 BACKGROUND TRAFFIC VOLUMES

FUTURE CONDITIONS

TRIP GENERATION

In order to estimate the expected traffic volumes to be generated by the proposed development, the procedures of *Trip Generation, Tenth Edition* (Institute of Transportation Engineers-ITE) were utilized. The generated trips were determined based on the weekday AM and PM peak hour of adjacent street traffic trip generation rates for Convenience Market w/ Gas Pumps (ITE Land Use Code 853) and Fast-Food w/ Drive-Thru (ITE Land Use Code 934). The generated trips for this project will consist of three specific types; internal capture trips, pass-by trips, and non-pass-by trips.

According to ITE, "At a development site consisting of two or more land uses, there is potential for interaction among those uses (referred to as "internal capture trips"), particularly where the trip can be made by walking. As a result, the total generation of external trips (that is, those entering and exiting the overall site) may be less than the simple sum of the trips generated by each discrete land use." ITE also states, "An internal capture rate can be generally defined as the percentage of total person trips generated by a site that are made entirely within the site. The trip origin, destination, and travel path are all within the site." Methodology for determining an internal capture rate followed ITE procedure and is the same methodology presented in NCHRP Report 684: Enhancing Internal Trip Capture Estimation for Mixed-Use Developments. Trip reductions for internal capture are separate from pass-by trip reductions and are subtracted from initial trip generation volumes before pass-by trip reductions are applied. For this specific development, internal capture trip reductions were calculated to be 13% for the AM peak hour and 14% for the PM peak hour.

The pass-by trips are those that involve vehicles that are already going past the project site, who will now turn into the site, do business, and then exit the site continuing their primary trip in the same direction. The ITE Trip Generation Handbook, 3rd Edition, provides pass-by trip rates for the specific land uses proposed in this development. For Convenience Market w/ Gas Pumps (ITE Land Use Code 853), the pass-by trip rate is 49% for the AM peak hour and 50% for the PM peak hour. For Fast-Food w/ Drive-Thru (ITE Land Use Code 934), the pass-by trip rate is 63% for the AM peak hour and 66% for the PM peak hour. Pass-by trips are not newly generated trips but rather redistributed trips from the existing roadway network to the proposed development. The pass-by trips for this development were assumed along Rutledge Pike split between northbound and southbound directions.

The non-pass-by trips are new trips that are made for the specific purpose of doing business at the proposed development. The non-pass-by trips are represented by the remaining percentages of the pass-by trip rates presented above.

See TABLE 2 for a summary of the traffic generated for this project. The ITE trip generation worksheets and internal capture calculation spreadsheets are contained in APPENDIX B.

SECTION 5

FUTURE CONDITIONS

.....

	ITE	0175	WEEKDAY	AM PEAK HOUR (TRIPS/HOUR)		PM PEAKHOUR (TRIPS/HOUR)			
LAND USE CODE SIZE		(TRIPS/DAY)	IN	Ουτ	TOTAL	IN	Ουτ	ΤΟΤΑΙ	
		10 Pumps	3,225	104	104	208	115	115	230
Convenience Market	8 53		Internal Capture Reduction*	(-14)	(-13)	(-27)	(-16)	(-16)	(-32)
w/ Gas Pumps	855		Reduced Trip Totals	90	91	181	99	99	198
			<i>Pass-by**</i> Non-Pass-by	(<i>-44)</i> 46	(<i>-45)</i> 46	(- <i>89)</i> 92	(-50) 49	(-49) 50	(<i>-99)</i> 99
		1,900 SF	895	39	37	76	32	30	62
Fast Food w/			Internal Capture Reduction*	(-5)	(-5)	(-10)	(-5)	(-4)	(-9)
Drive-Thru			Reduced Trip Totals	34	32	66	27	26	53
			<i>Pass-by**</i> Non-Pass-by	(<i>-21)</i> 13	(-20) 12	(<i>-41)</i> 25	(-18) 9	(-17) 9	(<i>-35)</i> 18
TOTAL		RIBUTED	PASS-BY TRIPS	65	65	130	68	66	134
TOTAL NEW	PROJEC	TTRIPS	(NON-PASS-BY)	59	58	117	58	59	117
TOTAL PRC	DJECT TR	RIPS AT S	ITE DRIVEWAYS	124	123	247	126	125	251

TRIP DISTRIBUTION AND ASSIGNMENT

The proposed trip distribution for this development was determined through a review of existing travel patterns, local knowledge of the study area, proposed site location in relation to surrounding roadway network, and engineering judgment. FIGURE 7 provides a summary of how the above site generated trips would be assigned to the study intersections. FIGURE 8 provides the proposed trip assignment volumes to the studied intersections.

FUTURE TRAFFIC VOLUMES

Future projected traffic volumes for the study intersections were developed by adding the generated and assigned trips shown in FIGURE 8 to the 2022 background traffic volumes developed in the previous section and shown in FIGURE 6. These combined 2022 volumes reflect the existing traffic, the background traffic growth, and the generated traffic from the proposed development. These future volumes are shown on FIGURE 9 and are the combined volumes used in the analyses of future conditions with the proposed development.

FUTURE CAPACITY ANALYSES / LEVELS-OF-SERVICE

Capacity analyses, as described in the Existing Conditions section of this report, were conducted for future conditions utilizing the traffic volumes shown in the build-out scenario. These analyses utilized existing intersection traffic control and proposed lane configurations to determine if any mitigation is required to accommodate traffic generated by the proposed site. Tabular summaries of the analysis results and associated discussion are also contained in the EVALUATIONS section. In addition, detailed computer printout summaries of the analyses are contained in APPENDIX C.

SECTION 5 FUTURE CONDITIONS

FIGURE 7 TRIP DISTRIBUTION

SECTION 5 FUTURE CONDITIONS

FIGURE 8 TRIP ASSIGNMENT

SECTION 5 FUTURE CONDITIONS

FIGURE 9 2022 COMBINED TRAFFIC VOLUMES

EVALUATIONS

INTERSECTION CAPACITY ANALYSES

As discussed in the preceding sections of this report, capacity analyses employing the methods of the Highway Capacity Manual (HCM 6th Edition) were conducted for the study intersections. These analyses were performed for the previously discussed development scenario. A summary of the capacity analyses results is shown in TABLE 3, while the resulting conclusions and recommendations are covered in the CONCLUSIONS and RECOMMENDATIONS section of this report. The complete capacity analysis reports are contained in APPENDIX C.

TABLE 3: CAPACITY ANALYSES SUMMARY

INTERSECTION	TIME PERIOD	YEAR 2021 EXISTING (LOS/DELAY)	YEAR 2022 BACKGROUND (LOS/DELAY)	YEAR 2022 COMBINED (LOS/DELAY)
Rutledge Pike at Primary Access / Existing McCalla Avenue / Proposed Rock Pointe Drive	EB A.M. EB P.M.	-	-	C 18.9 C 17.8
¹ SIDE STREET STOP CONTROL	WB A.M. WB P.M.	B 10.5 B 13.0	B 10.5 B 13.1	B 12.0 C 15.3
Rutledge Pike at Secondary Access ¹ SIDE STREET STOP CONTROL	EB A.M. EB P.M.	-	-	A 9.7 A 9.4

¹SIDE STREET STOP CONTROL – Data shown are Level-of-Service and Average Vehicular Delay (seconds) for the critical side street approaches and major street left turn movements utilizing HCM methodology.

TRAFFIC SIGNAL WARRANT ASSESSMENT

The traffic signal volume warrants from the Manual on Uniform Traffic Control Devices were evaluated for the study intersection of Rutledge Pike at Primary Access / McCalla Avenue / Rock Pointe Drive. Traffic signal warrant analyses were performed for the combined analysis scenario utilizing peak hour data. The results are summarized below and the spreadsheet summarizing the analysis is contained in APPENDIX D.

- Year 2022 Combined Traffic Volumes Peak Hour & Four-Hour signal warrants not satisfied
 - o AM Peak hour generated trips were added to volumes beginning at hours 7am & 8am
 - o PM Peak hour generated trips were added to volumes beginning at hours 4pm, & 5pm

TURN LANE ASSESSMENTS

A right-turn lane warrant evaluation was conducted for a potential right-turn lane on Rutledge Pike at the studied intersection of Rutledge Pike at Secondary Access (right-in / right-out). This evaluation found that a right-turn lane on Rutledge Pike is not warranted during the AM or PM peak hour.

Additionally, a left-turn lane warrant evaluation was conducted for the developer proposed northbound left-turn lane on Rutledge Pike at the studied intersection of Rutledge Pike at Primary Access. This evaluation found that a left-turn lane on Rutledge Pike is warranted for both the AM and PM peak hours. The capacity analysis and northbound left-turn vehicle queue were reviewed in order to determine the proposed northbound left-turn lane dimensions. The capacity analysis indicated typically around one vehicle would queue in the northbound left-turn lane during the AM and PM peak hours. In order to accommodate the possibility of more than one vehicle queuing in the proposed left-turn lane at a time, it is recommended to provide a 75-foot storage lane with an accommodating 180-foot taper.

Furthermore, the proposed northbound left-turn lane will be constructed within the merge area of the northbound ramp traffic from Magnolia Avenue and Asheville Highway to Rutledge Pike. In an effort to discourage inappropriate maneuvers from the Asheville Highway Ramp across the Magnolia Avenue Ramp and into the proposed left-turn lane, it is recommended to extend the existing solid white channelization line between the two ramps up to the beginning of the left turn lane storage. Flexible delineators could also be utilized to create a physical vertical barrier between the two ramps but would introduce a maintenance need if they were knocked down and needed to be replaced.

The evaluations utilized Knox County left and right-turn lane volume thresholds. The spreadsheets summarizing these evaluations are contained in APPENDIX E.

SIGHT DISTANCE ASSESSMENT

Intersection sight distance was assessed looking both directions from the proposed site driveway intersections. Based on AASHTO sight distance requirements for 45 mph roadways, 500 feet of sight distance is required to make a left turn and 430 feet of sight distance is required to make a right turn from a side street stop-controlled scenario.

At the primary and secondary site access intersections, the available sight distance is well in excess of the 430 feet required to make a right turn from a side street stop-controlled scenario. The southbound approach to the proposed site driveway intersections is relatively flat, straight and without sight limiting vegetation or fixed objects.

At the primary site access intersection, the available sight distance is in excess of the 500 feet required to make a left turn from a side street stop-controlled scenario. Field measurements indicate around 550 feet of sight distance is available when looking right to make a left turn from the proposed primary site access intersection. Care should be taken during the site development process to ensure that site features such as landscaping and signage to do not restrict the existing sight distances.

CONCLUSIONS & RECOMMENDATIONS

The primary conclusion of this study is that the traffic generated from the proposed development will not have a significant impact on the studied site access intersections at Rutledge Pike. Intersection levels-of-service are expected to be "C" or better exiting the site during peak traffic periods for the primary site access intersection and levels-of-service "A" exiting the site during peak traffic periods for the secondary site access intersection.

The following is a listing of recommendations that were developed to address traffic concerns in the vicinity of the project site:

- 1. Rutledge Pike at Primary Access / Existing McCalla Avenue / Proposed Rock Pointe Drive:
 - a. Install fourth leg (Proposed Primary Access) to the existing intersection of McCalla Avenue / Proposed Rock Pointe Drive at Rutledge Pike.
 - b. Install northbound left-turn lane with 75-foot storage lane and 180-foot taper
 - c. Extend the existing solid white channelization line between the northbound ramps of Magnolia Avenue and Asheville Highway up to the beginning of the proposed left-turn lane to discourage drivers from making inappropriate maneuvers from the Asheville Highway Ramp to the proposed left-turn lane.
- 2. Rutledge Pike at Secondary Access (Right-in / Right-out):
 - a. Create new right-in / right-out intersection at Rutledge Pike
 - b. Install a raised concrete channelization island to further enforce the right-in / right-out operation.
- 3. Maintain intersection corner sight distances on the site driveway by ensuring that site grading, landscaping, signage, and other site features do not restrict intersection sight distance lines of sight.

SECTION 8 APPENDIX

.....

APPENDIX

APPENDIX ORDER:

- A. TRAFFIC DATA
- **B. TRIP GENERATION INFORMATION**
- C. CAPACITY ANALYSES
- D. SIGNAL WARRANT SPREADSHEETS
- **E. TURN LANE WARRANT SHEETS**
- F. TIS COMMENT RESPONSE DOCUMENT

APPENDIX A

TRAFFIC DATA

APPENDIX A - TRAFFIC DATA

Rock Pointe Crossing Transportation Impact Analysis June 22, 2020

Figure 4: Combined 2020 Existing Peak Hour Traffic

APPENDIX B TRIP GENERATION

.....

APPENDIX B - TRIP GENERATION INFORMATION

Land Use: 853 Convenience Market with Gasoline Pumps

Description

This land use includes convenience markets with gasoline pumps where the primary business is the selling of convenience items, not the fueling of motor vehicles. The sites included in this land use category have the following two specific characteristics:

- The gross floor area of the convenience market is at least 2,000 gross square feet
- The number of vehicle fueling positions is less than 10

Convenience market (Land Use 851), gasoline/service station (Land Use 944), gasoline/service station with convenience market (Land Use 945), and super convenience market/gas station (Land Use 960) are related uses.

Additional Data

The independent variable, vehicle fueling positions, is defined as the maximum number of vehicles that can be fueled simultaneously.

Time-of-day distribution data for this land use are presented in Appendix A. For the 31 general urban/ suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 7:30 and 8:30 a.m. and 4:45 and 5:45 p.m., respectively.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), Arkansas, Delaware, Florida, Indiana, Iowa, Kentucky, Maryland, Massachusetts, Minnesota, New Hampshire, Rhode Island, South Dakota, Texas, Vermont, and Washington.

Source Numbers

221, 274, 288, 300, 340, 350, 351, 352, 355, 359, 718, 810, 813, 853, 882, 883, 888, 926, 927, 936, 977

Convenience Market with Gasoline Pumps (853)

Vehicle Trip Ends vs:	Vehicle Fueling Positions
On a:	Weekday

Setting/Location:	General Urban/Suburban
Number of Studies:	36
Avg. Num. of Vehicle Fueling Positions:	5
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
322.50	68.50 - 701.00	173.92

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Convenience Market with Gasoline Pumps (853)

•	Vehicle Fueling Positions Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	59
Avg. Num. of Vehicle Fueling Positions:	6
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
20.76	3.75 - 50.00	9.88

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Convenience Market with Gasoline Pumps (853)

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Setting/Location: General Urban/Suburban Number of Studies: 69 Avg. Num. of Vehicle Fueling Positions: 6 Directional Distribution: 50% entering, 50% exiting	On a: Setting/Location: Number of Studies: Avg. Num. of Vehicle Fueling Positions:	General Urban/Suburban 69 6
---	---	-----------------------------------

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate Range of Rates		Standard Deviation
23.04	5.75 - 57.80	11.91

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Land Use: 934 Fast-Food Restaurant with Drive-Through Window

Description

This category includes fast-food restaurants with drive-through windows. This type of restaurant is characterized by a large drive-through clientele, long hours of service (some are open for breakfast, all are open for lunch and dinner, some are open late at night or 24 hours a day) and high turnover rates for eat-in customers. These limited-service eating establishments do not provide table service. Non-drive-through patrons generally order at a cash register and pay before they eat. Fast casual restaurant (Land Use 930), high-turnover (sit-down) restaurant (Land Use 932), fast-food restaurant without drive-through window (Land Use 933), and fast-food restaurant with drive-through window and no indoor seating (Land Use 935) are related uses.

Additional Data

Users should exercise caution when applying statistics during the AM peak periods, as the sites contained in the database for this land use may or may not be open for breakfast. In cases where it was confirmed that the sites were not open for breakfast, data for the AM peak hour of the adjacent street traffic were removed from the database.

The outdoor seating area is not included in the overall gross floor area. Therefore, the number of seats may be a more reliable independent variable on which to establish trip generation rates for facilities having significant outdoor seating.

Time-of-day distribution data for this land use for a weekday, Saturday, and Sunday are presented in Appendix A. For the 46 general urban/suburban sites with data, the overall highest vehicle volumes during the AM and PM on a weekday were counted between 11:45 a.m. and 12:45 p.m. and 12:00 and 1:00 p.m., respectively. For the one dense multi-use urban site with data, the same AM and PM peak hours were observed.

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alaska, Alberta (CAN), California, Colorado, Florida, Indiana, Kentucky, Maryland, Massachusetts, Minnesota, Montana, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Dakota, Texas, Vermont, Virginia, Washington, and Wisconsin.

Source Numbers

163, 164, 168, 180, 181, 241, 245, 278, 294, 300, 301, 319, 338, 340, 342, 358, 389, 438, 502, 552, 577, 583, 584, 617, 640, 641, 704, 715, 728, 810, 866, 867, 869, 885, 886, 927, 935, 962, 977

Fast-Food Restaurant with Drive-Through Window

(934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location:	General Urban/Suburban
-------------------	------------------------

Number of Studies:	67
Avg. 1000 Sq. Ft. GFA:	3
Directional Distribution:	50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate Range of Rates		Standard Deviation
470.95	98.89 - 1137.66	244.44

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	111
Avg. 1000 Sq. Ft. GFA:	4
Directional Distribution:	51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate Range of Rates		Standard Deviation
40.19	0.38 - 164.25	28.78

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: On a:	1000 Sq. Ft. GFA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location:	General Urban/Suburban
Number of Studies:	185
Avg. 1000 Sq. Ft. GFA:	
Directional Distribution:	52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Average Rate Range of Rates	
32.67	8.17 - 117.22	17.87

Trip Gen Manual, 10th Edition • Institute of Transportation Engineers

NCHRP 684 Internal Trip Capture Estimation Tool							
Project Name: Kenjo Market w/ Fast Food Organization: Cannon & Cannon, Inc.							
Project Location:	Rutledge Pike		Performed By:	Wesley Stokes, PE			
Scenario Description:			Date:	7/12/2021			
Analysis Year:	2022		Checked By:				
Analysis Period:	AM Street Peak Hour		Date:				

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate) Development Data (For Information Only) Estimated Vehicle-Trips³ Land Use ITE LUCs¹ Quantity Units Total Entering Exiting Office 0 Retail 853 10 104 104 Pumps 208 Restaurant 934 1,900 SF 76 39 37 Cinema/Entertainment 0 Residential 0 Hotel 0 All Other Land Uses² 0 141 284 143

Table 2-A: Mode Split and Vehicle Occupancy Estimates							
Land Use		Entering Trips			Exiting Trips		
Land Use	Veh. Occ.4	Veh. Occ. ⁴ % Transit			Veh. Occ. ⁴	% Transit	% Non-Motorized
Office							
Retail	1.00	0%	0%		1.00	0%	0%
Restaurant	1.00	0%	0%		1.00	0%	0%
Cinema/Entertainment							
Residential							
Hotel							
All Other Land Uses ²							

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)							
Origin (From)	Destination (To)						
Origin (From)	Office Retail Restaurant Cinema/Entertainment Residential Ho						
Office							
Retail							
Restaurant							
Cinema/Entertainment							
Residential							
Hotel							

		Table 4-A: I	nternal Person-Tri	o Origin-Destination Matrix*					
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0		14	0	0	0			
Restaurant	0	5		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	0	0	0		0			
Hotel	0	0	0	0	0				

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	284	143	141	Office	N/A	N/A
Internal Capture Percentage	13%	13%	13%	Retail	5%	13%
· · · · ·				Restaurant	36%	14%
External Vehicle-Trips ⁵	246	124	122	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	0	0	0	Residential	N/A	N/A
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1
Project Name:	Kenjo Market w/ Fast Food
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Land Use	Tab	Table 7-A (D): Entering Trips				Table 7-A (O): Exiting Trips	;		
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	0	0		1.00	0	0		
Retail	1.00	104	104		1.00	104	104		
Restaurant	1.00	39	39		1.00	37	37		
Cinema/Entertainment	1.00	0	0		1.00	0	0		
Residential	1.00	0	0		1.00	0	0		
Hotel	1.00	0	0		1.00	0	0		

	Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)									
Origin (From)		Destination (To)								
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	30		14	0	15	0				
Restaurant	11	5		0	1	1				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	0	0	0		0				
Hotel	0	0	0	0	0					

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)									
Origin (From)		Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		33	9	0	0	0				
Retail	0		20	0	0	0				
Restaurant	0	8		0	0	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	18	8	0		0				
Hotel	0	4	2	0	0					

	Та	ble 9-A (D): Int	ernal and Externa	l Tr	ips Summary (Enterin	g Trips)	
Destination Land Use		Person-Trip Esti	mates			External Trips by Mode*	
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	5	99	104		99	0	0
Restaurant	14	25	39		25	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	0	0	0		0	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0	1	0	0	0

	Т	able 9-A (O): In	ternal and Extern	al T	rips Summary (Exiting	g Trips)	
	F	Person-Trip Esti	mates			External Trips by Mode*	
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	14	90	104		90	0	0
Restaurant	5	32	37		32	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	0	0	0		0	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name: Kenjo Market w/ Fast Food Organization: Cannon & Cannon, Inc.									
Project Location:	Rutledge Pike		Performed By:	Wesley Stokes, PE					
Scenario Description:			Date:	7/12/2021					
Analysis Year:	2022		Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

	Table 1	-P: Base Vehicl	e-Trip Generatior	ı Es	timates (Single-Use Sit	e Estimate)	
Land Use	Developm	ent Data (<i>For Inf</i>	ormation Only)			Estimated Vehicle-Trips ³	
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting
Office					0		
Retail	853	10	Pumps		230	115	115
Restaurant	934	1,900	SF		62	32	30
Cinema/Entertainment					0		
Residential					0		
Hotel					0		
All Other Land Uses ²					0		
					292	147	145

	Table 2-P: Mode Split and Vehicle Occupancy Estimates									
Land Use		Entering Tri	ps			Exiting Trips				
Land Use	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office				1						
Retail	1.00	0%	0%		1.00	0%	0%			
Restaurant	1.00	0%	0%		1.00	0%	0%			
Cinema/Entertainment				1						
Residential				1						
Hotel				1						
All Other Land Uses ²				1						

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)		Destination (To)							
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office									
Retail									
Restaurant									
Cinema/Entertainment									
Residential									
Hotel									

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		9	0	0	0					
Restaurant	0	12		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	0	0	0		0					
Hotel	0	0	0	0	0						

Table 5-P	: Computatio	Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total Entering		Exiting	Land Use	Entering Trips	Exiting Trips			
All Person-Trips	292	147	145	Office	N/A	N/A			
Internal Capture Percentage	14%	14%	14%	Retail	10%	8%			
				Restaurant	28%	40%			
External Vehicle-Trips ⁵	250	126	124	Cinema/Entertainment	N/A	N/A			
External Transit-Trips ⁶	0	0	0	Residential	N/A	N/A			
External Non-Motorized Trips ⁶	0	0	0	Hotel	N/A	N/A			

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers. ²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator. ³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*). ⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P. ⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	Kenjo Market w/ Fast Food
Analysis Period:	PM Street Peak Hour

	Та	ble 7-P: Conver	sion of Vehicle-Tr	ip E	Ends to Person-Trip End	ls				
Land Use	Table	7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips					
Lanu Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	1	Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.00	0	0		0		1.00	0	0	
Retail	1.00	115	115		1.00	115	115			
Restaurant	1.00	32	32		1.00	30	30			
Cinema/Entertainment	1.00	0	0		1.00	0	0			
Residential	1.00	0	0		1.00	0	0			
Hotel	1.00	0	0		1.00	0	0			

	Table 8-P (O): Internal Pers	on-Trip Origin-De	stination Matrix (Computed	l at Origin)							
Origin (From)	Destination (To)											
Oligin (Flom)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		0	0	0	0	0						
Retail	2		33	5	30	6						
Restaurant	1	12		2	5	2						
Cinema/Entertainment	0	0	0		0	0						
Residential	0	0	0	0		0						
Hotel	0	0	0	0	0							

	Table 8-P (D):	Internal Persor	n-Trip Origin-Desti	nation Matrix (Computed at	Destination)									
Origin (From)		Destination (To)												
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel								
Office		9	1	0	0	0								
Retail	0		9	0	0	0								
Restaurant	0	58		0	0	0								
Cinema/Entertainment	0	5	1		0	0								
Residential	0	12	4	0		0								
Hotel	0	2	2	0	0									

	Tat	ole 9-P (D): Interr	nal and External T	rips	Summary (Entering Tr	ips)				
Destination Land Use	P	erson-Trip Estima	tes		External Trips by Mode*					
Destination Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	12	103	115		103	0	0			
Restaurant	9	23	32		23	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	0	0	0		0	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

	Та	ble 9-P (O): Inter	rnal and External 1	Frips	s Summary (Exiting Tri	ps)				
	P	erson-Trip Estima	ites		External Trips by Mode*					
Origin Land Use	Internal	External	Total	1 [Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0	1 [0	0	0			
Retail	9	106	115	1 [106	0	0			
Restaurant	12	18	30		18	0	0			
Cinema/Entertainment	0	0	0	1 [0	0	0			
Residential	0	0	0	1 [0	0	0			
Hotel	0	0	0	1	0	0	0			
All Other Land Uses ³	0	0	0	1	0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips ³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

APPENDIX C CAPACITY ANALYSES

.....

APPENDIX C - CAPACITY ANALYSES

CAPACITY AND LEVEL-OF-SERVICE CONCEPTS

In a general sense, a roadway is similar to a pipeline or other material carrying conduit in that it has a certain capacity for the amount of material (vehicles) that it can efficiently carry. As the number of vehicles in a given time period gradually increases, the quality of traffic flow gradually decreases. On roadway sections this results in increasing turbulence in the traffic stream, and at intersections it results in increasing stops and delay. As the volumes begin to approach the capacity of the facility, these problems rapidly magnify, with resulting serious levels of congestion, stops, delay, excess fuel consumption, pollutant emissions, etc.

The Transportation Research Board has published the <u>Year 2010 Highway Capacity Manual</u> (HCM2010), which establishes theoretical techniques to quantify the capacity conditions on all types of roadways, intersections, ramps, pedestrian facilities, etc. A basic concept that is applicable to most of these techniques is the idea of level of service (LOS). This concept establishes a rating system that quantifies the quality of traffic flow, as perceived by motorists and/or passengers. The general system is similar to a school grade scale, and is outlined as follows:

Level of Service (LOS)	General Quality of Traffic Flow	Description of Corresponding Conditions
A	Excellent	Roadways – Free flow, high maneuverability Intersections – Very few stops, very low delay
В	Very Good	Roadways – Free flow, slightly lower maneuverability Intersections – Minor stops, low delay
С	Good	Roadways – Stable flow, restricted maneuverability Intersections – Significant stops, significant delay
D	Fair	Roadways – Marginally stable flow, congestion seriously restricts maneuverability Intersections – High stops, long but tolerable delay
Е	Poor	Roadways – Unstable flow*, lower operating speeds, congestion severely restricts maneuverability Intersections – All vehicles stop, very long queues and very long intolerable delay
F	Very Poor	Roadways – Forced flow, stoppages may be lengthy, congestion severely restricts maneuverability Intersections – All vehicles stop, extensive queues and extremely long intolerable delay

*Unstable flow is such that minor fluctuations or disruptions can result in rapid degradation to LOS F.

LOS	CONTROL DELAY (S/VEH)									
203	SIGNALIZED	UNSIGNALIZED	ROUNDABOUT							
A	≤10	≤10	≤10							
В	>10-20	>10-15	>10-15							
С	>20-35	>15-25	>15-25							
D	>35-55	>25-35	>25-35							
E	>55-80	>35-50	>35-50							
F	>80	>50	>50							

LOS CRITERIA: SIGNALIZED & UNSIGNALIZED INTERSECTIONS

Another measure of intersection capacity that is often used in the evaluation of intersection operations is the volume to capacity (V/C) ratio. This ratio is defined as "the ratio of flow rate to capacity", and is a good measure of how much of an intersection's available capacity has been used up by the analysis volumes. Conversely, it also provides an indication of the reserve capacity available for future growth in traffic volumes.

The Intersection Capacity Utilization (ICU) is another measure that expresses a value similar to the V/C ratio. Specifically, the ICU method "sums the amount of the time required to serve all movements at saturation for a given cycle length and divides by that reference cycle length." The ICU is considered a more accurate measure of volume to capacity conditions for a signalized intersection, primarily because it accounts for the effects of the signal timing on intersection capacity.

	HCS7 Two-W	/ay Stop-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at McCalla
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	McCalla / Rock Pointe
Analysis Year	2021	North/South Street	Rutledge Pike
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2021 Existing		
Lanes			

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0
Configuration							LR				Т	TR		L	Т	
Volume (veh/h)						9		41			295	5	0	52	323	
Percent Heavy Vehicles (%)						3		3					3	3		
Proportion Time Blocked																
Percent Grade (%)					0											
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.5		6.9						4.1		
Critical Headway (sec)						6.86		6.96						4.16		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)							54							57		
Capacity, c (veh/h)							708							1223		
v/c Ratio							0.08							0.05		
95% Queue Length, Q ₉₅ (veh)							0.2							0.1		
Control Delay (s/veh)							10.5							8.1		
Level of Service (LOS)							В							А		
Approach Delay (s/veh)						1().5						1.1			
Approach LOS							В									

Generated: 7/21/2021 3:01:23 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at McCalla
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	McCalla / Rock Pointe
Analysis Year	2021	North/South Street	Rutledge Pike
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2021 Existing		
Lanes			

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0	
Configuration							LR				Т	TR		L	Т		
Volume (veh/h)						15		34			456	28	0	79	208		
Percent Heavy Vehicles (%)						3		3					3	3			
Proportion Time Blocked																	
Percent Grade (%)					0												
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						7.5		6.9						4.1			
Critical Headway (sec)						6.86		6.96						4.16			
Base Follow-Up Headway (sec)						3.5		3.3						2.2			
Follow-Up Headway (sec)						3.53		3.33						2.23			
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)							53							86			
Capacity, c (veh/h)							504							1030			
v/c Ratio							0.11							0.08			
95% Queue Length, Q ₉₅ (veh)							0.4							0.3			
Control Delay (s/veh)							13.0							8.8			
Level of Service (LOS)							В							А			
Approach Delay (s/veh)						13	3.0						2.4				
Approach LOS							3										

Generated: 7/21/2021 3:02:35 PM

	HCS7 Two-Wa	ay Stop-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at McCalla
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	McCalla / Rock Pointe
Analysis Year	2022	North/South Street	Rutledge Pike
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2022 Background		
Lanes			

Approach		Eastb	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0		
Configuration							LR				Т	TR		L	т			
Volume (veh/h)						9		42			299	5	0	53	328			
Percent Heavy Vehicles (%)						3		3					3	3				
Proportion Time Blocked																		
Percent Grade (%)						(0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)						7.5		6.9						4.1				
Critical Headway (sec)						6.86		6.96						4.16				
Base Follow-Up Headway (sec)						3.5		3.3						2.2				
Follow-Up Headway (sec)						3.53		3.33						2.23				
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)							55							58				
Capacity, c (veh/h)							706							1219				
v/c Ratio							0.08							0.05				
95% Queue Length, Q ₉₅ (veh)							0.3							0.1				
Control Delay (s/veh)							10.5							8.1				
Level of Service (LOS)							В							А				
Approach Delay (s/veh)					10.5								1.1					
Approach LOS					В													

Generated: 7/21/2021 3:04:32 PM

	HCS7 Two-Way Sto	p-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at McCalla
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	McCalla / Rock Pointe
Analysis Year	2022	North/South Street	Rutledge Pike
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2022 Background		
Lanes			

Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	0	0		0	1	0	0	0	2	0	0	1	2	0		
Configuration							LR				Т	TR		L	Т			
Volume (veh/h)						15		35			463	28	0	80	211			
Percent Heavy Vehicles (%)						3		3					3	3				
Proportion Time Blocked																		
Percent Grade (%)						(0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)						7.5		6.9						4.1				
Critical Headway (sec)						6.86		6.96						4.16				
Base Follow-Up Headway (sec)						3.5		3.3						2.2				
Follow-Up Headway (sec)						3.53		3.33						2.23				
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)							54							87				
Capacity, c (veh/h)							501							1023				
v/c Ratio							0.11							0.08				
95% Queue Length, Q ₉₅ (veh)							0.4							0.3				
Control Delay (s/veh)							13.1							8.8				
Level of Service (LOS)							В							А				
Approach Delay (s/veh)					13.1								2.4					
Approach LOS					В													

Generated: 7/21/2021 3:06:03 PM

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at McCalla
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	McCalla / Rock Pointe
Analysis Year	2022	North/South Street	Rutledge Pike
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2022 Combined		

Lanes

Vehicle Volumes and Adjustments

Approach	T	Eastb	ound			West	oound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0		
Configuration			LTR				LTR			L	Т	TR		L	Т	TR		
Volume (veh/h)		55	3	52		9	3	42	0	62	267	5	0	53	327	10		
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3				
Proportion Time Blocked																		
Percent Grade (%)			0				0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1				
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23				
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)			120				59			67				58				
Capacity, c (veh/h)			378				572			1182				1255				
v/c Ratio			0.32				0.10			0.06				0.05				
95% Queue Length, Q ₉₅ (veh)			1.3				0.3			0.2				0.1				
Control Delay (s/veh)			18.9				12.0			8.2				8.0				
Level of Service (LOS)			С				В			А				A				
Approach Delay (s/veh)		18	3.9		12.0				1.5				1.1					
Approach LOS		(С				В											

Generated: 7/21/2021 3:10:45 PM

HCS7 Two-Way Stop-Control Report

Wesley Stokes	Site Information	Rutledge at McCalla
,	Intersection	Rutledge at McCalla
		Nuticage at mecana
Cannon & Cannon, Inc.	Jurisdiction	Knoxville
7/21/2021	East/West Street	McCalla / Rock Pointe
2022	North/South Street	Rutledge Pike
PM Peak	Peak Hour Factor	0.92
North-South	Analysis Time Period (hrs)	0.25
2022 Combined		
, 2(Pl)22 M Peak orth-South	D22 North/South Street M Peak Peak Hour Factor orth-South Analysis Time Period (hrs)

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	1	0	0	1	2	0	0	1	2	0		
Configuration			LTR				LTR			L	Т	TR		L	Т	TR		
Volume (veh/h)		56	3	54		15	3	35	0	63	429	28	0	53	210	10		
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3				
Proportion Time Blocked																		
Percent Grade (%)			0				0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1				
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23				
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)			123				58			68				58				
Capacity, c (veh/h)			403				408			1318				1056				
v/c Ratio			0.30				0.14			0.05				0.05				
95% Queue Length, Q ₉₅ (veh)			1.3				0.5			0.2				0.2				
Control Delay (s/veh)			17.8				15.3			7.9				8.6				
Level of Service (LOS)			С				С			А				A				
Approach Delay (s/veh)		17	7.8		15.3				1.0				1.7					
Approach LOS		(C				C											

Generated: 7/21/2021 3:12:02 PM

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at Second Access
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	Secondary Access (RIRO)
Analysis Year	2022	North/South Street	Rutledge Pike
Time Analyzed	AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2022 Combined		
Lanes			
	J	4 + L & > L U	

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	1		0	0	0	0	0	2	0	0	0	2	0
Configuration				R							Т				Т	TR
Volume (veh/h)				13							367				358	49
Percent Heavy Vehicles (%)				3												
Proportion Time Blocked																
Percent Grade (%)			0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)				6.9												
Critical Headway (sec)				6.96												
Base Follow-Up Headway (sec)				3.3												
Follow-Up Headway (sec)				3.33												
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)				14												
Capacity, c (veh/h)				779												
v/c Ratio				0.02												
95% Queue Length, Q ₉₅ (veh)				0.1												
Control Delay (s/veh)				9.7												
Level of Service (LOS)				А												
Approach Delay (s/veh)		9	.7													
Approach LOS			4													

	HCS7 Two-Way	Stop-Control Report	
General Information		Site Information	
Analyst	Wesley Stokes	Intersection	Rutledge at Second Access
Agency/Co.	Cannon & Cannon, Inc.	Jurisdiction	Knoxville
Date Performed	7/21/2021	East/West Street	Secondary Access (RIRO)
Analysis Year	2022	North/South Street	Rutledge Pike
Time Analyzed	PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	2022 Combined	· · · ·	
Lanes			
	<u>↓</u> +↓ ↓	11444	

Approach	1	Easth	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U		Т	R	U	L	Т	R
		10	11	12	0	7	8	9	10	1	2	3	4U	4	5	6
Priority													-		-	
Number of Lanes		0	0	1		0	0	0	0	0	2	0	0	0	2	0
Configuration				R							Т				Т	TR
Volume (veh/h)				12							524				267	50
Percent Heavy Vehicles (%)				3												
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)				6.9												
Critical Headway (sec)				6.96												
Base Follow-Up Headway (sec)				3.3												
Follow-Up Headway (sec)				3.33												
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)				13												
Capacity, c (veh/h)				838												
v/c Ratio				0.02												
95% Queue Length, Q ₉₅ (veh)				0.0												
Control Delay (s/veh)				9.4												
Level of Service (LOS)				Α												
Approach Delay (s/veh)		9	.4													
Approach LOS			4													

APPENDIX D

SIGNAL WARRANT SPREADSHEETS

.....

APPENDIX D - SIGNAL WARRANT SPREADSHEETS

TRAFFIC SIGNAL WARRANT ANALYSIS - VOLUME WARRANTS

Intersection : City or County : State

Knoxville

Tennessee

Rutledge Pike at Primary Site Access / McCalla Ave / Rock Pointe Dr Date of Count:

Day of Week of Count:

		Majo	r Street		Mino	Street	(8	Warrant #1A (8 Hr Min. Vol.)		(8 Hr Min. Vol.)		(8 Hr Min. Vol.)		(8 Hr Min. Vol.) (8 H		Warrant #1B (8 Hr Interruption		Combir (Warrants	nation s 1A & 1B)	Warrai (Four Hou		Warra (Peak Ho	
Time Beginning		tual Volu App #2		Adjusted Total Volum,	Actual Volume _	Adjusted Total Volurr,		rcent ajor	of Warrant Minor	Percent of V Major	Varrant Minor	Percent o Major	of Warrant Minor	Warrant Volume	Percent of Warrant	Warrant Volume	Percent of Warrant						
6:00 am 7:00 8:00	0 390 390	0 334 334	0 724 724	 0 724 724	0 110 110	 0 110 110		 0 21 21		0 80 80	0 147 147	 0 101 101	- 0 92 92	0 230 230	***** 48 48	0 390 390	***** 28 28						
9:00 am 10:00 11:00	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	**** **** ****	0 0 0	***** ***** ****						
12:00 noon 1:00 2:00	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	**** ***** ****	0 0 0	***** *****						
3:00 pm 4:00 5:00	0 300 300	0 520 520	0 820 820	0 820 820	0 113 113	0 113 113		0 37 37	0 75 75	0 91 91	0 151 151	0 114 114	0 94 94	0 190 190	***** 59 59	0 340 340	***** 33 33						
6:00 pm 7:00 8:00	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	**** **** ****	0 0 0	***** ***** ****						
 Where more than one minor approach exists use the higher approach volume Total Hours Me Warrant = 					150 rs Meeting 0.	Warranting V 900 Total Hours Warrant = Warrant Met	75 Meeting 0.	Warranting 720 Total Houra Warrant = Warrant M	120 s Meeting 0 .	From MUTC Total Hours Warrant = Warrant Ma	Meeting 0. /Ie No	Warrantir From MUTO Total Hours Warrant = Warrant I ume is so low t arrant exists	D Fig. 4-8 Meeting 0										
Comments:	Major Si Minor Si	reet = Ri	utledge F imary Si	Pike		o the reviewer	Pointe Dr			Major approa Minor approa													
Analysis Pre	pared by:	CANNC Wesley			NC.				Date: Time:			Developed b Distributed b		rcy Sullivan, P		ance Program	VC/F						

No 1.00

APPENDIX E

TURN LANE WARRANTS

.....

APPENDIX E - TURN LANE WARRANT SHEET

TABLE 5B	Project No: 00590-0012
KNOX COUNTY RIGHT-TURN LANE VOLUME THRESHOLDS	Project Name: Kenjo Market Redevelopment
FOR 2-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH	Notes:

RIGHT-TURN	THROUGH VOLUME PLUS LEFT-TURN VOLUME *							
VOLUME	< 100	100 - 199	200 - 249	250 - 299	300 - 349	350 - 399		
Fewer Than 25								
25 - 49								
50 - 99								
100 - 149								
150 - 199								
200 - 249						Yes		
250 - 299					Yes	Yes		
300 - 349				Yes	Yes	Yes		
350 - 399			Yes	Yes	Yes	Yes		
400 - 449			Yes	Yes	Yes	Yes		
450 - 499		Yes	Yes	Yes	Yes	Yes		
500 - 549		Yes	Yes	Yes	Yes	Yes		
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes		
600 or More	Yes	Yes	Yes	Yes	Yes	Yes		

RIGHT-TURN		THROUGH VOLUME PLUS LEFT-TURN VOLUME *					
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600	
Fewer Than 25							
25 - 49					Yes	Yes	
50 - 99				Yes	Yes	Yes	
100 - 149			Yes	Yes	Yes	Yes	
150 - 199		Yes	Yes	Yes	Yes	Yes	
200 - 249	Yes	Yes	Yes	Yes	Yes	Yes	
250 - 299	Yes	Yes	Yes	Yes	Yes	Yes	
300 - 349	Yes	Yes	Yes	Yes	Yes	Yes	
350 - 399	Yes	Yes	Yes	Yes	Yes	Yes	
400 - 449	Yes	Yes	Yes	Yes	Yes	Yes	
450 - 499	Yes	Yes	Yes	Yes	Yes	Yes	
500 - 549	Yes	Yes	Yes	Yes	Yes	Yes	
550 - 599	Yes	Yes	Yes	Yes	Yes	Yes	
600 or More	Yes	Yes	Yes	Yes	Yes	Yes	

* Or through volume only if a left-turn lane exists

				Right-Turn Lane
		Through	Right-Turn	Warranted
Intersection	Time Period	Volume	Volume	(Yes / No)
RIRO at Rutledge	AM Peak	358 / 2 = 179	49	No
RIRO at Rutledge	PM Peak	267 / 2 = 134	50	No

Note: Rutledge Pike has two lanes in southbound direction so through volumes were divided by two for warrant calculation

TABLE 5A	Project No: 00590-0012
KNOX COUNTY LEFT-TURN LANE VOLUME THRESHOLDS	Project Name: Kenjo Market Redevelopment
FOR 2-LANE ROADWAYS WITH A PREVAILING SPEED OF 36 TO 45 MPH	Notes:

OPPOSING		THROUGH VOLUME PLUS RIGHT-TURN VOLUME *							
VOLUME	100 - 149	150 - 199	200 - 249	250 - 299	300 - 349	350 - 399			
100 - 149	250	180	140	110	80	70			
150 - 199	200	140	105	90	70	60			
200 - 249	160	115	85	75	65	55			
250 - 299	130	100	75	65	60	50			
300 - 349	110	90	70	60	55	45			
350 - 399	100	80	65	55	50	40			
400 - 449	90	70	60	50	45	35			
450 - 499	80	65	55	45	40	30			
500 - 549	70	60	45	35	35	25			
550 - 599	65	55	40	35	30	25			
600 - 649	60	45	35	30	25	25			
650 - 699	55	35	35	30	25	20			
700 - 749	50	35	30	25	20	20			
750 or More	45	35	25	25	20	20			

(If the left-turn volume exceeds the table value a left-turn lane is needed)

OPPOSING	THROUGH VOLUME PLUS RIGHT-TURN VOLUME *								
VOLUME	350 - 399	400 - 449	450 - 499	500 - 549	550 - 599	= / > 600			
100 - 149	70	60	50	45	40	35			
150 - 199	60	55	45	40	35	30			
200 - 249	55	50	40	35	30	30			
250 - 299	50	45	35	30	30	30			
300 - 349	45	40	35	30	25	25			
350 - 399	40	35	30	25	25	20			
400 - 449	35	30	30	25	20	20			
450 - 499	30	25	25	20	20	20			
500 - 549	25	25	20	20	20	15			
550 - 599	25	20	20	20	20	15			
600 - 649	25	20	20	20	20	15			
650 - 699	20	20	20	20	20	15			
700 - 749	20	20	20	15	15	15			
750 or More	20	20	20	15	15	15			

* Or through volume only if a right-turn lane exists

						Left-Turn Lane
		Opposing	Through	Left-Turn	Warrant	Warranted
Intersection	Time Period	Volume	Volume	Volume	Threshold	(Yes / No)
Rutledge at Primary	AM Peak	337	272	62	60	Yes
Rutledge at Primary	PM Peak	220	457	63	40	Yes

Source: Knox County Department of Engineering and Public Works "Access Control and Driveway Design Policy"

APPENDIX F

TIS COMMENT RESPONSE DOCUMENT

.....

APPENDIX F – TIS COMMENT RESPONSE DOCUMENT

Date: August 18, 2021

Project Name: Kenjo Market on Rutledge Pike

To: Tennessee Department of Transportation, City of Knoxville, and Knoxville-Knox County Planning

Subject: TIS Comment Response Document for Kenjo Market on Rutledge Pike

Dear Tennessee Department of Transportation, City of Knoxville, and Knoxville-Knox County Planning Staff,

The following comment response document is submitted to address comments dated August 13, 2021:

- 1. <u>Reviewer Comment</u>: The TIS needs to include additional detail regarding the recommendation for the northbound left turn lane on Rutledge Pike addressing the following items:
 - a. Please document the recommended storage and taper lengths for the left-turn lane.

<u>Response</u>: Comment addressed on page 18 of the Revised TIS. The recommended storage length is 75 feet and recommended taper length is 180 feet. The turn lane dimension recommendation is also included in the "Executive Summary" and "Conclusions & Recommendations" sections of the Revised TIS.

b. The location of the proposed left-turn lane relative to merge area of the two ramps coming together from Magnolia Avenue and Asheville Highway needs to be referenced and shown relative to the current geometry and striping of the gore area. Please provide any initial recommendations for physical barriers (flexible delineators) or other striping patterns needed to discourage inappropriate maneuvers from vehicles merging in from the Asheville Highway ramp desiring to use the new left-turn lane.

<u>Response</u>: Comment addressed on page 18 of the Revised TIS. It is recommended to extend the existing solid white channelization line between the two ramps up to the beginning of the left turn lane storage to discourage inappropriate maneuvers. Additionally, the recommendation is included in the "Executive Summary" and "Conclusions & Recommendations" sections of the Revised TIS.

2. <u>Reviewer Comment</u>: Regarding the right-in/right-out driveway access – please note any recommended treatments such as painted or raised channelizing islands to emphasize this operation especially given the relatively narrow and flush median that may not be highly visible to exiting motorists.

<u>Response</u>: Comment addressed on page 19 in the "Conclusions and Recommendations" section of the Revised TIS. It is recommended to install a raised concrete channelization island to further enforce the right-in / right-out operation. Additionally, the recommendation is included in the "Executive Summary" section of the Revised TIS.

KNOXVILLE 8550 Kingston Pike MEMPHIS BOWLING GREEN FAX 865.670.8866 3. <u>Reviewer Comment</u>: The "Conclusions & Recommendations" section as well as the recommendations summary included in the Executive Summary need to specifically reference the creation of the access points and their particular operational considerations including the final outcome from responding to the first two comments above.

<u>Response</u>: More details provided in the "Conclusions & Recommendations" (page 19) and "Executive Summary" (page 1) sections of the Revised TIS.

Sincerely,

Wesley Stokes, P.E.